------------------------------------------------------------------------ -- fma.decTest -- decimal fused multiply add -- -- Copyright (c) Mike Cowlishaw, 1981, 2010. All rights reserved. -- -- Parts copyright (c) IBM Corporation, 1981, 2008. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://speleotrove.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, mfc@speleotrove.com -- ------------------------------------------------------------------------ version: 2.62 extended: 1 precision: 9 rounding: half_up maxExponent: 384 minexponent: -383 -- These tests comprese three parts: -- 1. Sanity checks and other three-operand tests (especially those -- where the fused operation makes a difference) -- 2. Multiply tests (third operand is neutral zero [0E+emax]) -- 3. Addition tests (first operand is 1) -- The multiply and addition tests are extensive because FMA may have -- its own dedicated multiplication or addition routine(s), and they -- also inherently check the left-to-right properties. -- Sanity checks fmax0001 fma 1 1 1 -> 2 fmax0002 fma 1 1 2 -> 3 fmax0003 fma 2 2 3 -> 7 fmax0004 fma 9 9 9 -> 90 fmax0005 fma -1 1 1 -> 0 fmax0006 fma -1 1 2 -> 1 fmax0007 fma -2 2 3 -> -1 fmax0008 fma -9 9 9 -> -72 fmax0011 fma 1 -1 1 -> 0 fmax0012 fma 1 -1 2 -> 1 fmax0013 fma 2 -2 3 -> -1 fmax0014 fma 9 -9 9 -> -72 fmax0015 fma 1 1 -1 -> 0 fmax0016 fma 1 1 -2 -> -1 fmax0017 fma 2 2 -3 -> 1 fmax0018 fma 9 9 -9 -> 72 fmax0019 fma 3 5 7 -> 22 fmax0029 fma 3 -5 7 -> -8 -- non-integer exacts fma0100 fma 25.2 63.6 -438 -> 1164.72 fma0101 fma 0.301 0.380 334 -> 334.114380 fma0102 fma 49.2 -4.8 23.3 -> -212.86 fma0103 fma 4.22 0.079 -94.6 -> -94.26662 fma0104 fma 903 0.797 0.887 -> 720.578 fma0105 fma 6.13 -161 65.9 -> -921.03 fma0106 fma 28.2 727 5.45 -> 20506.85 fma0107 fma 4 605 688 -> 3108 fma0108 fma 93.3 0.19 0.226 -> 17.953 fma0109 fma 0.169 -341 5.61 -> -52.019 fma0110 fma -72.2 30 -51.2 -> -2217.2 fma0111 fma -0.409 13 20.4 -> 15.083 fma0112 fma 317 77.0 19.0 -> 24428.0 fma0113 fma 47 6.58 1.62 -> 310.88 fma0114 fma 1.36 0.984 0.493 -> 1.83124 fma0115 fma 72.7 274 1.56 -> 19921.36 fma0116 fma 335 847 83 -> 283828 fma0117 fma 666 0.247 25.4 -> 189.902 fma0118 fma -3.87 3.06 78.0 -> 66.1578 fma0119 fma 0.742 192 35.6 -> 178.064 fma0120 fma -91.6 5.29 0.153 -> -484.411 -- cases where result is different from separate multiply + add; each -- is preceded by the result of unfused multiply and add -- [this is about 20% of all similar cases in general] -- 888565290 1557.96930 -86087.7578 -> 1.38435735E+12 fma0201 fma 888565290 1557.96930 -86087.7578 -> 1.38435736E+12 Inexact Rounded -- -85519342.9 735155419 42010431 -> -6.28700084E+16 fma0205 fma -85519342.9 735155419 42010431 -> -6.28700083E+16 Inexact Rounded -- -98025.5 -294603.472 10414348.2 -> 2.88890669E+10 fma0208 fma -98025.5 -294603.472 10414348.2 -> 2.88890670E+10 Inexact Rounded -- 5967627.39 83526540.6 498494.810 -> 4.98455271E+14 fma0211 fma 5967627.39 83526540.6 498494.810 -> 4.98455272E+14 Inexact Rounded -- 3456.9433 874.39518 197866.615 -> 3220601.18 fma0216 fma 3456.9433 874.39518 197866.615 -> 3220601.17 Inexact Rounded -- 62769.8287 2096.98927 48.420317 -> 131627705 fma0218 fma 62769.8287 2096.98927 48.420317 -> 131627706 Inexact Rounded -- -68.81500 59961113.9 -8988862 -> -4.13521291E+9 fma0219 fma -68.81500 59961113.9 -8988862 -> -4.13521292E+9 Inexact Rounded -- 2126341.02 63491.5152 302427455 -> 1.35307040E+11 fma0226 fma 2126341.02 63491.5152 302427455 -> 1.35307041E+11 Inexact Rounded -- Infinite combinations fmax0800 fma Inf Inf Inf -> Infinity fmax0801 fma Inf Inf -Inf -> NaN Invalid_operation fmax0802 fma Inf -Inf Inf -> NaN Invalid_operation fmax0803 fma Inf -Inf -Inf -> -Infinity fmax0804 fma -Inf Inf Inf -> NaN Invalid_operation fmax0805 fma -Inf Inf -Inf -> -Infinity fmax0806 fma -Inf -Inf Inf -> Infinity fmax0807 fma -Inf -Inf -Inf -> NaN Invalid_operation fmax0808 fma -Inf 0 1 -> NaN Invalid_operation fmax0809 fma -Inf 0 NaN -> NaN Invalid_operation -- Triple NaN propagation fmax0900 fma NaN2 NaN3 NaN5 -> NaN2 fmax0901 fma 0 NaN3 NaN5 -> NaN3 fmax0902 fma 0 0 NaN5 -> NaN5 -- first sNaN wins (consider qNaN from earlier sNaN being -- overridden by an sNaN in third operand) fmax0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation fmax0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation fmax0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation fmax0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation fmax0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation fmax0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation -- MULTIPLICATION TESTS ------------------------------------------------ -- sanity checks (as base, above) fmax2000 fma 2 2 0E+999999 -> 4 fmax2001 fma 2 3 0E+999999 -> 6 fmax2002 fma 5 1 0E+999999 -> 5 fmax2003 fma 5 2 0E+999999 -> 10 fmax2004 fma 1.20 2 0E+999999 -> 2.40 fmax2005 fma 1.20 0 0E+999999 -> 0.00 fmax2006 fma 1.20 -2 0E+999999 -> -2.40 fmax2007 fma -1.20 2 0E+999999 -> -2.40 fmax2008 fma -1.20 0 0E+999999 -> 0.00 fmax2009 fma -1.20 -2 0E+999999 -> 2.40 fmax2010 fma 5.09 7.1 0E+999999 -> 36.139 fmax2011 fma 2.5 4 0E+999999 -> 10.0 fmax2012 fma 2.50 4 0E+999999 -> 10.00 fmax2013 fma 1.23456789 1.00000000 0E+999999 -> 1.23456789 Rounded fmax2014 fma 9.999999999 9.999999999 0E+999999 -> 100.000000 Inexact Rounded fmax2015 fma 2.50 4 0E+999999 -> 10.00 precision: 6 fmax2016 fma 2.50 4 0E+999999 -> 10.00 fmax2017 fma 9.999999 9.999999 0E+999999 -> 100.000 Inexact Rounded fmax2018 fma 9.999999 -9.999999 0E+999999 -> -100.000 Inexact Rounded fmax2019 fma -9.999999 9.999999 0E+999999 -> -100.000 Inexact Rounded fmax2020 fma -9.999999 -9.999999 0E+999999 -> 100.000 Inexact Rounded -- 1999.12.21: next one is a edge case if intermediate longs are used precision: 15 fmax2059 fma 999999999999 9765625 0E+999999 -> 9.76562499999023E+18 Inexact Rounded precision: 30 fmax2160 fma 999999999999 9765625 0E+999999 -> 9765624999990234375 precision: 9 ----- -- zeros, etc. fmax2021 fma 0 0 0E+999999 -> 0 fmax2022 fma 0 -0 0E+999999 -> 0 fmax2023 fma -0 0 0E+999999 -> 0 fmax2024 fma -0 -0 0E+999999 -> 0 fmax2025 fma -0.0 -0.0 0E+999999 -> 0.00 fmax2026 fma -0.0 -0.0 0E+999999 -> 0.00 fmax2027 fma -0.0 -0.0 0E+999999 -> 0.00 fmax2028 fma -0.0 -0.0 0E+999999 -> 0.00 fmax2030 fma 5.00 1E-3 0E+999999 -> 0.00500 fmax2031 fma 00.00 0.000 0E+999999 -> 0.00000 fmax2032 fma 00.00 0E-3 0E+999999 -> 0.00000 -- rhs is 0 fmax2033 fma 0E-3 00.00 0E+999999 -> 0.00000 -- lhs is 0 fmax2034 fma -5.00 1E-3 0E+999999 -> -0.00500 fmax2035 fma -00.00 0.000 0E+999999 -> 0.00000 fmax2036 fma -00.00 0E-3 0E+999999 -> 0.00000 -- rhs is 0 fmax2037 fma -0E-3 00.00 0E+999999 -> 0.00000 -- lhs is 0 fmax2038 fma 5.00 -1E-3 0E+999999 -> -0.00500 fmax2039 fma 00.00 -0.000 0E+999999 -> 0.00000 fmax2040 fma 00.00 -0E-3 0E+999999 -> 0.00000 -- rhs is 0 fmax2041 fma 0E-3 -00.00 0E+999999 -> 0.00000 -- lhs is 0 fmax2042 fma -5.00 -1E-3 0E+999999 -> 0.00500 fmax2043 fma -00.00 -0.000 0E+999999 -> 0.00000 fmax2044 fma -00.00 -0E-3 0E+999999 -> 0.00000 -- rhs is 0 fmax2045 fma -0E-3 -00.00 0E+999999 -> 0.00000 -- lhs is 0 -- examples from decarith multiply fmax2050 fma 1.20 3 0E+999999 -> 3.60 fmax2051 fma 7 3 0E+999999 -> 21 fmax2052 fma 0.9 0.8 0E+999999 -> 0.72 fmax2053 fma 0.9 -0 0E+999999 -> 0.0 fmax2054 fma 654321 654321 0E+999999 -> 4.28135971E+11 Inexact Rounded fmax2060 fma 123.45 1e7 0E+999999 -> 1.2345E+9 fmax2061 fma 123.45 1e8 0E+999999 -> 1.2345E+10 fmax2062 fma 123.45 1e+9 0E+999999 -> 1.2345E+11 fmax2063 fma 123.45 1e10 0E+999999 -> 1.2345E+12 fmax2064 fma 123.45 1e11 0E+999999 -> 1.2345E+13 fmax2065 fma 123.45 1e12 0E+999999 -> 1.2345E+14 fmax2066 fma 123.45 1e13 0E+999999 -> 1.2345E+15 -- test some intermediate lengths precision: 9 fmax2080 fma 0.1 123456789 0E+999999 -> 12345678.9 fmax2081 fma 0.1 1234567891 0E+999999 -> 123456789 Inexact Rounded fmax2082 fma 0.1 12345678912 0E+999999 -> 1.23456789E+9 Inexact Rounded fmax2083 fma 0.1 12345678912345 0E+999999 -> 1.23456789E+12 Inexact Rounded fmax2084 fma 0.1 123456789 0E+999999 -> 12345678.9 precision: 8 fmax2085 fma 0.1 12345678912 0E+999999 -> 1.2345679E+9 Inexact Rounded fmax2086 fma 0.1 12345678912345 0E+999999 -> 1.2345679E+12 Inexact Rounded precision: 7 fmax2087 fma 0.1 12345678912 0E+999999 -> 1.234568E+9 Inexact Rounded fmax2088 fma 0.1 12345678912345 0E+999999 -> 1.234568E+12 Inexact Rounded precision: 9 fmax2090 fma 123456789 0.1 0E+999999 -> 12345678.9 fmax2091 fma 1234567891 0.1 0E+999999 -> 123456789 Inexact Rounded fmax2092 fma 12345678912 0.1 0E+999999 -> 1.23456789E+9 Inexact Rounded fmax2093 fma 12345678912345 0.1 0E+999999 -> 1.23456789E+12 Inexact Rounded fmax2094 fma 123456789 0.1 0E+999999 -> 12345678.9 precision: 8 fmax2095 fma 12345678912 0.1 0E+999999 -> 1.2345679E+9 Inexact Rounded fmax2096 fma 12345678912345 0.1 0E+999999 -> 1.2345679E+12 Inexact Rounded precision: 7 fmax2097 fma 12345678912 0.1 0E+999999 -> 1.234568E+9 Inexact Rounded fmax2098 fma 12345678912345 0.1 0E+999999 -> 1.234568E+12 Inexact Rounded -- test some more edge cases and carries maxexponent: 9999 minexponent: -9999 precision: 33 fmax2101 fma 9 9 0E+999999 -> 81 fmax2102 fma 9 90 0E+999999 -> 810 fmax2103 fma 9 900 0E+999999 -> 8100 fmax2104 fma 9 9000 0E+999999 -> 81000 fmax2105 fma 9 90000 0E+999999 -> 810000 fmax2106 fma 9 900000 0E+999999 -> 8100000 fmax2107 fma 9 9000000 0E+999999 -> 81000000 fmax2108 fma 9 90000000 0E+999999 -> 810000000 fmax2109 fma 9 900000000 0E+999999 -> 8100000000 fmax2110 fma 9 9000000000 0E+999999 -> 81000000000 fmax2111 fma 9 90000000000 0E+999999 -> 810000000000 fmax2112 fma 9 900000000000 0E+999999 -> 8100000000000 fmax2113 fma 9 9000000000000 0E+999999 -> 81000000000000 fmax2114 fma 9 90000000000000 0E+999999 -> 810000000000000 fmax2115 fma 9 900000000000000 0E+999999 -> 8100000000000000 fmax2116 fma 9 9000000000000000 0E+999999 -> 81000000000000000 fmax2117 fma 9 90000000000000000 0E+999999 -> 810000000000000000 fmax2118 fma 9 900000000000000000 0E+999999 -> 8100000000000000000 fmax2119 fma 9 9000000000000000000 0E+999999 -> 81000000000000000000 fmax2120 fma 9 90000000000000000000 0E+999999 -> 810000000000000000000 fmax2121 