// Copyright 2022 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.timeseriesinsights.v1; import "google/api/annotations.proto"; import "google/api/client.proto"; import "google/api/field_behavior.proto"; import "google/api/resource.proto"; import "google/protobuf/duration.proto"; import "google/protobuf/empty.proto"; import "google/protobuf/timestamp.proto"; import "google/rpc/status.proto"; option cc_enable_arenas = true; option go_package = "google.golang.org/genproto/googleapis/cloud/timeseriesinsights/v1;timeseriesinsights"; option java_multiple_files = true; option java_outer_classname = "TimeseriesInsightsProto"; option java_package = "com.google.cloud.timeseriesinsights.v1"; service TimeseriesInsightsController { option (google.api.default_host) = "timeseriesinsights.googleapis.com"; option (google.api.oauth_scopes) = "https://www.googleapis.com/auth/cloud-platform"; // Lists [DataSets][google.cloud.timeseriesinsights.v1.DataSet] under the project. // // The order of the results is unspecified but deterministic. Newly created // [DataSets][google.cloud.timeseriesinsights.v1.DataSet] will not necessarily be added to the end // of this list. rpc ListDataSets(ListDataSetsRequest) returns (ListDataSetsResponse) { option (google.api.http) = { get: "/v1/{parent=projects/*/locations/*}/datasets" additional_bindings { get: "/v1/{parent=projects/*}/datasets" } }; option (google.api.method_signature) = "parent"; } // Create a [DataSet][google.cloud.timeseriesinsights.v1.DataSet] from data stored on Cloud // Storage. // // The data must stay immutable while we process the // [DataSet][google.cloud.timeseriesinsights.v1.DataSet] creation; otherwise, undefined outcomes // might result. For more information, see [DataSet][google.cloud.timeseriesinsights.v1.DataSet]. rpc CreateDataSet(CreateDataSetRequest) returns (DataSet) { option (google.api.http) = { post: "/v1/{parent=projects/*/locations/*}/datasets" body: "dataset" additional_bindings { post: "/v1/{parent=projects/*}/datasets" body: "dataset" } }; option (google.api.method_signature) = "parent,dataset"; } // Delete a [DataSet][google.cloud.timeseriesinsights.v1.DataSet] from the system. // // **NOTE**: If the [DataSet][google.cloud.timeseriesinsights.v1.DataSet] is still being // processed, it will be aborted and deleted. rpc DeleteDataSet(DeleteDataSetRequest) returns (google.protobuf.Empty) { option (google.api.http) = { delete: "/v1/{name=projects/*/locations/*/datasets/*}" additional_bindings { delete: "/v1/{name=projects/*/datasets/*}" } }; option (google.api.method_signature) = "name"; } // Append events to a `LOADED` [DataSet][google.cloud.timeseriesinsights.v1.DataSet]. rpc AppendEvents(AppendEventsRequest) returns (AppendEventsResponse) { option (google.api.http) = { post: "/v1/{dataset=projects/*/locations/*/datasets/*}:appendEvents" body: "*" additional_bindings { post: "/v1/{dataset=projects/*/datasets/*}:appendEvents" body: "*" } }; option (google.api.method_signature) = "dataset,events"; } // Execute a Timeseries Insights query over a loaded // [DataSet][google.cloud.timeseriesinsights.v1.DataSet]. rpc QueryDataSet(QueryDataSetRequest) returns (QueryDataSetResponse) { option (google.api.http) = { post: "/v1/{name=projects/*/locations/*/datasets/*}:query" body: "*" additional_bindings { post: "/v1/{name=projects/*/datasets/*}:query" body: "*" } }; } // Evaluate an explicit slice from a loaded [DataSet][google.cloud.timeseriesinsights.v1.DataSet]. rpc EvaluateSlice(EvaluateSliceRequest) returns (EvaluatedSlice) { option (google.api.http) = { post: "/v1/{dataset=projects/*/locations/*/datasets/*}:evaluateSlice" body: "*" additional_bindings { post: "/v1/{dataset=projects/*/datasets/*}:evaluateSlice" body: "*" } }; } // Evaluate an explicit timeseries. rpc EvaluateTimeseries(EvaluateTimeseriesRequest) returns (EvaluatedSlice) { option (google.api.http) = { post: "/v1/{parent=projects/*/locations/*}/datasets:evaluateTimeseries" body: "*" additional_bindings { post: "/v1/{parent=projects/*}/datasets:evaluateTimeseries" body: "*" } }; } } // Mapping of BigQuery columns to timestamp, group_id and dimensions. message BigqueryMapping { // The column which should be used as the event timestamps. If not specified // 'Timestamp' is used by default. The column may have TIMESTAMP or INT64 // type (the latter is interpreted as microseconds since the Unix epoch). string timestamp_column = 1; // The column which should be used as the group ID (grouping events into // sessions). If not specified 'GroupId' is used by default, if the input // table does not have such a column, random unique group IDs are // generated automatically (different group ID per input row). string group_id_column = 2; // The