fma 9 900000000000000000000 0E+999999 -> 8100000000000000000000 fmax2122 fma 9 9000000000000000000000 0E+999999 -> 81000000000000000000000 fmax2123 fma 9 90000000000000000000000 0E+999999 -> 810000000000000000000000 -- test some more edge cases without carries fmax2131 fma 3 3 0E+999999 -> 9 fmax2132 fma 3 30 0E+999999 -> 90 fmax2133 fma 3 300 0E+999999 -> 900 fmax2134 fma 3 3000 0E+999999 -> 9000 fmax2135 fma 3 30000 0E+999999 -> 90000 fmax2136 fma 3 300000 0E+999999 -> 900000 fmax2137 fma 3 3000000 0E+999999 -> 9000000 fmax2138 fma 3 30000000 0E+999999 -> 90000000 fmax2139 fma 3 300000000 0E+999999 -> 900000000 fmax2140 fma 3 3000000000 0E+999999 -> 9000000000 fmax2141 fma 3 30000000000 0E+999999 -> 90000000000 fmax2142 fma 3 300000000000 0E+999999 -> 900000000000 fmax2143 fma 3 3000000000000 0E+999999 -> 9000000000000 fmax2144 fma 3 30000000000000 0E+999999 -> 90000000000000 fmax2145 fma 3 300000000000000 0E+999999 -> 900000000000000 fmax2146 fma 3 3000000000000000 0E+999999 -> 9000000000000000 fmax2147 fma 3 30000000000000000 0E+999999 -> 90000000000000000 fmax2148 fma 3 300000000000000000 0E+999999 -> 900000000000000000 fmax2149 fma 3 3000000000000000000 0E+999999 -> 9000000000000000000 fmax2150 fma 3 30000000000000000000 0E+999999 -> 90000000000000000000 fmax2151 fma 3 300000000000000000000 0E+999999 -> 900000000000000000000 fmax2152 fma 3 3000000000000000000000 0E+999999 -> 9000000000000000000000 fmax2153 fma 3 30000000000000000000000 0E+999999 -> 90000000000000000000000 maxexponent: 999999 minexponent: -999999 precision: 9 -- test some cases that are close to exponent overflow/underflow fmax2170 fma 1 9e999999 0E+999999 -> 9E+999999 fmax2171 fma 1 9.9e999999 0E+999999 -> 9.9E+999999 fmax2172 fma 1 9.99e999999 0E+999999 -> 9.99E+999999 fmax2173 fma 9e999999 1 0E+999999 -> 9E+999999 fmax2174 fma 9.9e999999 1 0E+999999 -> 9.9E+999999 fmax2176 fma 9.99e999999 1 0E+999999 -> 9.99E+999999 fmax2177 fma 1 9.99999e999999 0E+999999 -> 9.99999E+999999 fmax2178 fma 9.99999e999999 1 0E+999999 -> 9.99999E+999999 fmax2180 fma 0.1 9e-999998 0E+999999 -> 9E-999999 fmax2181 fma 0.1 99e-999998 0E+999999 -> 9.9E-999998 fmax2182 fma 0.1 999e-999998 0E+999999 -> 9.99E-999997 fmax2183 fma 0.1 9e-999998 0E+999999 -> 9E-999999 fmax2184 fma 0.1 99e-999998 0E+999999 -> 9.9E-999998 fmax2185 fma 0.1 999e-999998 0E+999999 -> 9.99E-999997 fmax2186 fma 0.1 999e-999997 0E+999999 -> 9.99E-999996 fmax2187 fma 0.1 9999e-999997 0E+999999 -> 9.999E-999995 fmax2188 fma 0.1 99999e-999997 0E+999999 -> 9.9999E-999994 fmax2190 fma 1 9e-999998 0E+999999 -> 9E-999998 fmax2191 fma 1 99e-999998 0E+999999 -> 9.9E-999997 fmax2192 fma 1 999e-999998 0E+999999 -> 9.99E-999996 fmax2193 fma 9e-999998 1 0E+999999 -> 9E-999998 fmax2194 fma 99e-999998 1 0E+999999 -> 9.9E-999997 fmax2195 fma 999e-999998 1 0E+999999 -> 9.99E-999996 -- long operand triangle precision: 33 fmax2246 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671916511992830 Inexact Rounded precision: 32 fmax2247 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967191651199283 Inexact Rounded precision: 31 fmax2248 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719165119928 Inexact Rounded precision: 30 fmax2249 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671916511993 Inexact Rounded precision: 29 fmax2250 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967191651199 Inexact Rounded precision: 28 fmax2251 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719165120 Inexact Rounded precision: 27 fmax2252 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671916512 Inexact Rounded precision: 26 fmax2253 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967191651 Inexact Rounded precision: 25 fmax2254 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719165 Inexact Rounded precision: 24 fmax2255 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369671917 Inexact Rounded precision: 23 fmax2256 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967192 Inexact Rounded precision: 22 fmax2257 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933696719 Inexact Rounded precision: 21 fmax2258 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193369672 Inexact Rounded precision: 20 fmax2259 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119336967 Inexact Rounded precision: 19 fmax2260 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011933697 Inexact Rounded precision: 18 fmax2261 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193370 Inexact Rounded precision: 17 fmax2262 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119337 Inexact Rounded precision: 16 fmax2263 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908011934 Inexact Rounded precision: 15 fmax2264 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801193 Inexact Rounded precision: 14 fmax2265 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080119 Inexact Rounded precision: 13 fmax2266 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908012 Inexact Rounded precision: 12 fmax2267 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.290801 Inexact Rounded precision: 11 fmax2268 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29080 Inexact Rounded precision: 10 fmax2269 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.2908 Inexact Rounded precision: 9 fmax2270 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.291 Inexact Rounded precision: 8 fmax2271 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.29 Inexact Rounded precision: 7 fmax2272 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433.3 Inexact Rounded precision: 6 fmax2273 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 145433 Inexact Rounded precision: 5 fmax2274 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.4543E+5 Inexact Rounded precision: 4 fmax2275 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.454E+5 Inexact Rounded precision: 3 fmax2276 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.45E+5 Inexact Rounded precision: 2 fmax2277 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1.5E+5 Inexact Rounded precision: 1 fmax2278 fma 30269.587755640502150977251770554 4.8046009735990873395936309640543 0E+999999 -> 1E+5 Inexact Rounded -- test some edge cases with exact rounding maxexponent: 9999 minexponent: -9999 precision: 9 fmax2301 fma 9 9 0E+999999 -> 81 fmax2302 fma 9 90 0E+999999 -> 810 fmax2303 fma 9 900 0E+999999 -> 8100 fmax2304 fma 9 9000 0E+999999 -> 81000 fmax2305 fma 9 90000 0E+999999 -> 810000 fmax2306 fma 9 900000 0E+999999 -> 8100000 fmax2307 fma 9 9000000 0E+999999 -> 81000000 fmax2308 fma 9 90000000 0E+999999 -> 810000000 fmax2309 fma 9 900000000 0E+999999 -> 8.10000000E+9 Rounded fmax2310 fma 9 9000000000 0E+999999 -> 8.10000000E+10 Rounded fmax2311 fma 9 90000000000 0E+999999 -> 8.10000000E+11 Rounded fmax2312 fma 9 900000000000 0E+999999 -> 8.10000000E+12 Rounded fmax2313 fma 9 9000000000000 0E+999999 -> 8.10000000E+13 Rounded fmax2314 fma 9 90000000000000 0E+999999 -> 8.10000000E+14 Rounded fmax2315 fma 9 900000000000000 0E+999999 -> 8.10000000E+15 Rounded fmax2316 fma 9 9000000000000000 0E+999999 -> 8.10000000E+16 Rounded fmax2317 fma 9 90000000000000000 0E+999999 -> 8.10000000E+17 Rounded fmax2318 fma 9 900000000000000000 0E+999999 -> 8.10000000E+18 Rounded fmax2319 fma 9 9000000000000000000 0E+999999 -> 8.10000000E+19 Rounded fmax2320 fma 9 90000000000000000000 0E+999999 -> 8.10000000E+20 Rounded fmax2321 fma 9 900000000000000000000 0E+999999 -> 8.10000000E+21 Rounded fmax2322 fma 9 9000000000000000000000 0E+999999 -> 8.10000000E+22 Rounded fmax2323 fma 9 90000000000000000000000 0E+999999 -> 8.10000000E+23 Rounded -- fastpath breakers precision: 29 fmax2330 fma 1.491824697641270317824852952837224 1.105170918075647624811707826490246514675628614562883537345747603 0E+999999 -> 1.6487212707001281468486507878 Inexact Rounded precision: 55 fmax2331 fma 0.8958341352965282506768545828765117803873717284891040428 0.8958341352965282506768545828765117803873717284891040428 0E+999999 -> 0.8025187979624784829842553829934069955890983696752228299 Inexact Rounded -- tryzeros cases precision: 7 rounding: half_up maxExponent: 92 minexponent: -92 fmax2504 fma 0E-60 1000E-60 0E+999999 -> 0E-98 Clamped fmax2505 fma 100E+60 0E+60 0E+999999 -> 0E+92 Clamped -- mixed with zeros maxexponent: 999999 minexponent: -999999 precision: 9 fmax2541 fma 0 -1 0E+999999 -> 0 fmax2542 fma -0 -1 0E+999999 -> 0 fmax2543 fma 0 1 0E+999999 -> 0 fmax2544 fma -0 1 0E+999999 -> 0 fmax2545 fma -1 0 0E+999999 -> 0 fmax2546 fma -1 -0 0E+999999 -> 0 fmax2547 fma 1 0 0E+999999 -> 0 fmax2548 fma 1 -0 0E+999999 -> 0 fmax2551 fma 0.0 -1 0E+999999 -> 0.0 fmax2552 fma -0.0 -1 0E+999999 -> 0.0 fmax2553 fma 0.0 1 0E+999999 -> 0.0 fmax2554 fma -0.0 1 0E+999999 -> 0.0 fmax2555 fma -1.0 0 0E+999999 -> 0.0 fmax2556 fma -1.0 -0 0E+999999 -> 0.0 fmax2557 fma 1.0 0 0E+999999 -> 0.0 fmax2558 fma 1.0 -0 0E+999999 -> 0.0 fmax2561 fma 0 -1.0 0E+999999 -> 0.0 fmax2562 fma -0 -1.0 0E+999999 -> 0.0 fmax2563 fma 0 1.0 0E+999999 -> 0.0 fmax2564 fma -0 1.0 0E+999999 -> 0.0 fmax2565 fma -1 0.0 0E+999999 -> 0.0 fmax2566 fma -1 -0.0 0E+999999 -> 0.0 fmax2567 fma 1 0.0 0E+999999 -> 0.0 fmax2568 fma 1 -0.0 0E+999999 -> 0.0 fmax2571 fma 0.0 -1.0 0E+999999 -> 0.00 fmax2572 fma -0.0 -1.0 0E+999999 -> 0.00 fmax2573 fma 0.0 1.0 0E+999999 -> 0.00 fmax2574 fma -0.0 1.0 0E+999999 -> 0.00 fmax2575 fma -1.0 0.0 0E+999999 -> 0.00 fmax2576 fma -1.0 -0.0 0E+999999 -> 0.00 fmax2577 fma 1.0 0.0 0E+999999 -> 0.00 fmax2578 fma 1.0 -0.0 0E+999999 -> 0.00 -- Specials fmax2580 fma Inf -Inf 0E+999999 -> -Infinity fmax2581 fma Inf -1000 0E+999999 -> -Infinity fmax2582 fma Inf -1 0E+999999 -> -Infinity fmax2583 fma Inf -0 0E+999999 -> NaN Invalid_operation fmax2584 fma Inf 0 0E+999999 -> NaN Invalid_operation fmax2585 fma Inf 1 0E+999999 -> Infinity fmax2586 fma Inf 1000 0E+999999 -> Infinity fmax2587 fma Inf Inf 0E+999999 -> Infinity fmax2588 fma -1000 Inf 0E+999999 -> -Infinity fmax2589 fma -Inf Inf 0E+999999 -> -Infinity fmax2590 fma -1 Inf 0E+999999 -> -Infinity fmax2591 fma -0 Inf 0E+999999 -> NaN Invalid_operation fmax2592 fma 0 Inf 0E+999999 -> NaN Invalid_operation fmax2593 fma 1 Inf 0E+999999 -> Infinity fmax2594 fma 1000 Inf 0E+999999 -> Infinity fmax2595 fma Inf Inf 0E+999999 -> Infinity fmax2600 fma -Inf -Inf 0E+999999 -> Infinity fmax2601 fma -Inf -1000 0E+999999 -> Infinity fmax2602 fma -Inf -1 0E+999999 -> Infinity fmax2603 fma -Inf -0 0E+999999 -> NaN Invalid_operation fmax2604 fma -Inf 0 0E+999999 -> NaN Invalid_operation fmax2605 fma -Inf 1 0E+999999 -> -Infinity fmax2606 fma -Inf 1000 0E+999999 -> -Infinity fmax2607 fma -Inf Inf 0E+999999 -> -Infinity fmax2608 fma -1000 Inf 0E+999999 -> -Infinity fmax2609 fma -Inf -Inf 0E+999999 -> Infinity fmax2610 fma -1 -Inf 0E+999999 -> Infinity fmax2611 fma -0 -Inf 0E+999999 -> NaN Invalid_operation fmax2612 fma 0 -Inf 0E+999999 -> NaN Invalid_operation fmax2613 fma 1 -Inf 0E+999999 -> -Infinity fmax2614 fma 1000 -Inf 0E+999999 -> -Infinity fmax2615 fma Inf -Inf 0E+999999 -> -Infinity fmax2621 fma NaN -Inf 0E+999999 -> NaN fmax2622 fma NaN -1000 0E+999999 -> NaN fmax2623 fma NaN -1 0E+999999 -> NaN fmax2624 fma NaN -0 0E+999999 -> NaN fmax2625 fma NaN 0 0E+999999 -> NaN fmax2626 fma NaN 1 0E+999999 -> NaN fmax2627 fma NaN 1000 0E+999999 -> NaN fmax2628 fma NaN Inf 0E+999999 -> NaN fmax2629 fma NaN NaN 0E+999999 -> NaN fmax2630 fma -Inf NaN 0E+999999 -> NaN fmax2631 fma -1000 NaN 0E+999999 -> NaN fmax2632 fma -1 NaN 0E+999999 -> NaN fmax2633 fma -0 NaN 0E+999999 -> NaN fmax2634 fma 0 NaN 0E+999999 -> NaN fmax2635 fma 1 NaN 0E+999999 -> NaN fmax2636 fma 1000 NaN 0E+999999 -> NaN fmax2637 fma Inf NaN 0E+999999 -> NaN fmax2641 fma sNaN -Inf 0E+999999 -> NaN Invalid_operation fmax2642 fma sNaN -1000 0E+999999 -> NaN Invalid_operation fmax2643 fma sNaN -1 0E+999999 -> NaN Invalid_operation fmax2644 fma sNaN -0 0E+999999 -> NaN Invalid_operation fmax2645 fma sNaN 0 0E+999999 -> NaN Invalid_operation fmax2646 fma sNaN 1 0E+999999 -> NaN Invalid_operation fmax2647 fma sNaN 1000 0E+999999 -> NaN Invalid_operation fmax2648 fma sNaN NaN 0E+999999 -> NaN Invalid_operation fmax2649 fma sNaN sNaN 0E+999999 -> NaN Invalid_operation fmax2650 fma NaN sNaN 0E+999999 -> NaN Invalid_operation fmax2651 fma -Inf sNaN 0E+999999 -> NaN Invalid_operation fmax2652 fma -1000 sNaN 0E+999999 -> NaN Invalid_operation fmax2653 fma -1 sNaN 0E+999999 -> NaN Invalid_operation fmax2654 fma -0 sNaN 0E+999999 -> NaN Invalid_operation fmax2655 fma 0 sNaN 0E+999999 -> NaN Invalid_operation fmax2656 fma 1 sNaN 0E+999999 -> NaN Invalid_operation fmax2657 fma 1000 sNaN 0E+999999 -> NaN Invalid_operation fmax2658 fma Inf sNaN 0E+999999 -> NaN Invalid_operation fmax2659 fma NaN sNaN 0E+999999 -> NaN Invalid_operation -- propagating NaNs fmax2661 fma NaN9 -Inf 0E+999999 -> NaN9 fmax2662 fma NaN8 999 0E+999999 -> NaN8 fmax2663 fma NaN71 Inf 0E+999999 -> NaN71 fmax2664 fma NaN6 NaN5 0E+999999 -> NaN6 fmax2665 fma -Inf NaN4 0E+999999 -> NaN4 fmax2666 fma -999 NaN33 0E+999999 -> NaN33 fmax2667 fma Inf NaN2 0E+999999 -> NaN2 fmax2671 fma sNaN99 -Inf 0E+999999 -> NaN99 Invalid_operation fmax2672 fma sNaN98 -11 0E+999999 -> NaN98 Invalid_operation fmax2673 fma sNaN97 NaN 0E+999999 -> NaN97 Invalid_operation fmax2674 fma sNaN16 sNaN94 0E+999999 -> NaN16 Invalid_operation fmax2675 fma NaN95 sNaN93 0E+999999 -> NaN93 Invalid_operation fmax2676 fma -Inf sNaN92 0E+999999 -> NaN92 Invalid_operation fmax2677 fma 088 sNaN91 0E+999999 -> NaN91 Invalid_operation fmax2678 fma Inf sNaN90 0E+999999 -> NaN90 Invalid_operation fmax2679 fma NaN sNaN89 0E+999999 -> NaN89 Invalid_operation fmax2681 fma -NaN9 -Inf 0E+999999 -> -NaN9 fmax2682 fma -NaN8 999 0E+999999 -> -NaN8 fmax2683 fma -NaN71 Inf 0E+999999 -> -NaN71 fmax2684 fma -NaN6 -NaN5 0E+999999 -> -NaN6 fmax2685 fma -Inf -NaN4 0E+999999 -> -NaN4 fmax2686 fma -999 -NaN33 0E+999999 -> -NaN33 fmax2687 fma Inf -NaN2 0E+999999 -> -NaN2 fmax2691 fma -sNaN99 -Inf 0E+999999 -> -NaN99 Invalid_operation fmax2692 fma -sNaN98 -11 0E+999999 -> -NaN98 Invalid_operation fmax2693 fma -sNaN97 NaN 0E+999999 -> -NaN97 Invalid_operation fmax2694 fma -sNaN16 -sNaN94 0E+999999 -> -NaN16 Invalid_operation fmax2695 fma -NaN95 -sNaN93 0E+999999 -> -NaN93 Invalid_operation fmax2696 fma -Inf -sNaN92 0E+999999 -> -NaN92 Invalid_operation fmax2697 fma 088 -sNaN91 0E+999999 -> -NaN91 Invalid_operation fmax2698 fma Inf -sNaN90 0E+999999 -> -NaN90 Invalid_operation fmax2699 fma -NaN -sNaN89 0E+999999 -> -NaN89 Invalid_operation fmax2701 fma -NaN -Inf 0E+999999 -> -NaN fmax2702 fma -NaN 999 0E+999999 -> -NaN fmax2703 fma -NaN Inf 0E+999999 -> -NaN fmax2704 fma -NaN -NaN 0E+999999 -> -NaN fmax2705 fma -Inf -NaN0 0E+999999 -> -NaN fmax2706 fma -999 -NaN 0E+999999 -> -NaN fmax2707 fma Inf -NaN 0E+999999 -> -NaN fmax2711 fma -sNaN -Inf 0E+999999 -> -NaN Invalid_operation fmax2712 fma -sNaN -11 0E+999999 -> -NaN Invalid_operation fmax2713 fma -sNaN00 NaN 0E+999999 -> -NaN Invalid_operation fmax2714 fma -sNaN -sNaN 0E+999999 -> -NaN Invalid_operation fmax2715 fma -NaN -sNaN 0E+999999 -> -NaN Invalid_operation fmax2716 fma -Inf -sNaN 0E+999999 -> -NaN Invalid_operation fmax2717 fma 088 -sNaN 0E+999999 -> -NaN Invalid_operation fmax2718 fma Inf -sNaN 0E+999999 -> -NaN Invalid_operation fmax2719 fma -NaN -sNaN 0E+999999 -> -NaN Invalid_operation -- overflow and underflow tests .. note subnormal results maxexponent: 999999 minexponent: -999999 fmax2730 fma +1.23456789012345E-0 9E+999999 0E+999999 -> Infinity Inexact Overflow Rounded fmax2731 fma 9E+999999 +1.23456789012345E-0 0E+999999 -> Infinity Inexact Overflow Rounded fmax2732 fma +0.100 9E-999999 0E+999999 -> 9.00E-1000000 Subnormal fmax2733 fma 9E-999999 +0.100 0E+999999 -> 9.00E-1000000 Subnormal fmax2735 fma -1.23456789012345E-0 9E+999999 0E+999999 -> -Infinity Inexact Overflow Rounded fmax2736 fma 9E+999999 -1.23456789012345E-0 0E+999999 -> -Infinity Inexact Overflow Rounded fmax2737 fma -0.100 9E-999999 0E+999999 -> -9.00E-1000000 Subnormal fmax2738 fma 9E-999999 -0.100 0E+999999 -> -9.00E-1000000 Subnormal -- signs fmax2751 fma 1e+777777 1e+411111 0E+999999 -> Infinity Overflow Inexact Rounded fmax2752 fma 1e+777777 -1e+411111 0E+999999 -> -Infinity Overflow Inexact Rounded fmax2753 fma -1e+777777 1e+411111 0E+999999 -> -Infinity Overflow Inexact Rounded fmax2754 fma -1e+777777 -1e+411111 0E+999999 -> Infinity Overflow Inexact Rounded fmax2755 fma 1e-777777 1e-411111 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped fmax2756 fma 1e-777777 -1e-411111 0E+999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped fmax2757 fma -1e-777777 1e-411111 0E+999999 -> -0E-1000007 Underflow Subnormal Inexact Rounded Clamped fmax2758 fma -1e-777777 -1e-411111 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) precision: 9 fmax2760 fma 1e-600000 1e-400001 0E+999999 -> 1E-1000001 Subnormal fmax2761 fma 1e-600000 1e-400002 0E+999999 -> 1E-1000002 Subnormal fmax2762 fma 1e-600000 1e-400003 0E+999999 -> 1E-1000003 Subnormal fmax2763 fma 1e-600000 1e-400004 0E+999999 -> 1E-1000004 Subnormal fmax2764 fma 1e-600000 1e-400005 0E+999999 -> 1E-1000005 Subnormal fmax2765 fma 1e-600000 1e-400006 0E+999999 -> 1E-1000006 Subnormal fmax2766 fma 1e-600000 1e-400007 0E+999999 -> 1E-1000007 Subnormal fmax2767 fma 1e-600000 1e-400008 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped fmax2768 fma 1e-600000 1e-400009 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped fmax2769 fma 1e-600000 1e-400010 0E+999999 -> 0E-1000007 Underflow Subnormal Inexact Rounded Clamped -- [no equivalent of 'subnormal' for overflow] fmax2770 fma 1e+600000 1e+400001 0E+999999 -> Infinity Overflow Inexact Rounded fmax2771 fma 1e+600000 1e+400002 0E+999999 -> Infinity Overflow Inexact Rounded fmax2772 fma 1e+600000 1e+400003 0E+999999 -> Infinity Overflow Inexact Rounded fmax2773 fma 1e+600000 1e+400004 0E+999999 -> Infinity Overflow Inexact Rounded fmax2774 fma 1e+600000 1e+400005 0E+999999 -> Infinity Overflow Inexact Rounded fmax2775 fma 1e+600000 1e+400006 0E+999999 -> Infinity Overflow Inexact Rounded fmax2776 fma 1e+600000 1e+400007 0E+999999 -> Infinity Overflow Inexact Rounded fmax2777 fma 1e+600000 1e+400008 0E+999999 -> Infinity Overflow Inexact Rounded fmax2778 fma 1e+600000 1e+400009 0E+999999 -> Infinity Overflow Inexact Rounded fmax2779 fma 1e+600000 1e+400010 0E+999999 -> Infinity Overflow Inexact Rounded -- 'subnormal' test edge condition at higher precisions precision: 99 fmax2780 fma 1e-600000 1e-400007 0E+999999 -> 1E-1000007 Subnormal fmax2781 fma 1e-600000 1e-400008 0E+999999 -> 1E-1000008 Subnormal fmax2782 fma 1e-600000 1e-400097 0E+999999 -> 1E-1000097 Subnormal fmax2783 fma 1e-600000 1e-400098 0E+999999 -> 0E-1000097 Underflow Subnormal Inexact Rounded Clamped precision: 999 fmax2784 fma 1e-600000 1e-400997 0E+999999 -> 1E-1000997 Subnormal fmax2785 fma 1e-600000 1e-400998 0E+999999 -> 0E-1000997 Underflow Subnormal Inexact Rounded Clamped -- test subnormals rounding precision: 5 maxExponent: 999 minexponent: -999 rounding: half_even fmax2801 fma 1.0000E-999 1 0E+999999 -> 1.0000E-999 fmax2802 fma 1.000E-999 1e-1 0E+999999 -> 1.000E-1000 Subnormal fmax2803 fma 1.00E-999 1e-2 0E+999999 -> 1.00E-1001 Subnormal fmax2804 fma 1.0E-999 1e-3 0E+999999 -> 1.0E-1002 Subnormal fmax2805 fma 1.0E-999 1e-4 0E+999999 -> 1E-1003 Subnormal Rounded fmax2806 fma 1.3E-999 1e-4 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded fmax2807 fma 1.5E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded fmax2808 fma 1.7E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded fmax2809 fma 2.3E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded fmax2810 fma 2.5E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded fmax2811 fma 2.7E-999 1e-4 0E+999999 -> 3E-1003 Underflow Subnormal Inexact Rounded fmax2812 fma 1.49E-999 1e-4 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded fmax2813 fma 1.50E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded fmax2814 fma 1.51E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded fmax2815 fma 2.49E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded fmax2816 fma 2.50E-999 1e-4 0E+999999 -> 2E-1003 Underflow Subnormal Inexact Rounded fmax2817 fma 2.51E-999 1e-4 0E+999999 -> 3E-1003 Underflow Subnormal Inexact Rounded fmax2818 fma 1E-999 1e-4 0E+999999 -> 1E-1003 Subnormal fmax2819 