list of columns that should be translated to dimensions. If empty, // all columns are translated to dimensions. The timestamp and group_id // columns should not be listed here again. Columns are expected to have // primitive types (STRING, INT64, FLOAT64 or NUMERIC). repeated string dimension_column = 3; } // A data source consists of multiple [Event][google.cloud.timeseriesinsights.v1.Event] objects stored on // Cloud Storage. Each Event should be in JSON format, with one Event // per line, also known as JSON Lines format. message DataSource { // Data source URI. // // 1) Google Cloud Storage files (JSON) are defined in the following form. // `gs://bucket_name/object_name`. For more information on Cloud Storage URIs, // please see https://cloud.google.com/storage/docs/reference-uris. string uri = 1; // For BigQuery inputs defines the columns that should be used for dimensions // (including time and group ID). BigqueryMapping bq_mapping = 2; } // A collection of data sources sent for processing. message DataSet { option (google.api.resource) = { type: "timeseriesinsights.googleapis.com/Dataset" pattern: "projects/{project}/datasets/{dataset}" pattern: "projects/{project}/locations/{location}/datasets/{dataset}" }; // DataSet state. enum State { // Unspecified / undefined state. STATE_UNSPECIFIED = 0; // Dataset is unknown to the system; we have never seen this dataset before // or we have seen this dataset but have fully GC-ed it. UNKNOWN = 1; // Dataset processing is pending. PENDING = 2; // Dataset is loading. LOADING = 3; // Dataset is loaded and can be queried. LOADED = 4; // Dataset is unloading. UNLOADING = 5; // Dataset is unloaded and is removed from the system. UNLOADED = 6; // Dataset processing failed. FAILED = 7; } // The dataset name, which will be used for querying, status and unload // requests. This must be unique within a project. string name = 1; // [Data dimension names][google.cloud.timeseriesinsights.v1.EventDimension.name] allowed for this `DataSet`. // // If left empty, all dimension names are included. This field works as a // filter to avoid regenerating the data. repeated string data_names = 2; // Input data. repeated DataSource data_sources = 3; // Dataset state in the system. State state = 4; // Dataset processing status. google.rpc.Status status = 5; // Periodically we discard dataset [Event][google.cloud.timeseriesinsights.v1.Event] objects that have // timestamps older than 'ttl'. Omitting this field or a zero value means no // events are discarded. google.protobuf.Duration ttl = 6; } // Represents an event dimension. message EventDimension { // Dimension name. // // **NOTE**: `EventDimension` names must be composed of alphanumeric // characters only, and are case insensitive. Unicode characters are *not* // supported. The underscore '_' is also allowed. string name = 1; // Dimension value. // // **NOTE**: All entries of the dimension `name` must have the same `value` // type. oneof value { // String representation. // // **NOTE**: String values are case insensitive. Unicode characters are // supported. string string_val = 2; // Long representation. int64 long_val = 3; // Bool representation. bool bool_val = 4; // Double representation. double double_val = 5; } } // Represents an entry in a data source. // // Each Event has: // // * A timestamp at which the event occurs. // * One or multiple dimensions. // * Optionally, a group ID that allows clients to group logically related // events (for example, all events representing payments transactions done by // a user in a day have the same group ID). If a group ID is not provided, an // internal one will be generated based on the content and `eventTime`. // // **NOTE**: // // * Internally, we discretize time in equal-sized chunks and we assume an // event has a 0 // [TimeseriesPoint.value][google.cloud.timeseriesinsights.v1.TimeseriesPoint.value] // in a chunk that does not contain any occurrences of an event in the input. // * The number of Events with the same group ID should be limited. // * Group ID *cannot* be queried. // * Group ID does *not* correspond to a user ID or the like. If a user ID is of // interest to be queried, use a user ID `dimension` instead. message Event { // Event dimensions. repeated EventDimension dimensions = 1; // Event group ID. // // **NOTE**: JSON encoding should use a string to hold a 64-bit integer value, // because a native JSON number holds only 53 binary bits for an integer. int64 group_id = 2; // Event timestamp. google.protobuf.Timestamp event_time = 3; } // Appends events to an existing DataSet. message AppendEventsRequest { // Events to be appended. // // Note: // // 0. The [DataSet][google.cloud.timeseriesinsights.v1.DataSet] must