fma 3E-999 1e-5 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped fmax2820 fma 5E-999 1e-5 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped fmax2821 fma 7E-999 1e-5 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded fmax2822 fma 9E-999 1e-5 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded fmax2823 fma 9.9E-999 1e-5 0E+999999 -> 1E-1003 Underflow Subnormal Inexact Rounded fmax2824 fma 1E-999 -1e-4 0E+999999 -> -1E-1003 Subnormal fmax2825 fma 3E-999 -1e-5 0E+999999 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped fmax2826 fma -5E-999 1e-5 0E+999999 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped fmax2827 fma 7E-999 -1e-5 0E+999999 -> -1E-1003 Underflow Subnormal Inexact Rounded fmax2828 fma -9E-999 1e-5 0E+999999 -> -1E-1003 Underflow Subnormal Inexact Rounded fmax2829 fma 9.9E-999 -1e-5 0E+999999 -> -1E-1003 Underflow Subnormal Inexact Rounded fmax2830 fma 3.0E-999 -1e-5 0E+999999 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped fmax2831 fma 1.0E-501 1e-501 0E+999999 -> 1.0E-1002 Subnormal fmax2832 fma 2.0E-501 2e-501 0E+999999 -> 4.0E-1002 Subnormal fmax2833 fma 4.0E-501 4e-501 0E+999999 -> 1.60E-1001 Subnormal fmax2834 fma 10.0E-501 10e-501 0E+999999 -> 1.000E-1000 Subnormal fmax2835 fma 30.0E-501 30e-501 0E+999999 -> 9.000E-1000 Subnormal fmax2836 fma 40.0E-501 40e-501 0E+999999 -> 1.6000E-999 -- squares fmax2840 fma 1E-502 1e-502 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped fmax2841 fma 1E-501 1e-501 0E+999999 -> 1E-1002 Subnormal fmax2842 fma 2E-501 2e-501 0E+999999 -> 4E-1002 Subnormal fmax2843 fma 4E-501 4e-501 0E+999999 -> 1.6E-1001 Subnormal fmax2844 fma 10E-501 10e-501 0E+999999 -> 1.00E-1000 Subnormal fmax2845 fma 30E-501 30e-501 0E+999999 -> 9.00E-1000 Subnormal fmax2846 fma 40E-501 40e-501 0E+999999 -> 1.600E-999 -- cubes fmax2850 fma 1E-670 1e-335 0E+999999 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped fmax2851 fma 1E-668 1e-334 0E+999999 -> 1E-1002 Subnormal fmax2852 fma 4E-668 2e-334 0E+999999 -> 8E-1002 Subnormal fmax2853 fma 9E-668 3e-334 0E+999999 -> 2.7E-1001 Subnormal fmax2854 fma 16E-668 4e-334 0E+999999 -> 6.4E-1001 Subnormal fmax2855 fma 25E-668 5e-334 0E+999999 -> 1.25E-1000 Subnormal fmax2856 fma 10E-668 100e-334 0E+999999 -> 1.000E-999 -- test derived from result of 0.099 ** 999 at 15 digits with unlimited exponent precision: 19 fmax2860 fma 6636851557994578716E-520 6636851557994578716E-520 0E+999999 -> 4.40477986028551E-1003 Underflow Subnormal Inexact Rounded -- Long operand overflow may be a different path precision: 3 maxExponent: 999999 minexponent: -999999 fmax2870 fma 1 9.999E+999999 0E+999999 -> Infinity Inexact Overflow Rounded fmax2871 fma 1 -9.999E+999999 0E+999999 -> -Infinity Inexact Overflow Rounded fmax2872 fma 9.999E+999999 1 0E+999999 -> Infinity Inexact Overflow Rounded fmax2873 fma -9.999E+999999 1 0E+999999 -> -Infinity Inexact Overflow Rounded -- check for double-rounded subnormals precision: 5 maxexponent: 79 minexponent: -79 fmax2881 fma 1.2347E-40 1.2347E-40 0E+999999 -> 1.524E-80 Inexact Rounded Subnormal Underflow fmax2882 fma 1.234E-40 1.234E-40 0E+999999 -> 1.523E-80 Inexact Rounded Subnormal Underflow fmax2883 fma 1.23E-40 1.23E-40 0E+999999 -> 1.513E-80 Inexact Rounded Subnormal Underflow fmax2884 fma 1.2E-40 1.2E-40 0E+999999 -> 1.44E-80 Subnormal fmax2885 fma 1.2E-40 1.2E-41 0E+999999 -> 1.44E-81 Subnormal fmax2886 fma 1.2E-40 1.2E-42 0E+999999 -> 1.4E-82 Subnormal Inexact Rounded Underflow fmax2887 fma 1.2E-40 1.3E-42 0E+999999 -> 1.6E-82 Subnormal Inexact Rounded Underflow fmax2888 fma 1.3E-40 1.3E-42 0E+999999 -> 1.7E-82 Subnormal Inexact Rounded Underflow fmax2889 fma 1.3E-40 1.3E-43 0E+999999 -> 2E-83 Subnormal Inexact Rounded Underflow fmax2890 fma 1.3E-41 1.3E-43 0E+999999 -> 0E-83 Clamped Subnormal Inexact Rounded Underflow fmax2891 fma 1.2345E-39 1.234E-40 0E+999999 -> 1.5234E-79 Inexact Rounded fmax2892 fma 1.23456E-39 1.234E-40 0E+999999 -> 1.5234E-79 Inexact Rounded fmax2893 fma 1.2345E-40 1.234E-40 0E+999999 -> 1.523E-80 Inexact Rounded Subnormal Underflow fmax2894 fma 1.23456E-40 1.234E-40 0E+999999 -> 1.523E-80 Inexact Rounded Subnormal Underflow fmax2895 fma 1.2345E-41 1.234E-40 0E+999999 -> 1.52E-81 Inexact Rounded Subnormal Underflow fmax2896 fma 1.23456E-41 1.234E-40 0E+999999 -> 1.52E-81 Inexact Rounded Subnormal Underflow -- Now explore the case where we get a normal result with Underflow precision: 16 rounding: half_up maxExponent: 384 minExponent: -383 fmax2900 fma 0.3000000000E-191 0.3000000000E-191 0E+999999 -> 9.00000000000000E-384 Subnormal Rounded fmax2901 fma 0.3000000001E-191 0.3000000001E-191 0E+999999 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded fmax2902 fma 9.999999999999999E-383 0.0999999999999 0E+999999 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded fmax2903 fma 9.999999999999999E-383 0.09999999999999 0E+999999 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded fmax2904 fma 9.999999999999999E-383 0.099999999999999 0E+999999 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded fmax2905 fma 9.999999999999999E-383 0.0999999999999999 0E+999999 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded -- prove operands are exact fmax2906 fma 9.999999999999999E-383 1 0E+999999 -> 9.999999999999999E-383 fmax2907 fma 1 0.09999999999999999 0E+999999 -> 0.09999999999999999 -- the next rounds to Nmin fmax2908 fma 9.999999999999999E-383 0.09999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded fmax2909 fma 9.999999999999999E-383 0.099999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded fmax2910 fma 9.999999999999999E-383 0.0999999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded fmax2911 fma 9.999999999999999E-383 0.09999999999999999999 0E+999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -- Examples from SQL proposal (Krishna Kulkarni) precision: 34 rounding: half_up maxExponent: 6144 minExponent: -6143 fmax2921 fma 130E-2 120E-2 0E+999999 -> 1.5600 fmax2922 fma 130E-2 12E-1 0E+999999 -> 1.560 fmax2923 fma 130E-2 1E0 0E+999999 -> 1.30 -- Null tests fmax2990 fma # 10 0E+999999 -> NaN Invalid_operation fmax2991 fma 10 # 0E+999999 -> NaN Invalid_operation -- ADDITION TESTS ------------------------------------------------------ precision: 9 rounding: half_up maxExponent: 384 minexponent: -383 -- [first group are 'quick confidence check'] fmax3001 fma 1 1 1 -> 2 fmax3002 fma 1 2 3 -> 5 fmax3003 fma 1 '5.75' '3.3' -> 9.05 fmax3004 fma 1 '5' '-3' -> 2 fmax3005 fma 1 '-5' '-3' -> -8 fmax3006 fma 1 '-7' '2.5' -> -4.5 fmax3007 fma 1 '0.7' '0.3' -> 1.0 fmax3008 fma 1 '1.25' '1.25' -> 2.50 fmax3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789' fmax3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800' fmax3011 fma 1 '0.4444444444' '0.5555555555' -> '1.00000000' Inexact Rounded fmax3012 fma 1 '0.4444444440' '0.5555555555' -> '1.00000000' Inexact Rounded fmax3013 fma 1 '0.4444444444' '0.5555555550' -> '0.999999999' Inexact Rounded fmax3014 fma 1 '0.44444444449' '0' -> '0.444444444' Inexact Rounded fmax3015 fma 1 '0.444444444499' '0' -> '0.444444444' Inexact Rounded fmax3016 fma 1 '0.4444444444999' '0' -> '0.444444444' Inexact Rounded fmax3017 fma 1 '0.4444444445000' '0' -> '0.444444445' Inexact Rounded fmax3018 fma 1 '0.4444444445001' '0' -> '0.444444445' Inexact Rounded fmax3019 fma 1 '0.444444444501' '0' -> '0.444444445' Inexact Rounded fmax3020 fma 1 '0.44444444451' '0' -> '0.444444445' Inexact Rounded fmax3021 fma 1 0 1 -> 1 fmax3022 fma 1 1 1 -> 2 fmax3023 fma 1 2 1 -> 3 fmax3024 fma 1 3 1 -> 4 fmax3025 fma 1 4 1 -> 5 fmax3026 fma 1 5 1 -> 6 fmax3027 fma 1 6 1 -> 7 fmax3028 fma 1 7 1 -> 8 fmax3029 fma 1 8 1 -> 9 fmax3030 fma 1 9 1 -> 10 -- some carrying effects fmax3031 fma 1 '0.9998' '0.0000' -> '0.9998' fmax3032 fma 1 '0.9998' '0.0001' -> '0.9999' fmax3033 fma 1 '0.9998' '0.0002' -> '1.0000' fmax3034 fma 1 '0.9998' '0.0003' -> '1.0001' fmax3035 fma 1 '70' '10000e+9' -> '1.00000000E+13' Inexact Rounded fmax3036 fma 1 '700' '10000e+9' -> '1.00000000E+13' Inexact Rounded fmax3037 fma 1 '7000' '10000e+9' -> '1.00000000E+13' Inexact Rounded fmax3038 fma 1 '70000' '10000e+9' -> '1.00000001E+13' Inexact Rounded fmax3039 fma 1 '700000' '10000e+9' -> '1.00000007E+13' Rounded -- symmetry: fmax3040 fma 1 '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded fmax3041 fma 1 '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded fmax3042 fma 1 '10000e+9' '7000' -> '1.00000000E+13' Inexact Rounded fmax3044 fma 1 '10000e+9' '70000' -> '1.00000001E+13' Inexact Rounded fmax3045 fma 1 '10000e+9' '700000' -> '1.00000007E+13' Rounded -- same, higher precision precision: 15 fmax3046 fma 1 '10000e+9' '7' -> '10000000000007' fmax3047 fma 1 '10000e+9' '70' -> '10000000000070' fmax3048 fma 1 '10000e+9' '700' -> '10000000000700' fmax3049 fma 1 '10000e+9' '7000' -> '10000000007000' fmax3050 fma 1 '10000e+9' '70000' -> '10000000070000' fmax3051 fma 1 '10000e+9' '700000' -> '10000000700000' fmax3052 fma 1 '10000e+9' '7000000' -> '10000007000000' -- examples from decarith fmax3053 fma 1 '12' '7.00' -> '19.00' fmax3054 fma 1 '1.3' '-1.07' -> '0.23' fmax3055 fma 1 '1.3' '-1.30' -> '0.00' fmax3056 fma 1 '1.3' '-2.07' -> '-0.77' fmax3057 fma 1 '1E+2' '1E+4' -> '1.01E+4' -- zero preservation precision: 6 fmax3060 fma 1 '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded fmax3061 fma 1 1 '0.0001' -> '1.0001' fmax3062 fma 1 1 '0.00001' -> '1.00001' fmax3063 fma 1 1 '0.000001' -> '1.00000' Inexact Rounded fmax3064 fma 1 1 '0.0000001' -> '1.00000' Inexact Rounded fmax3065 fma 1 1 '0.00000001' -> '1.00000' Inexact Rounded -- some funny zeros [in case of bad signum] fmax3070 fma 1 1 0 -> 1 fmax3071 fma 1 1 0. -> 1 fmax3072 fma 1 1 .0 -> 1.0 fmax3073 fma 1 1 0.0 -> 1.0 fmax3074 fma 1 1 0.00 -> 1.00 fmax3075 fma 1 0 1 -> 1 fmax3076 fma 1 0. 1 -> 1 fmax3077 fma 1 .0 1 -> 1.0 fmax3078 fma 1 0.0 1 -> 1.0 fmax3079 fma 1 0.00 1 -> 1.00 precision: 9 -- some carries fmax3080 fma 1 999999998 1 -> 999999999 fmax3081 fma 1 999999999 1 -> 1.00000000E+9 Rounded fmax3082 fma 1 99999999 1 -> 100000000 fmax3083 fma 1 9999999 1 -> 10000000 fmax3084 fma 1 999999 1 -> 1000000 fmax3085 fma 1 99999 1 -> 100000 fmax3086 fma 1 9999 1 -> 10000 fmax3087 fma 1 999 1 -> 1000 fmax3088 fma 1 99 1 -> 100 fmax3089 fma 1 9 1 -> 10 -- more LHS swaps fmax3090 fma 1 '-56267E-10' 0 -> '-0.0000056267' fmax3091 fma 1 '-56267E-6' 0 -> '-0.056267' fmax3092 fma 1 '-56267E-5' 0 -> '-0.56267' fmax3093 fma 1 '-56267E-4' 0 -> '-5.6267' fmax3094 fma 1 '-56267E-3' 0 -> '-56.267' fmax3095 fma 1 '-56267E-2' 0 -> '-562.67' fmax3096 fma 1 '-56267E-1' 0 -> '-5626.7' fmax3097 fma 1 '-56267E-0' 0 -> '-56267' fmax3098 fma 1 '-5E-10' 0 -> '-5E-10' fmax3099 fma 1 '-5E-7' 0 -> '-5E-7' fmax3100 fma 1 '-5E-6' 0 -> '-0.000005' fmax3101 fma 1 '-5E-5' 0 -> '-0.00005' fmax3102 fma 1 '-5E-4' 0 -> '-0.0005' fmax3103 fma 1 '-5E-1' 0 -> '-0.5' fmax3104 fma 1 '-5E0' 0 -> '-5' fmax3105 fma 1 '-5E1' 0 -> '-50' fmax3106 fma 1 '-5E5' 0 -> '-500000' fmax3107 fma 1 '-5E8' 0 -> '-500000000' fmax3108 fma 1 '-5E9' 0 -> '-5.00000000E+9' Rounded fmax3109 fma 1 '-5E10' 0 -> '-5.00000000E+10' Rounded fmax3110 fma 1 '-5E11' 0 -> '-5.00000000E+11' Rounded fmax3111 fma 1 '-5E100' 0 -> '-5.00000000E+100' Rounded -- more RHS swaps fmax3113 fma 1 0 '-56267E-10' -> '-0.0000056267' fmax3114 fma 1 0 '-56267E-6' -> '-0.056267' fmax3116 fma 1 0 '-56267E-5' -> '-0.56267' fmax3117 fma 1 0 '-56267E-4' -> '-5.6267' fmax3119 fma 1 0 '-56267E-3' -> '-56.267' fmax3120 fma 1 0 '-56267E-2' -> '-562.67' fmax3121 fma 1 0 '-56267E-1' -> '-5626.7' fmax3122 fma 1 0 '-56267E-0' -> '-56267' fmax3123 fma 1 0 '-5E-10' -> '-5E-10' fmax3124 fma 1 0 '-5E-7' -> '-5E-7' fmax3125 fma 1 0 '-5E-6' -> '-0.000005' fmax3126 fma 1 0 '-5E-5' -> '-0.00005' fmax3127 fma 1 0 '-5E-4' -> '-0.0005' fmax3128 fma 1 0 '-5E-1' -> '-0.5' fmax3129 fma 1 0 '-5E0' -> '-5' fmax3130 fma 1 0 '-5E1' -> '-50' fmax3131 fma 1 0 '-5E5' -> '-500000' fmax3132 fma 1 0 '-5E8' -> '-500000000' fmax3133 fma 1 0 '-5E9' -> '-5.00000000E+9' Rounded fmax3134 fma 1 0 '-5E10' -> '-5.00000000E+10' Rounded fmax3135 fma 1 0 '-5E11' -> '-5.00000000E+11' Rounded fmax3136 fma 1 0 '-5E100' -> '-5.00000000E+100' Rounded -- related fmax3137 fma 1 1 '0E-12' -> '1.00000000' Rounded fmax3138 fma 1 -1 '0E-12' -> '-1.00000000' Rounded fmax3139 fma 1 '0E-12' 1 -> '1.00000000' Rounded fmax3140 fma 1 '0E-12' -1 -> '-1.00000000' Rounded fmax3141 fma 1 1E+4 0.0000 -> '10000.0000' fmax3142 fma 1 1E+4 0.00000 -> '10000.0000' Rounded fmax3143 fma 1 0.000 1E+5 -> '100000.000' fmax3144 fma 1 0.0000 1E+5 -> '100000.000' Rounded -- [some of the next group are really constructor tests] fmax3146 fma 1 '00.0' 0 -> '0.0' fmax3147 fma 1 '0.00' 0 -> '0.00' fmax3148 fma 1 0 '0.00' -> '0.00' fmax3149 fma 1 0 '00.0' -> '0.0' fmax3150 fma 1 '00.0' '0.00' -> '0.00' fmax3151 fma 1 '0.00' '00.0' -> '0.00' fmax3152 fma 1 '3' '.3' -> '3.3' fmax3153 fma 1 '3.' '.3' -> '3.3' fmax3154 fma 1 '3.0' '.3' -> '3.3' fmax3155 fma 1 '3.00' '.3' -> '3.30' fmax3156 fma 1 '3' '3' -> '6' fmax3157 fma 1 '3' '+3' -> '6' fmax3158 fma 1 '3' '-3' -> '0' fmax3159 fma 1 '0.3' '-0.3' -> '0.0' fmax3160 fma 1 '0.03' '-0.03' -> '0.00' -- try borderline precision, with carries, etc. precision: 15 fmax3161 fma 1 '1E+12' '-1' -> '999999999999' fmax3162 fma 1 '1E+12' '1.11' -> '1000000000001.11' fmax3163 fma 1 '1.11' '1E+12' -> '1000000000001.11' fmax3164 fma 1 '-1' '1E+12' -> '999999999999' fmax3165 fma 1 '7E+12' '-1' -> '6999999999999' fmax3166 fma 1 '7E+12' '1.11' -> '7000000000001.11' fmax3167 fma 1 '1.11' '7E+12' -> '7000000000001.11' fmax3168 fma 1 '-1' '7E+12' -> '6999999999999' -- 123456789012345 123456789012345 1 23456789012345 fmax3170 fma 1 '0.444444444444444' '0.555555555555563' -> '1.00000000000001' Inexact Rounded fmax3171 fma 1 '0.444444444444444' '0.555555555555562' -> '1.00000000000001' Inexact Rounded fmax3172 fma 1 '0.444444444444444' '0.555555555555561' -> '1.00000000000001' Inexact Rounded fmax3173 fma 1 '0.444444444444444' '0.555555555555560' -> '1.00000000000000' Inexact Rounded fmax3174 fma 1 '0.444444444444444' '0.555555555555559' -> '1.00000000000000' Inexact Rounded fmax3175 fma 1 '0.444444444444444' '0.555555555555558' -> '1.00000000000000' Inexact Rounded fmax3176 fma 1 '0.444444444444444' '0.555555555555557' -> '1.00000000000000' Inexact Rounded fmax3177 fma 1 '0.444444444444444' '0.555555555555556' -> '1.00000000000000' Rounded fmax3178 fma 1 '0.444444444444444' '0.555555555555555' -> '0.999999999999999' fmax3179 fma 1 '0.444444444444444' '0.555555555555554' -> '0.999999999999998' fmax3180 fma 1 '0.444444444444444' '0.555555555555553' -> '0.999999999999997' fmax3181 fma 1 '0.444444444444444' '0.555555555555552' -> '0.999999999999996' fmax3182 fma 1 '0.444444444444444' '0.555555555555551' -> '0.999999999999995' fmax3183 fma 1 '0.444444444444444' '0.555555555555550' -> '0.999999999999994' -- and some more, including residue effects and different roundings precision: 9 rounding: half_up fmax3200 fma 1 '123456789' 0 -> '123456789' fmax3201 fma 1 '123456789' 0.000000001 -> '123456789' Inexact Rounded fmax3202 fma 1 '123456789' 0.000001 -> '123456789' Inexact Rounded fmax3203 fma 1 '123456789' 0.1 -> '123456789' Inexact Rounded fmax3204 fma 1 '123456789' 0.4 -> '123456789' Inexact Rounded fmax3205 fma 1 '123456789' 0.49 -> '123456789' Inexact Rounded fmax3206 fma 1 '123456789' 0.499999 -> '123456789' Inexact Rounded fmax3207 fma 1 '123456789' 0.499999999 -> '123456789' Inexact Rounded fmax3208 fma 1 '123456789' 0.5 -> '123456790' Inexact Rounded fmax3209 fma 1 '123456789' 0.500000001 -> '123456790' Inexact Rounded fmax3210 fma 1 '123456789' 0.500001 -> '123456790' Inexact Rounded fmax3211 fma 1 '123456789' 0.51 -> '123456790' Inexact Rounded fmax3212 fma 1 '123456789' 0.6 -> '123456790' Inexact Rounded fmax3213 fma 1 '123456789' 0.9 -> '123456790' Inexact Rounded fmax3214 fma 1 '123456789' 0.99999 -> '123456790' Inexact Rounded fmax3215 fma 1 '123456789' 0.999999999 -> '123456790' Inexact Rounded fmax3216 fma 1 '123456789' 1 -> '123456790' fmax3217 fma 1 '123456789' 1.000000001 -> '123456790' Inexact Rounded fmax3218 fma 1 '123456789' 1.00001 -> '123456790' Inexact Rounded fmax3219 fma 1 '123456789' 1.1 -> '123456790' Inexact Rounded rounding: half_even fmax3220 fma 1 '123456789' 0 -> '123456789' fmax3221 fma 1 '123456789' 0.000000001 -> '123456789' Inexact Rounded fmax3222 fma 1 '123456789' 0.000001 -> '123456789' Inexact Rounded fmax3223 fma 1 '123456789' 0.1 -> '123456789' Inexact Rounded fmax3224 fma 1 '123456789' 0.4 -> '123456789' Inexact Rounded fmax3225 fma 1 '123456789' 0.49 -> '123456789' Inexact Rounded fmax3226 fma 1 '123456789' 0.499999 -> '123456789' Inexact Rounded fmax3227 fma 1 '123456789' 0.499999999 -> '123456789' Inexact Rounded fmax3228 fma 1 '123456789' 0.5 -> '123456790' Inexact Rounded fmax3229 fma 1 '123456789' 0.500000001 -> '123456790' Inexact Rounded fmax3230 fma 1 '123456789' 0.500001 -> '123456790' Inexact Rounded fmax3231 fma 1 '123456789' 0.51 -> '123456790' Inexact Rounded fmax3232 fma 1 '123456789' 0.6 -> '123456790' Inexact Rounded fmax3233 fma 1 '123456789' 0.9 -> '123456790' Inexact Rounded fmax3234 fma 1 '123456789' 0.99999 -> '123456790' Inexact Rounded fmax3235 fma 1 '123456789' 0.999999999 -> '123456790' Inexact Rounded fmax3236 fma 1 '123456789' 1 -> '123456790' fmax3237 fma 1 '123456789' 1.00000001 -> '123456790' Inexact Rounded fmax3238 fma 1 '123456789' 1.00001 -> '123456790' Inexact Rounded fmax3239 fma 1 '123456789' 1.1 -> '123456790' Inexact Rounded -- critical few with even bottom digit... fmax3240 fma 1 '123456788' 0.499999999 -> '123456788' Inexact Rounded fmax3241 fma 1 '123456788' 0.5 -> '123456788' Inexact Rounded fmax3242 fma 1 '123456788' 0.500000001 -> '123456789' Inexact Rounded rounding: down fmax3250 fma 1 '123456789' 0 -> '123456789' fmax3251 fma 1 '123456789' 0.000000001 -> '123456789' Inexact Rounded fmax3252 fma 1 '123456789' 0.000001 -> '123456789' Inexact Rounded fmax3253 fma 1 '123456789' 0.1 -> '123456789' Inexact Rounded fmax3254 fma 1 '123456789' 0.4 -> '123456789' Inexact Rounded fmax3255 fma 1 '123456789' 0.49 -> '123456789' Inexact Rounded fmax3256 fma 1 '123456789' 0.499999 -> '123456789' Inexact Rounded fmax3257 fma 1 '123456789' 0.499999999 -> '123456789' Inexact Rounded fmax3258 fma 1 '123456789' 0.5 -> '123456789' Inexact Rounded fmax3259 fma 1 '123456789' 0.500000001 -> '123456789' Inexact Rounded fmax3260 fma 1 '123456789' 0.500001 -> '123456789' Inexact Rounded fmax3261 fma 1 '123456789' 0.51 -> '123456789' Inexact Rounded fmax3262 fma 1 '123456789' 0.6 -> '123456789' Inexact Rounded fmax3263 fma 1 '123456789' 0.9 -> '123456789' Inexact Rounded fmax3264 fma 1 '123456789' 0.99999 -> '123456789' Inexact Rounded fmax3265 fma 1 '123456789' 0.999999999 -> '123456789' Inexact Rounded fmax3266 fma 1 '123456789' 1 -> '123456790' fmax3267 fma 1 '123456789' 1.00000001 -> '123456790' Inexact Rounded fmax3268 fma 1 '123456789' 1.00001 -> '123456790' Inexact Rounded fmax3269 fma 1 '123456789' 1.1 -> '123456790' Inexact Rounded -- input preparation tests (operands should not be rounded) precision: 3 rounding: half_up fmax3270 fma 1 '12345678900000' 9999999999999 -> '2.23E+13' Inexact Rounded fmax3271 fma 1 '9999999999999' 12345678900000 -> '2.23E+13' Inexact Rounded fmax3272 fma 1 '12E+3' '3444' -> '1.54E+4' Inexact Rounded fmax3273 fma 1 '12E+3' '3446' -> '1.54E+4' Inexact Rounded fmax3274 fma 1 '12E+3' '3449.9' -> '1.54E+4' Inexact Rounded fmax3275 fma 1 '12E+3' '3450.0' -> '1.55E+4' Inexact Rounded fmax3276 fma 1 '12E+3' '3450.1' -> '1.55E+4' Inexact Rounded fmax3277 fma 1 '12E+3' '3454' -> '1.55E+4' Inexact Rounded fmax3278 fma 1 '12E+3' '3456' -> '1.55E+4' Inexact Rounded fmax3281 fma 1 '3444' '12E+3' -> '1.54E+4' Inexact Rounded fmax3282 fma 1 '3446' '12E+3' -> '1.54E+4' Inexact Rounded fmax3283 fma 1 '3449.9' '12E+3' -> '1.54E+4' Inexact Rounded fmax3284 fma 1 '3450.0' '12E+3' -> '1.55E+4' Inexact Rounded fmax3285 fma 1 '3450.1' '12E+3' -> '1.55E+4' Inexact Rounded fmax3286 fma 1 '3454' '12E+3' -> '1.55E+4' Inexact Rounded fmax3287 fma 1 '3456' '12E+3' -> '1.55E+4' Inexact Rounded rounding: half_down fmax3291 fma 1 '3444' '12E+3' -> '1.54E+4' Inexact Rounded fmax3292 fma 1 '3446' '12E+3' -> '1.54E+4' Inexact Rounded fmax3293 fma 1 '3449.9' '12E+3' -> '1.54E+4' Inexact Rounded fmax3294 fma 1 '3450.0' '12E+3' -> '1.54E+4' Inexact Rounded fmax3295 fma 1 '3450.1' '12E+3' -> '1.55E+4' Inexact Rounded fmax3296 fma 1 '3454' '12E+3' -> '1.55E+4' Inexact Rounded fmax3297 fma 1 '3456' '12E+3' -> '1.55E+4' Inexact Rounded -- 1 in last place tests rounding: half_up fmax3301 fma 1 -1 1 -> 0 fmax3302 fma 1 0 1 -> 1 fmax3303 fma 1 1 1 -> 2 fmax3304 fma 1 12 1 -> 13 fmax3305 fma 1 98 1 -> 99 fmax3306 fma 1 99 1 -> 100 fmax3307 fma 1 100 1 -> 101 fmax3308 fma 1 101 1 -> 102 fmax3309 fma 1 -1 -1 -> -2 fmax3310 fma 1 0 -1 -> -1 fmax3311 fma 1 1 -1 -> 0 fmax3312 fma 1 12 -1 -> 11 fmax3313 fma 1 98 -1 -> 97 fmax3314 fma 1 99 -1 -> 98 fmax3315 fma 1 100 -1 -> 99 fmax3316 fma 1 101 -1 -> 100 fmax3321 fma 1 -0.01 0.01 -> 0.00 fmax3322 fma 1 0.00 0.01 -> 0.01 fmax3323 fma 1 0.01 0.01 -> 0.02 fmax3324 fma 1 0.12 0.01 -> 0.13 fmax3325 fma 1 0.98 0.01 -> 0.99 fmax3326 fma 1 0.99 0.01 -> 1.00 fmax3327 fma 1 1.00 0.01 -> 1.01 fmax3328 fma 1 1.01 0.01 -> 1.02 fmax3329 fma 1 -0.01 -0.01 -> -0.02 fmax3330 fma 1 0.00 -0.01 -> -0.01 fmax3331 fma 1 0.01 -0.01 -> 0.00 fmax3332 fma 1 0.12 -0.01 -> 0.11 fmax3333 fma 1 0.98 -0.01 -> 0.97 fmax3334 fma 1 0.99 -0.01 -> 0.98 fmax3335 fma 1 1.00 -0.01 -> 0.99 fmax3336 fma 1 1.01 -0.01 -> 1.00 -- some more cases where fma 1 ing 0 affects the coefficient precision: 9 fmax3340 fma 1 1E+3 0 -> 1000 fmax3341 fma 1 1E+8 0 -> 100000000 fmax3342 fma 1 1E+9 0 -> 1.00000000E+9 Rounded fmax3343 fma 1 1E+10 0 -> 1.00000000E+10 Rounded -- which simply follow from these cases ... fmax3344 fma 1 1E+3 1 -> 1001 fmax3345 fma 1 1E+8 1 -> 100000001 fmax3346 fma 1 1E+9 1 -> 1.00000000E+9 Inexact Rounded fmax3347 fma 1 1E+10 1 -> 1.00000000E+10 Inexact Rounded fmax3348 fma 1 1E+3 7 -> 1007 fmax3349 fma 1 1E+8 7 -> 100000007 fmax3350 fma 1 1E+9 7 -> 1.00000001E+9 Inexact Rounded fmax3351 fma 1 1E+10 7 -> 1.00000000E+10 Inexact Rounded -- tryzeros cases precision: 7 rounding: half_up maxExponent: 92 minexponent: -92 fmax3361 fma 1 0E+50 10000E+1 -> 1.0000E+5 fmax3362 fma 1 10000E+1 0E-50 -> 100000.0 Rounded fmax3363 fma 1 10000E+1 10000E-50 -> 100000.0 Rounded Inexact fmax3364 fma 1 9.999999E+92 -9.999999E+92 -> 0E+86 -- a curiosity from JSR 13 testing rounding: half_down precision: 10 fmax3370 fma 1 99999999 81512 -> 100081511 precision: 6 fmax3371 fma 1 99999999 81512 -> 1.00082E+8 Rounded Inexact rounding: half_up precision: 10 fmax3372 fma 1 99999999 81512 -> 100081511 precision: 6 fmax3373 fma 1 99999999 81512 -> 1.00082E+8 Rounded Inexact rounding: half_even precision: 10 fmax3374 fma 1 99999999 81512 -> 100081511 precision: 6 fmax3375 fma 1 99999999 81512 -> 1.00082E+8 Rounded Inexact -- ulp replacement tests precision: 9 maxexponent: 999999 minexponent: -999999 fmax3400 fma 1 1 77e-7 -> 1.0000077 fmax3401 fma 1 1 77e-8 -> 1.00000077 fmax3402 fma 1 1 77e-9 -> 1.00000008 Inexact Rounded fmax3403 fma 1 1 77e-10 -> 1.00000001 Inexact Rounded fmax3404 fma 1 1 77e-11 -> 1.00000000 Inexact Rounded fmax3405 fma 1 1 77e-12 -> 1.00000000 Inexact Rounded fmax3406 fma 1 1 77e-999 -> 1.00000000 Inexact Rounded fmax3407 fma 1 1 77e-999999 -> 1.00000000 Inexact Rounded fmax3410 fma 1 10 77e-7 -> 10.0000077 fmax3411 fma 1 10 77e-8 -> 10.0000008 Inexact Rounded fmax3412 fma 1 10 77e-9 -> 10.0000001 Inexact Rounded fmax3413 fma 1 10 77e-10 -> 10.0000000 Inexact Rounded fmax3414 fma 1 10 77e-11 -> 10.0000000 Inexact Rounded fmax3415 fma 1 10 77e-12 -> 10.0000000 Inexact Rounded fmax3416 fma 1 10 77e-999 -> 10.0000000 Inexact Rounded fmax3417 fma 1 10 77e-999999 -> 10.0000000 Inexact Rounded fmax3420 fma 1 77e-7 1 -> 1.0000077 fmax3421 fma 1 77e-8 1 -> 1.00000077 fmax3422 fma 1 77e-9 1 -> 1.00000008 Inexact Rounded fmax3423 fma 1 77e-10 1 -> 1.00000001 Inexact Rounded fmax3424 fma 1 77e-11 1 -> 1.00000000 Inexact Rounded fmax3425 fma 1 77e-12 1 -> 1.00000000 Inexact Rounded fmax3426 fma 1 77e-999 1 -> 1.00000000 Inexact Rounded fmax3427 fma 1 77e-999999 1 -> 1.00000000 Inexact Rounded fmax3430 fma 1 77e-7 10 -> 10.0000077 fmax3431 fma 1 77e-8 10 -> 10.0000008 Inexact Rounded fmax3432 fma 1 77e-9 10 -> 10.0000001 Inexact Rounded fmax3433 fma 1 77e-10 10 -> 10.0000000 Inexact Rounded fmax3434 fma 1 77e-11 10 -> 10.0000000 Inexact Rounded fmax3435 fma 1 77e-12 10 -> 10.0000000 Inexact Rounded fmax3436 fma 1 77e-999 10 -> 10.0000000 Inexact Rounded fmax3437 fma 1 77e-999999 10 -> 10.0000000 Inexact Rounded -- negative ulps fmax3440 fma 1 1 -77e-7 -> 0.9999923 fmax3441 fma 1 1 -77e-8 -> 0.99999923 fmax3442 fma 1 1 -77e-9 -> 0.999999923 fmax3443 fma 1 1 -77e-10 -> 0.999999992 Inexact Rounded fmax3444 fma 1 1 -77e-11 -> 0.999999999 Inexact Rounded fmax3445 fma 1 1 -77e-12 -> 1.00000000 Inexact Rounded fmax3446 fma 1 1 -77e-999 -> 1.00000000 Inexact Rounded fmax3447 fma 1 1 -77e-999999 -> 1.00000000 Inexact Rounded fmax3450 fma 1 10 -77e-7 -> 9.9999923 fmax3451 fma 1 10 -77e-8 -> 9.99999923 fmax3452 fma 1 10 -77e-9 -> 9.99999992 Inexact Rounded fmax3453 fma 1 10 -77e-10 -> 9.99999999 Inexact Rounded fmax3454 fma 1 10 -77e-11 -> 10.0000000 Inexact Rounded fmax3455 fma 1 10 -77e-12 -> 10.0000000 Inexact Rounded fmax3456 fma 1 10 -77e-999 -> 10.0000000 Inexact Rounded fmax3457 fma 1 10 -77e-999999 -> 10.0000000 Inexact Rounded fmax3460 fma 1 -77e-7 1 -> 0.9999923 fmax3461 fma 1 -77e-8 1 -> 0.99999923 fmax3462 fma 1 -77e-9 1 -> 0.999999923 fmax3463 fma 1 -77e-10 1 -> 0.999999992 Inexact Rounded fmax3464 fma 1 -77e-11 1 -> 0.999999999 Inexact Rounded fmax3465 fma 1 -77e-12 1 -> 1.00000000 Inexact Rounded fmax3466 fma 1 -77e-999 1 -> 1.00000000 Inexact Rounded fmax3467 fma 1 -77e-999999 1 -> 1.00000000 Inexact Rounded fmax3470 fma 1 -77e-7 10 -> 9.9999923 fmax3471 fma 1 -77e-8 10 -> 9.99999923 fmax3472 fma 1 -77e-9 10 -> 9.99999992 Inexact Rounded fmax3473 fma 1 -77e-10 10 -> 9.99999999 Inexact Rounded fmax3474 fma 1 -77e-11 10 -> 10.0000000 Inexact Rounded fmax3475 fma 1 -77e-12 10 -> 10.0000000 Inexact Rounded fmax3476 fma 1 -77e-999 10 -> 10.0000000 Inexact Rounded fmax3477 fma 1 -77e-999999 10 -> 10.0000000 Inexact Rounded -- negative ulps fmax3480 fma 1 -1 77e-7 -> -0.9999923 fmax3481 fma 1 -1 77e-8 -> -0.99999923 fmax3482 fma 1 -1 77e-9 -> -0.999999923 fmax3483 fma 1 -1 77e-10 -> -0.999999992 Inexact Rounded fmax3484 fma 1 -1 77e-11 -> -0.999999999 Inexact Rounded fmax3485 fma 1 -1 77e-12 -> -1.00000000 Inexact Rounded fmax3486 fma 1 -1 77e-999 -> -1.00000000 Inexact Rounded fmax3487 fma 1 -1 77e-999999 -> -1.00000000 Inexact Rounded fmax3490 fma 1 -10 77e-7 -> -9.9999923 fmax3491 fma 1 -10 77e-8 -> -9.99999923 fmax3492 fma 1 -10 77e-9 -> -9.99999992 Inexact Rounded fmax3493 fma 1 -10 77e-10 -> -9.99999999 Inexact Rounded fmax3494 fma 1 -10 77e-11 -> -10.0000000 Inexact Rounded fmax3495 fma 1 -10 77e-12 -> -10.0000000 Inexact Rounded fmax3496 fma 1 -10 77e-999 -> -10.0000000 Inexact Rounded fmax3497 fma 1 -10 77e-999999 -> -10.0000000 Inexact Rounded fmax3500 fma 1 77e-7 -1 -> -0.9999923 fmax3501 fma 1 77e-8 -1 -> -0.99999923 fmax3502 fma 1 77e-9 -1 -> -0.999999923 fmax3503 fma 1 77e-10 -1 -> -0.999999992 Inexact Rounded fmax3504 fma 1 77e-11 -1 -> -0.999999999 Inexact Rounded fmax3505 fma 1 77e-12 -1 -> -1.00000000 Inexact Rounded fmax3506 fma 1 77e-999 -1 -> -1.00000000 Inexact Rounded fmax3507 fma 1 77e-999999 -1 -> -1.00000000 Inexact Rounded fmax3510 fma 1 77e-7 -10 -> -9.9999923 fmax3511 fma 1 77e-8 -10 -> -9.99999923 fmax3512 fma 1 77e-9 -10 -> -9.99999992 Inexact Rounded fmax3513 fma 1 77e-10 -10 -> -9.99999999 Inexact Rounded fmax3514 fma 1 77e-11 -10 -> -10.0000000 Inexact Rounded fmax3515 fma 1 77e-12 -10 -> -10.0000000 Inexact Rounded fmax3516 fma 1 77e-999 -10 -> -10.0000000 Inexact Rounded fmax3517 fma 1 77e-999999 -10 -> -10.0000000 Inexact Rounded -- long operands maxexponent: 999 minexponent: -999 precision: 9 fmax3521 fma 1 12345678000 0 -> 1.23456780E+10 Rounded fmax3522 fma 1 0 12345678000 -> 1.23456780E+10 Rounded fmax3523 fma 1 1234567800 0 -> 1.23456780E+9 Rounded fmax3524 fma 1 0 1234567800 -> 1.23456780E+9 Rounded fmax3525 fma 1 1234567890 0 -> 1.23456789E+9 Rounded fmax3526 fma 1 0 1234567890 -> 1.23456789E+9 Rounded fmax3527 fma 1 1234567891 0 -> 1.23456789E+9 Inexact Rounded fmax3528 fma 1 0 1234567891 -> 1.23456789E+9 Inexact Rounded fmax3529 fma 1 12345678901 0 -> 1.23456789E+10 Inexact Rounded fmax3530 fma 1 0 12345678901 -> 1.23456789E+10 Inexact Rounded fmax3531 fma 1 1234567896 0 -> 1.23456790E+9 Inexact Rounded fmax3532 fma 1 0 1234567896 -> 1.23456790E+9 Inexact Rounded precision: 15 -- still checking fmax3541 fma 1 12345678000 0 -> 12345678000 fmax3542 fma 1 0 12345678000 -> 12345678000 fmax3543 fma 1 1234567800 0 -> 1234567800 fmax3544 fma 1 0 1234567800 -> 1234567800 fmax3545 fma 1 1234567890 0 -> 1234567890 fmax3546 fma 1 0 1234567890 -> 1234567890 fmax3547 fma 1 1234567891 0 -> 1234567891 fmax3548 fma 1 0 1234567891 -> 1234567891 fmax3549 fma 1 12345678901 0 -> 12345678901 fmax3550 fma 1 0 12345678901 -> 12345678901 fmax3551 fma 1 1234567896 0 -> 1234567896 fmax3552 fma 1 0 1234567896 -> 1234567896 -- verify a query precision: 16 maxExponent: +394 minExponent: -393 rounding: down fmax3561 fma 1 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded fmax3562 fma 1 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded -- and using decimal64 bounds... precision: 16 maxExponent: +384 minExponent: -383 rounding: down fmax3563 fma 1 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded fmax3564 fma 1 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded -- some more residue effects with extreme rounding precision: 9 rounding: half_up fmax3601 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded rounding: half_even fmax3602 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded rounding: half_down fmax3603 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded rounding: floor fmax3604 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded rounding: ceiling fmax3605 fma 1 123456789 0.000001 -> 123456790 Inexact Rounded rounding: up fmax3606 fma 1 123456789 0.000001 -> 123456790 Inexact Rounded rounding: down fmax3607 fma 1 123456789 0.000001 -> 123456789 Inexact Rounded rounding: half_up fmax3611 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded rounding: half_even fmax3612 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded rounding: half_down fmax3613 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded rounding: floor fmax3614 fma 1 123456789 -0.000001 -> 123456788 Inexact Rounded rounding: ceiling fmax3615 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded rounding: up fmax3616 fma 1 123456789 -0.000001 -> 123456789 Inexact Rounded rounding: down fmax3617 fma 1 123456789 -0.000001 -> 123456788 Inexact Rounded rounding: half_up fmax3621 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded rounding: half_even fmax3622 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded rounding: half_down fmax3623 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded rounding: floor fmax3624 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded rounding: ceiling fmax3625 fma 1 123456789 0.499999 -> 123456790 Inexact Rounded rounding: up fmax3626 fma 1 123456789 0.499999 -> 123456790 Inexact Rounded rounding: down fmax3627 fma 1 123456789 0.499999 -> 123456789 Inexact Rounded rounding: half_up fmax3631 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded rounding: half_even fmax3632 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded rounding: half_down fmax3633 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded rounding: floor fmax3634 fma 1 123456789 -0.499999 -> 123456788 Inexact Rounded rounding: ceiling fmax3635 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded rounding: up fmax3636 fma 1 123456789 -0.499999 -> 123456789 Inexact Rounded rounding: down fmax3637 fma 1 123456789 -0.499999 -> 123456788 Inexact Rounded rounding: half_up fmax3641 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded rounding: half_even fmax3642 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded rounding: half_down fmax3643 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded rounding: floor fmax3644 fma 1 123456789 0.500001 -> 123456789 Inexact Rounded rounding: ceiling fmax3645 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded rounding: up fmax3646 fma 1 123456789 0.500001 -> 123456790 Inexact Rounded rounding: down fmax3647 fma 1 123456789 0.500001 -> 123456789 Inexact Rounded rounding: half_up fmax3651 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded rounding: half_even fmax3652 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded rounding: half_down fmax3653 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded rounding: floor fmax3654 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded rounding: ceiling fmax3655 fma 1 123456789 -0.500001 -> 123456789 Inexact Rounded rounding: up fmax3656 fma 1 123456789 -0.500001 -> 123456789 Inexact Rounded rounding: down fmax3657 fma 1 123456789 -0.500001 -> 123456788 Inexact Rounded -- long operand triangle rounding: half_up precision: 37 fmax3660 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337114834538 precision: 36 fmax3661 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711483454 Inexact Rounded precision: 35 fmax3662 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371148345 Inexact Rounded precision: 34 fmax3663 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337114835 Inexact Rounded precision: 33 fmax3664 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711483 Inexact Rounded precision: 32 fmax3665 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371148 Inexact Rounded precision: 31 fmax3666 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337115 Inexact Rounded precision: 30 fmax3667 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892233711 Inexact Rounded precision: 29 fmax3668 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223371 Inexact Rounded precision: 28 fmax3669 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922337 Inexact Rounded precision: 27 fmax3670 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892234 Inexact Rounded precision: 26 fmax3671 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389223 Inexact Rounded precision: 25 fmax3672 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023638922 Inexact Rounded precision: 24 fmax3673 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102363892 Inexact Rounded precision: 23 fmax3674 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236389 Inexact Rounded precision: 22 fmax3675 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211023639 Inexact Rounded precision: 21 fmax3676 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102364 Inexact Rounded precision: 20 fmax3677 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110236 Inexact Rounded precision: 19 fmax3678 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211024 Inexact Rounded precision: 18 fmax3679 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221102 Inexact Rounded precision: 17 fmax3680 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422110 Inexact Rounded precision: 16 fmax3681 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42211 Inexact Rounded precision: 15 fmax3682 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4221 Inexact Rounded precision: 14 fmax3683 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.422 Inexact Rounded precision: 13 fmax3684 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.42 Inexact Rounded precision: 12 fmax3685 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166.4 Inexact Rounded precision: 11 fmax3686 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 98471174166 Inexact Rounded precision: 10 fmax3687 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847117417E+10 Inexact Rounded precision: 9 fmax3688 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.84711742E+10 Inexact Rounded precision: 8 fmax3689 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8471174E+10 Inexact Rounded precision: 7 fmax3690 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847117E+10 Inexact Rounded precision: 6 fmax3691 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.84712E+10 Inexact Rounded precision: 5 fmax3692 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8471E+10 Inexact Rounded precision: 4 fmax3693 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.847E+10 Inexact Rounded precision: 3 fmax3694 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.85E+10 Inexact Rounded precision: 2 fmax3695 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 9.8E+10 Inexact Rounded precision: 1 fmax3696 fma 1 98471198160.56524417578665886060 -23994.14313393939743548945165462 -> 1E+11 Inexact Rounded -- more zeros, etc. rounding: half_up precision: 9 fmax3701 fma 1 5.00 1.00E-3 -> 5.00100 fmax3702 fma 1 00.00 0.000 -> 0.000 fmax3703 fma 1 00.00 0E-3 -> 0.000 fmax3704 fma 1 0E-3 00.00 -> 0.000 fmax3710 fma 1 0E+3 00.00 -> 0.00 fmax3711 fma 1 0E+3 00.0 -> 0.0 fmax3712 fma 1 0E+3 00. -> 0 fmax3713 fma 1 0E+3 00.E+1 -> 0E+1 fmax3714 fma 1 0E+3 00.E+2 -> 0E+2 fmax3715 fma 1 0E+3 00.E+3 -> 0E+3 fmax3716 fma 1 0E+3 00.E+4 -> 0E+3 fmax3717 fma 1 0E+3 00.E+5 -> 0E+3 fmax3718 fma 1 0E+3 -00.0 -> 0.0 fmax3719 fma 1 0E+3 -00. -> 0 fmax3731 fma 1 0E+3 -00.E+1 -> 0E+1 fmax3720 fma 1 00.00 0E+3 -> 0.00 fmax3721 fma 1 00.0 0E+3 -> 0.0 fmax3722 fma 1 00. 0E+3 -> 0 fmax3723 fma 1 00.E+1 0E+3 -> 0E+1 fmax3724 fma 1 00.E+2 0E+3 -> 0E+2 fmax3725 fma 1 00.E+3 0E+3 -> 0E+3 fmax3726 fma 1 00.E+4 0E+3 -> 0E+3 fmax3727 fma 1 00.E+5 0E+3 -> 0E+3 fmax3728 fma 1 -00.00 0E+3 -> 0.00 fmax3729 fma 1 -00.0 0E+3 -> 0.0 fmax3730 fma 1 -00. 0E+3 -> 0 fmax3732 fma 1 0 0 -> 0 fmax3733 fma 1 0 -0 -> 0 fmax3734 fma 1 -0 0 -> 0 fmax3735 fma 1 -0 -0 -> -0 -- IEEE 854 special case fmax3736 fma 1 1 -1 -> 0 fmax3737 fma 1 -1 -1 -> -2 fmax3738 fma 1 1 1 -> 2 fmax3739 fma 1 -1 1 -> 0 fmax3741 fma 1 0 -1 -> -1 fmax3742 fma 1 -0 -1 -> -1 fmax3743 fma 1 0 1 -> 1 fmax3744 fma 1 -0 1 -> 1 fmax3745 fma 1 -1 0 -> -1 fmax3746 fma 1 -1 -0 -> -1 fmax3747 fma 1 1 0 -> 1 fmax3748 fma 1 1 -0 -> 1 fmax3751 fma 1 0.0 -1 -> -1.0 fmax3752 fma 1 -0.0 -1 -> -1.0 fmax3753 fma 1 0.0 1 -> 1.0 fmax3754 fma 1 -0.0 1 -> 1.0 fmax3755 fma 1 -1.0 0 -> -1.0 fmax3756 fma 1 -1.0 -0 -> -1.0 fmax3757 fma 1 1.0 0 -> 1.0 fmax3758 fma 1 1.0 -0 -> 1.0 fmax3761 fma 1 0 -1.0 -> -1.0 fmax3762 fma 1 -0 -1.0 -> -1.0 fmax3763 fma 1 0 1.0 -> 1.0 fmax3764 fma 1 -0 1.0 -> 1.0 fmax3765 fma 1 -1 0.0 -> -1.0 fmax3766 fma 1 -1 -0.0 -> -1.0 fmax3767 fma 1 1 0.0 -> 1.0 fmax3768 fma 1 1 -0.0 -> 1.0 fmax3771 fma 1 0.0 -1.0 -> -1.0 fmax3772 fma 1 -0.0 -1.0 -> -1.0 fmax3773 fma 1 0.0 1.0 -> 1.0 fmax3774 fma 1 -0.0 1.0 -> 1.0 fmax3775 fma 1 -1.0 0.0 -> -1.0 fmax3776 fma 1 -1.0 -0.0 -> -1.0 fmax3777 fma 1 1.0 0.0 -> 1.0 fmax3778 fma 1 1.0 -0.0 -> 1.0 -- Specials fmax3780 fma 1 -Inf -Inf -> -Infinity fmax3781 fma 1 -Inf -1000 -> -Infinity fmax3782 fma 1 -Inf -1 -> -Infinity fmax3783 fma 1 -Inf -0 -> -Infinity fmax3784 fma 1 -Inf 0 -> -Infinity fmax3785 fma 1 -Inf 1 -> -Infinity fmax3786 fma 1 -Inf 1000 -> -Infinity fmax3787 fma 1 -1000 -Inf -> -Infinity fmax3788 fma 1 -Inf -Inf -> -Infinity fmax3789 fma 1 -1 -Inf -> -Infinity fmax3790 fma 1 -0 -Inf -> -Infinity fmax3791 fma 1 0 -Inf -> -Infinity fmax3792 fma 1 1 -Inf -> -Infinity fmax3793 fma 1 1000 -Inf -> -Infinity fmax3794 fma 1 Inf -Inf -> NaN Invalid_operation fmax3800 fma 1 Inf -Inf -> NaN Invalid_operation fmax3801 fma 1 Inf -1000 -> Infinity fmax3802 fma 1 Inf -1 -> Infinity fmax3803 fma 1 Inf -0 -> Infinity fmax3804 fma 1 Inf 0 -> Infinity fmax3805 fma 1 Inf 1 -> Infinity fmax3806 fma 1 Inf 1000 -> Infinity fmax3807 fma 1 Inf Inf -> Infinity fmax3808 fma 1 -1000 Inf -> Infinity fmax3809 fma 1 -Inf Inf -> NaN Invalid_operation fmax3810 fma 1 -1 Inf -> Infinity fmax3811 fma 1 -0 Inf -> Infinity fmax3812 fma 1 0 Inf -> Infinity fmax3813 fma 1 1 Inf -> Infinity fmax3814 fma 1 1000 Inf -> Infinity fmax3815 fma 1 Inf Inf -> Infinity fmax3821 fma 1 NaN -Inf -> NaN fmax3822 fma 1 NaN -1000 -> NaN fmax3823 fma 1 NaN -1 -> NaN fmax3824 fma 1 NaN -0 -> NaN fmax3825 fma 1 NaN 0 -> NaN fmax3826 fma 1 NaN 1 -> NaN fmax3827 fma 1 NaN 1000 -> NaN fmax3828 fma 1 NaN Inf -> NaN fmax3829 fma 1 NaN NaN -> NaN fmax3830 fma 1 -Inf NaN -> NaN fmax3831 fma 1 -1000 NaN -> NaN fmax3832 fma 1 -1 NaN -> NaN fmax3833 