be shown in a `LOADED` state // in the results of `list` method; otherwise, all events from // the append request will be dropped, and a `NOT_FOUND` status will be // returned. // 0. All events in a single request must have the same // [groupId][google.cloud.timeseriesinsights.v1.Event.group_id] if set; otherwise, an // `INVALID_ARGUMENT` status will be returned. // 0. If [groupId][google.cloud.timeseriesinsights.v1.Event.group_id] is not set (or 0), there // should be only 1 event; otherwise, an `INVALID_ARGUMENT` status will be // returned. // 0. The events must be newer than the current time minus // [DataSet TTL][google.cloud.timeseriesinsights.v1.DataSet.ttl] or they will be dropped. repeated Event events = 1; // Required. The DataSet to which we want to append to in the format of // "projects/{project}/datasets/{dataset}" string dataset = 2 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "timeseriesinsights.googleapis.com/Dataset" } ]; } // Response for an AppendEvents RPC. message AppendEventsResponse { // Dropped events; empty if all events are successfully added. repeated Event dropped_events = 1; } // Create a DataSet request. message CreateDataSetRequest { // Required. Client project name which will own this DataSet in the format of // 'projects/{project}'. string parent = 1 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "cloudresourcemanager.googleapis.com/Project" } ]; // Required. Dataset to be loaded. DataSet dataset = 2 [(google.api.field_behavior) = REQUIRED]; } // Unload DataSet request from the serving system. message DeleteDataSetRequest { // Required. Dataset name in the format of "projects/{project}/datasets/{dataset}" string name = 1 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "timeseriesinsights.googleapis.com/Dataset" } ]; } // List the DataSets created by the current project. message ListDataSetsRequest { // Required. Project owning the DataSet in the format of "projects/{project}". string parent = 1 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "cloudresourcemanager.googleapis.com/Project" } ]; // Number of results to return in the list. int32 page_size = 2; // Token to provide to skip to a particular spot in the list. string page_token = 3; } // Created DataSets list response. message ListDataSetsResponse { // The list of created DataSets. repeated DataSet datasets = 1; // Token to receive the next page of results. string next_page_token = 2; } // A categorical dimension fixed to a certain value. message PinnedDimension { // The name of the dimension for which we are fixing its value. string name = 1; // Dimension value. // // **NOTE**: The `value` type must match that in the data with the same // `dimension` as name. oneof value { // A string value. This can be used for [dimensions][google.cloud.timeseriesinsights.v1.EventDimension], which // have their value field set to [string_val][google.cloud.timeseriesinsights.v1.EventDimension.string_val]. string string_val = 2; // A bool value. This can be used for [dimensions][google.cloud.timeseriesinsights.v1.EventDimension], which // have their value field set to [bool_val][google.cloud.timeseriesinsights.v1.EventDimension.bool_val]. bool bool_val = 3; } } // Parameters that control the sensitivity and other options for the time series // forecast. message ForecastParams { // A time period of a fixed interval. enum Period { // Unknown or simply not given. PERIOD_UNSPECIFIED = 0; // 1 hour HOURLY = 5; // 24 hours DAILY = 1; // 7 days WEEKLY = 2; // 30 days MONTHLY = 3; // 365 days YEARLY = 4; } // Optional. Penalize variations between the actual and forecasted values smaller than // this. For more information about how this parameter affects the score, see // the [anomalyScore](EvaluatedSlice.anomaly_score) formula. // // Intuitively, anomaly scores summarize how statistically significant the // change between the actual and forecasted value is compared with what we // expect the change to be (see // [expectedDeviation](EvaluatedSlice.expected_deviation)). However, in // practice, depending on the application, changes smaller than certain // absolute values, while statistically significant, may not be important. // // This parameter allows us to penalize such low absolute value changes. // // Must be in the (0.0, inf) range. // // If unspecified, it defaults to 0.000001. optional double noise_threshold = 12 [(google.api.field_behavior) = OPTIONAL]; // Optional. Specifying any known seasonality/periodicity in the time series // for the slices we will analyze can improve the quality of the results. // // If unsure, simply leave it unspecified by not setting a value for this // field. // // If your time series has multiple seasonal patterns, then set it to the most // granular one (e.g. if it has daily and weekly patterns, set this to DAILY). Period seasonality_hint = 10 [(google.api.field_behavior) = OPTIONAL]; // Optional. The length of the returned [forecasted // timeseries][EvaluatedSlice.forecast]. // // This duration is currently capped at 100 x // [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity]. // // Example: If the detection point is set to "2020-12-27T00:00:00Z", the // [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity] to "3600s" and the // horizon_duration to "10800s", then we will generate 3 time // series points (from "2020-12-27T01:00:00Z" to "2020-12-27T04:00:00Z"), for // which we will return their forecasted values. // // Note: The horizon time is only used for forecasting not for anormaly // detection. To detect anomalies for multiple points of time, // simply send multiple queries with those as // [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time]. google.protobuf.Duration horizon_duration = 13 [(google.api.field_behavior) = OPTIONAL]; } // A point in a time series. message TimeseriesPoint { // The timestamp of this point. google.protobuf.Timestamp time = 1; // The value for this point. // // It is computed by aggregating all events in the associated slice that are // in the `[time, time + granularity]` range (see // [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity]) using the specified // [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric]. optional double value = 2; } // A time series. message Timeseries { // The points in this time series, ordered by their timestamp. repeated TimeseriesPoint point = 1; } // Forecast result for a given slice. message EvaluatedSlice { // Values for all categorical dimensions that uniquely identify this slice. repeated PinnedDimension dimensions = 1; // The actual value at the detection time (see // [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time]). // // **NOTE**: This value can be an estimate, so it should not be used as a // source of truth. optional double detection_point_actual = 11; // The expected value at the detection time, which is obtained by forecasting // on the historical time series. optional double detection_point_forecast = 12; // How much our forecast model expects the detection point actual will // deviate from its forecasted value based on how well it fit the input time // series. // // In general, we expect the `detectionPointActual` to // be in the `[detectionPointForecast - expectedDeviation, // detectionPointForecast + expectedDeviation]` range. The more the actual // value is outside this range, the more statistically significant the // anomaly is. // // The expected deviation is always positive. optional double expected_deviation = 16; // Summarizes how significant the change between the actual and forecasted // detection points are compared with the historical patterns observed on the // [history][google.cloud.timeseriesinsights.v1.EvaluatedSlice.history] time series. // // Defined as *|a - f| / (e + nt)*, where: // // - *a* is the [detectionPointActual][google.cloud.timeseriesinsights.v1.EvaluatedSlice.detection_point_actual]. // - *f* is the [detectionPointForecast][google.cloud.timeseriesinsights.v1.EvaluatedSlice.detection_point_forecast]. // - *e* is the [expectedDeviation][google.cloud.timeseriesinsights.v1.EvaluatedSlice.expected_deviation]. // - *nt` is the [noiseThreshold][google.cloud.timeseriesinsights.v1.ForecastParams.noise_threshold]. // // Anomaly scores between different requests and datasets are comparable. As // a guideline, the risk of a slice being an anomaly based on the anomaly // score is: // // - **Very High** if `anomalyScore` > 5. // - **High** if the `anomalyScore` is in the [2, 5] range. // - **Medium** if the `anomalyScore` is in the [1, 2) range. // - **Low** if the `anomalyScore` is < 1. // // If there were issues evaluating this slice, then the anomaly score will be // set to -1.0 and the [status][google.cloud.timeseriesinsights.v1.EvaluatedSlice.status] field will contain details on what // went wrong. optional double anomaly_score = 17; // The actual values in the `[` // [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] `-` // [forecastHistory][google.cloud.timeseriesinsights.v1.TimeseriesParams.forecast_history]`,` // [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] `]` time // range. // // **NOTE**: This field is only populated if // [returnTimeseries][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.return_timeseries] is true. Timeseries history = 5; // The forecasted values in the `[` // [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] `+` // [granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity]`,` // [forecastParams.horizonTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.forecast_params] `]` time // range. // // **NOTE**: This field is only populated if // [returnTimeseries][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.return_timeseries] is true. Timeseries forecast = 10; // Evaluation status. Contains an error message if the `anomalyScore` is < 0. // // Possible error messages: // // - **"Time series too sparse"**: The returned time series for this slice did // not contain enough data points (we require a minimum of 10). // - **"Not enough recent time series points"**: The time series contains the // minimum of 10 points, but there are not enough close in time to the // detection point. // - **"Missing detection point data"**: There were not events to be // aggregated within the `[detectionTime, detectionTime + granularity]` time // interval, so we don't have an actual value with which we can compare our // prediction. // - **"Data retrieval error"**: We failed to retrieve the time series data // for this slice and could not evaluate it successfully. Should be a // transient error. // - **"Internal server error"**: Internal unexpected error. google.rpc.Status status = 18; } // Parameters that control how we slice the dataset and, optionally, filter // slices that have some specific values on some dimensions (pinned dimensions). message SlicingParams { // Required. Dimensions over which we will group the events in slices. The names // specified here come from the // [EventDimension.name][google.cloud.timeseriesinsights.v1.EventDimension.name] field. At least // one dimension name must be specified. All dimension names that do not exist // in the queried `DataSet` will be ignored. // // Currently only dimensions that hold string values can be specified here. repeated string dimension_names = 1 [(google.api.field_behavior) = REQUIRED]; // Optional. We will only analyze slices for which // [EvaluatedSlice.dimensions][google.cloud.timeseriesinsights.v1.EvaluatedSlice.dimensions] contain all of the // following pinned dimensions. A query with a pinned dimension `{ name: "d3" // stringVal: "v3" }` will only analyze events which contain the dimension `{ // name: "d3" stringVal: "v3" }`. // The [pinnedDimensions][google.cloud.timeseriesinsights.v1.SlicingParams.pinned_dimensions] and // [dimensionNames][google.cloud.timeseriesinsights.v1.SlicingParams.dimension_names] fields can **not** // share the same dimension names. // // Example a valid specification: // // ```json // { // dimensionNames: ["d1", "d2"], // pinnedDimensions: [ // { name: "d3" stringVal: "v3" }, // { name: "d4" stringVal: "v4" } // ] // } // ``` // // In the previous example we will slice the dataset by dimensions "d1", // "d2", "d3" and "d4", but we will only analyze slices for which "d3=v3" and // "d4=v4". // // The following example is **invalid** as "d2" is present in both // dimensionNames and pinnedDimensions: // // ```json // { // dimensionNames: ["d1", "d2"], // pinnedDimensions: [ // { name: "d2" stringVal: "v2" }, // { name: "d4" stringVal: "v4" } // ] // } // ``` repeated PinnedDimension pinned_dimensions = 2 [(google.api.field_behavior) = OPTIONAL]; } // Parameters that control how we construct the time series for each slice. message TimeseriesParams { // Methods by which we can aggregate multiple events by a given // [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric]. enum AggregationMethod { // Unspecified. AGGREGATION_METHOD_UNSPECIFIED = 0; // Aggregate multiple events by summing up the values found in the // [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] dimension. SUM = 1; // Aggregate multiple events by averaging out the values found in the // [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] dimension. AVERAGE = 2; } // Required. How long should we go in the past when fetching the timeline used for // forecasting each slice. // // This is used in combination with the // [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] parameter. // The time series we construct will have the following time range: // `[detectionTime - forecastHistory, detectionTime + granularity]`. // // The forecast history might be rounded up, so that a multiple of // `granularity` is used to process the query. // // Note: If there are not enough events in the // `[detectionTime - forecastHistory, detectionTime + granularity]` time // interval, the slice evaluation can fail. For more information, see // [EvaluatedSlice.status][google.cloud.timeseriesinsights.v1.EvaluatedSlice.status]. google.protobuf.Duration forecast_history = 1 [(google.api.field_behavior) = REQUIRED]; // Required. The time granularity of the time series (on the x-axis). Each time series // point starting at time T will aggregate all events for a particular slice // in *[T, T + granularity)* time windows. // // Note: The aggregation is decided based on the // [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] parameter. // // This granularity defines the query-time aggregation windows and is not // necessarily related to any event time granularity in the raw data (though // we do recommend that the query-time granularity is not finer than the // ingestion-time one). // // Currently, the minimal supported granularity is 10 seconds. google.protobuf.Duration granularity = 2 [(google.api.field_behavior) = REQUIRED]; // Optional. Denotes the [name][google.cloud.timeseriesinsights.v1.EventDimension.name] of a numerical // dimension that will have its values aggregated to compute the y-axis of the // time series. // // The aggregation method must also be specified by setting the // [metricAggregationMethod][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric_aggregation_method] // field. // // Note: Currently, if the aggregation method is unspecified, we will // default to SUM for backward compatibility reasons, but new implementations // should set the // [metricAggregationMethod][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric_aggregation_method] // explicitly. // // If the metric is unspecified, we will use the number of events that each // time series point contains as the point value. // // Example: Let's assume we have the following three events in our dataset: // ```json // { // eventTime: "2020-12-27T00:00:00Z", // dimensions: [ // { name: "d1" stringVal: "v1" }, // { name: "d2" stringVal: "v2" } // { name: "m1" longVal: 100 } // { name: "m2" longVal: 11 } // ] // }, // { // eventTime: "2020-12-27T00:10:00Z", // dimensions: [ // { name: "d1" stringVal: "v1" }, // { name: "d2" stringVal: "v2" } // { name: "m1" longVal: 200 } // { name: "m2" longVal: 22 } // ] // }, // { // eventTime: "2020-12-27T00:20:00Z", // dimensions: [ // { name: "d1" stringVal: "v1" }, // { name: "d2" stringVal: "v2" } // { name: "m1" longVal: 300 } // { name: "m2" longVal: 33 } // ] // } // ``` // // These events are all within the same hour, spaced 10 minutes between each // of them. Assuming our [QueryDataSetRequest][google.cloud.timeseriesinsights.v1.QueryDataSetRequest] had set // [slicingParams.dimensionNames][google.cloud.timeseriesinsights.v1.SlicingParams.dimension_names] to ["d1", // "d2"] and [timeseries_params.granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity] to // "3600s", then all the previous events will be aggregated into the same // [timeseries point][google.cloud.timeseriesinsights.v1.TimeseriesPoint]. // // The time series point that they're all part of will have the // [time][google.cloud.timeseriesinsights.v1.TimeseriesPoint.time] set to "2020-12-27T00:00:00Z" and the // [value][google.cloud.timeseriesinsights.v1.TimeseriesPoint.value] populated based on this metric field: // // - If the metric is set to "m1" and metric_aggregation_method to SUM, then // the value of the point will be 600. // - If the metric is set to "m2" and metric_aggregation_method to SUM, then // the value of the point will be 66. // - If the metric is set to "m1" and metric_aggregation_method to AVERAGE, // then the value of the point will be 200. // - If the metric is set to "m2" and metric_aggregation_method to AVERAGE, // then the value of the point will be 22. // - If the metric field is "" or unspecified, then the value of the point // will be 3, as we will simply count the events. optional string metric = 4 [(google.api.field_behavior) = OPTIONAL]; // Optional. Together with the [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] field, specifies how // we will aggregate multiple events to obtain the value of a time series // point. See the [metric][google.cloud.timeseriesinsights.v1.TimeseriesParams.metric] documentation for more // details. // // If the metric is not specified or "", then this field will be ignored. AggregationMethod metric_aggregation_method = 5 [(google.api.field_behavior) = OPTIONAL]; } // Request for performing a query against a loaded DataSet. message QueryDataSetRequest { // Required. Loaded DataSet to be queried in the format of // "projects/{project}/datasets/{dataset}" string name = 1 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "timeseriesinsights.googleapis.com/Dataset" } ]; // Required. This is the point in time that we want to probe for anomalies. // // The corresponding [TimeseriesPoint][google.cloud.timeseriesinsights.v1.TimeseriesPoint] is referred to as the // detection point. // // **NOTE**: As with any other time series point, the value is given by // aggregating all events in the slice that are in the // [detectionTime, detectionTime + granularity) time interval, where // the granularity is specified in the // [timeseriesParams.granularity][google.cloud.timeseriesinsights.v1.TimeseriesParams.granularity] field. google.protobuf.Timestamp detection_time = 11 [(google.api.field_behavior) = REQUIRED]; // How many slices are returned in // [QueryDataSetResponse.slices][google.cloud.timeseriesinsights.v1.QueryDataSetResponse.slices]. // // The returned slices are tentatively the ones with the highest // [anomaly scores][google.cloud.timeseriesinsights.v1.EvaluatedSlice.anomaly_score] in the dataset that match // the query, but it is not guaranteed. // // Reducing this number will improve query performance, both in terms of // latency and resource usage. // // Defaults to 50. optional int32 num_returned_slices = 13; // Parameters controlling how we will split the dataset into the slices that // we will analyze. SlicingParams slicing_params = 9; // Parameters controlling how we will build the time series used to predict // the [detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time] value for each slice. TimeseriesParams timeseries_params = 10; // Parameters that control the time series forecasting models, such as the // sensitivity of the anomaly detection. ForecastParams forecast_params = 5; // If specified, we will return the actual and forecasted time for all // returned slices. // // The time series are returned in the // [EvaluatedSlice.history][google.cloud.timeseriesinsights.v1.EvaluatedSlice.history] and // [EvaluatedSlice.forecast][google.cloud.timeseriesinsights.v1.EvaluatedSlice.forecast] fields. bool return_timeseries = 8; } // Response for a query executed by the system. message QueryDataSetResponse { // Loaded DataSet that was queried. string name = 1; // Slices sorted in descending order by their // [anomalyScore][google.cloud.timeseriesinsights.v1.EvaluatedSlice.anomaly_score]. // // At most [numReturnedSlices][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.num_returned_slices] // slices are present in this field. repeated EvaluatedSlice slices = 3; } // Request for evaluateSlice. message EvaluateSliceRequest { // Required. Loaded DataSet to be queried in the format of // "projects/{project}/datasets/{dataset}" string dataset = 1 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "timeseriesinsights.googleapis.com/Dataset" } ]; // Required. Dimensions with pinned values that specify the slice for which we will // fetch the time series. repeated PinnedDimension pinned_dimensions = 2 [(google.api.field_behavior) = REQUIRED]; // Required. This is the point in time that we want to probe for anomalies. // // See documentation for // [QueryDataSetRequest.detectionTime][google.cloud.timeseriesinsights.v1.QueryDataSetRequest.detection_time]. google.protobuf.Timestamp detection_time = 3 [(google.api.field_behavior) = REQUIRED]; // Parameters controlling how we will build the time series used to predict // the [detectionTime][google.cloud.timeseriesinsights.v1.EvaluateSliceRequest.detection_time] value for this slice. TimeseriesParams timeseries_params = 4; // Parameters that control the time series forecasting models, such as the // sensitivity of the anomaly detection. ForecastParams forecast_params = 5; } // Request for evaluateTimeseries. message EvaluateTimeseriesRequest { // Required. Client project name in the format of 'projects/{project}'. string parent = 1 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "cloudresourcemanager.googleapis.com/Project" } ]; // Evaluate this time series without requiring it was previously loaded in // a data set. // // The evaluated time series point is the last one, analogous to calling // evaluateSlice or query with // [detectionTime][google.cloud.timeseriesinsights.v1.EvaluateSliceRequest.detection_time] set to // `timeseries.point(timeseries.point_size() - 1).time`. // // The length of the time series must be at least 10. // // All points must have the same time offset relative to the granularity. For // example, if the [granularity][google.cloud.timeseriesinsights.v1.EvaluateTimeseriesRequest.granularity] is "5s", then the following // point.time sequences are valid: // - "100s", "105s", "120s", "125s" (no offset) // - "102s", "107s", "122s", "127s" (offset is "2s") // However, the following sequence is invalid as it has inconsistent offsets: // - "100s", "105s", "122s", "127s" (offsets are either "0s" or "2s") Timeseries timeseries = 2; // The granularity of the time series (time distance between two consecutive // points). google.protobuf.Duration granularity = 3; // The forecast parameters. ForecastParams forecast_params = 4; }