fma 1 -0 NaN -> NaN fmax3834 fma 1 0 NaN -> NaN fmax3835 fma 1 1 NaN -> NaN fmax3836 fma 1 1000 NaN -> NaN fmax3837 fma 1 Inf NaN -> NaN fmax3841 fma 1 sNaN -Inf -> NaN Invalid_operation fmax3842 fma 1 sNaN -1000 -> NaN Invalid_operation fmax3843 fma 1 sNaN -1 -> NaN Invalid_operation fmax3844 fma 1 sNaN -0 -> NaN Invalid_operation fmax3845 fma 1 sNaN 0 -> NaN Invalid_operation fmax3846 fma 1 sNaN 1 -> NaN Invalid_operation fmax3847 fma 1 sNaN 1000 -> NaN Invalid_operation fmax3848 fma 1 sNaN NaN -> NaN Invalid_operation fmax3849 fma 1 sNaN sNaN -> NaN Invalid_operation fmax3850 fma 1 NaN sNaN -> NaN Invalid_operation fmax3851 fma 1 -Inf sNaN -> NaN Invalid_operation fmax3852 fma 1 -1000 sNaN -> NaN Invalid_operation fmax3853 fma 1 -1 sNaN -> NaN Invalid_operation fmax3854 fma 1 -0 sNaN -> NaN Invalid_operation fmax3855 fma 1 0 sNaN -> NaN Invalid_operation fmax3856 fma 1 1 sNaN -> NaN Invalid_operation fmax3857 fma 1 1000 sNaN -> NaN Invalid_operation fmax3858 fma 1 Inf sNaN -> NaN Invalid_operation fmax3859 fma 1 NaN sNaN -> NaN Invalid_operation -- propagating NaNs fmax3861 fma 1 NaN1 -Inf -> NaN1 fmax3862 fma 1 +NaN2 -1000 -> NaN2 fmax3863 fma 1 NaN3 1000 -> NaN3 fmax3864 fma 1 NaN4 Inf -> NaN4 fmax3865 fma 1 NaN5 +NaN6 -> NaN5 fmax3866 fma 1 -Inf NaN7 -> NaN7 fmax3867 fma 1 -1000 NaN8 -> NaN8 fmax3868 fma 1 1000 NaN9 -> NaN9 fmax3869 fma 1 Inf +NaN10 -> NaN10 fmax3871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation fmax3872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation fmax3873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation fmax3874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation fmax3875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation fmax3876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation fmax3877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation fmax3878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation fmax3879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation fmax3880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation fmax3881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation fmax3882 fma 1 -NaN26 NaN28 -> -NaN26 fmax3883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation fmax3884 fma 1 1000 -NaN30 -> -NaN30 fmax3885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation -- overflow, underflow and subnormal tests maxexponent: 999999 minexponent: -999999 precision: 9 fmax3890 fma 1 1E+999999 9E+999999 -> Infinity Overflow Inexact Rounded fmax3891 fma 1 9E+999999 1E+999999 -> Infinity Overflow Inexact Rounded fmax3892 fma 1 -1.1E-999999 1E-999999 -> -1E-1000000 Subnormal fmax3893 fma 1 1E-999999 -1.1e-999999 -> -1E-1000000 Subnormal fmax3894 fma 1 -1.0001E-999999 1E-999999 -> -1E-1000003 Subnormal fmax3895 fma 1 1E-999999 -1.0001e-999999 -> -1E-1000003 Subnormal fmax3896 fma 1 -1E+999999 -9E+999999 -> -Infinity Overflow Inexact Rounded fmax3897 fma 1 -9E+999999 -1E+999999 -> -Infinity Overflow Inexact Rounded fmax3898 fma 1 +1.1E-999999 -1E-999999 -> 1E-1000000 Subnormal fmax3899 fma 1 -1E-999999 +1.1e-999999 -> 1E-1000000 Subnormal fmax3900 fma 1 +1.0001E-999999 -1E-999999 -> 1E-1000003 Subnormal fmax3901 fma 1 -1E-999999 +1.0001e-999999 -> 1E-1000003 Subnormal fmax3902 fma 1 -1E+999999 +9E+999999 -> 8E+999999 fmax3903 fma 1 -9E+999999 +1E+999999 -> -8E+999999 precision: 3 fmax3904 fma 1 0 -9.999E+999999 -> -Infinity Inexact Overflow Rounded fmax3905 fma 1 -9.999E+999999 0 -> -Infinity Inexact Overflow Rounded fmax3906 fma 1 0 9.999E+999999 -> Infinity Inexact Overflow Rounded fmax3907 fma 1 9.999E+999999 0 -> Infinity Inexact Overflow Rounded precision: 3 maxexponent: 999 minexponent: -999 fmax3910 fma 1 1.00E-999 0 -> 1.00E-999 fmax3911 fma 1 0.1E-999 0 -> 1E-1000 Subnormal fmax3912 fma 1 0.10E-999 0 -> 1.0E-1000 Subnormal fmax3913 fma 1 0.100E-999 0 -> 1.0E-1000 Subnormal Rounded fmax3914 fma 1 0.01E-999 0 -> 1E-1001 Subnormal -- next is rounded to Nmin fmax3915 fma 1 0.999E-999 0 -> 1.00E-999 Inexact Rounded Subnormal Underflow fmax3916 fma 1 0.099E-999 0 -> 1.0E-1000 Inexact Rounded Subnormal Underflow fmax3917 fma 1 0.009E-999 0 -> 1E-1001 Inexact Rounded Subnormal Underflow fmax3918 fma 1 0.001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped fmax3919 fma 1 0.0009E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped fmax3920 fma 1 0.0001E-999 0 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped fmax3930 fma 1 -1.00E-999 0 -> -1.00E-999 fmax3931 fma 1 -0.1E-999 0 -> -1E-1000 Subnormal fmax3932 fma 1 -0.10E-999 0 -> -1.0E-1000 Subnormal fmax3933 fma 1 -0.100E-999 0 -> -1.0E-1000 Subnormal Rounded fmax3934 fma 1 -0.01E-999 0 -> -1E-1001 Subnormal -- next is rounded to Nmin fmax3935 fma 1 -0.999E-999 0 -> -1.00E-999 Inexact Rounded Subnormal Underflow fmax3936 fma 1 -0.099E-999 0 -> -1.0E-1000 Inexact Rounded Subnormal Underflow fmax3937 fma 1 -0.009E-999 0 -> -1E-1001 Inexact Rounded Subnormal Underflow fmax3938 fma 1 -0.001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped fmax3939 fma 1 -0.0009E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped fmax3940 fma 1 -0.0001E-999 0 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped -- some non-zero subnormal fma 1 s fmax3950 fma 1 1.00E-999 0.1E-999 -> 1.10E-999 fmax3951 fma 1 0.1E-999 0.1E-999 -> 2E-1000 Subnormal fmax3952 fma 1 0.10E-999 0.1E-999 -> 2.0E-1000 Subnormal fmax3953 fma 1 0.100E-999 0.1E-999 -> 2.0E-1000 Subnormal Rounded fmax3954 fma 1 0.01E-999 0.1E-999 -> 1.1E-1000 Subnormal fmax3955 fma 1 0.999E-999 0.1E-999 -> 1.10E-999 Inexact Rounded fmax3956 fma 1 0.099E-999 0.1E-999 -> 2.0E-1000 Inexact Rounded Subnormal Underflow fmax3957 fma 1 0.009E-999 0.1E-999 -> 1.1E-1000 Inexact Rounded Subnormal Underflow fmax3958 fma 1 0.001E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow fmax3959 fma 1 0.0009E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow fmax3960 fma 1 0.0001E-999 0.1E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow -- negatives... fmax3961 fma 1 1.00E-999 -0.1E-999 -> 9.0E-1000 Subnormal fmax3962 fma 1 0.1E-999 -0.1E-999 -> 0E-1000 fmax3963 fma 1 0.10E-999 -0.1E-999 -> 0E-1001 fmax3964 fma 1 0.100E-999 -0.1E-999 -> 0E-1001 Clamped fmax3965 fma 1 0.01E-999 -0.1E-999 -> -9E-1001 Subnormal fmax3966 fma 1 0.999E-999 -0.1E-999 -> 9.0E-1000 Inexact Rounded Subnormal Underflow fmax3967 fma 1 0.099E-999 -0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped fmax3968 fma 1 0.009E-999 -0.1E-999 -> -9E-1001 Inexact Rounded Subnormal Underflow fmax3969 fma 1 0.001E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow fmax3970 fma 1 0.0009E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow fmax3971 fma 1 0.0001E-999 -0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow -- some 'real' numbers maxExponent: 384 minExponent: -383 precision: 8 fmax3566 fma 1 99999061735E-394 0E-394 -> 9.999906E-384 Inexact Rounded Underflow Subnormal precision: 7 fmax3567 fma 1 99999061735E-394 0E-394 -> 9.99991E-384 Inexact Rounded Underflow Subnormal precision: 6 fmax3568 fma 1 99999061735E-394 0E-394 -> 9.9999E-384 Inexact Rounded Underflow Subnormal -- now the case where we can get underflow but the result is normal -- [note this can't happen if the operands are also bounded, as we -- cannot represent 1E-399, for example] precision: 16 rounding: half_up maxExponent: 384 minExponent: -383 fmax3571 fma 1 1E-383 0 -> 1E-383 fmax3572 fma 1 1E-384 0 -> 1E-384 Subnormal fmax3573 fma 1 1E-383 1E-384 -> 1.1E-383 fmax3574 subtract 1E-383 1E-384 -> 9E-384 Subnormal -- Here we explore the boundary of rounding a subnormal to Nmin fmax3575 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal fmax3576 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal fmax3577 subtract 1E-383 1E-399 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded fmax3578 subtract 1E-383 1E-400 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded fmax3579 subtract 1E-383 1E-401 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded fmax3580 subtract 1E-383 1E-402 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -- check for double-rounded subnormals precision: 5 maxexponent: 79 minexponent: -79 -- Add: lhs and rhs 0 fmax31001 fma 1 1.52444E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow fmax31002 fma 1 1.52445E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow fmax31003 fma 1 1.52446E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow fmax31004 fma 1 0 1.52444E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow fmax31005 fma 1 0 1.52445E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow fmax31006 fma 1 0 1.52446E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -- Add: lhs >> rhs and vice versa fmax31011 fma 1 1.52444E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow fmax31012 fma 1 1.52445E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow fmax31013 fma 1 1.52446E-80 1E-100 -> 1.524E-80 Inexact Rounded Subnormal Underflow fmax31014 fma 1 1E-100 1.52444E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow fmax31015 fma 1 1E-100 1.52445E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow fmax31016 fma 1 1E-100 1.52446E-80 -> 1.524E-80 Inexact Rounded Subnormal Underflow -- Add: lhs + rhs fma 1 ition carried out fmax31021 fma 1 1.52443E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow fmax31022 fma 1 1.52444E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow fmax31023 fma 1 1.52445E-80 1.00001E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow fmax31024 fma 1 1.00001E-80 1.52443E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow fmax31025 fma 1 1.00001E-80 1.52444E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow fmax31026 fma 1 1.00001E-80 1.52445E-80 -> 2.524E-80 Inexact Rounded Subnormal Underflow -- And for round down full and subnormal results precision: 16 maxExponent: +384 minExponent: -383 rounding: down fmax31100 fma 1 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact fmax31101 fma 1 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact fmax31103 fma 1 +1 -1e-383 -> 0.9999999999999999 Rounded Inexact fmax31104 fma 1 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact fmax31105 fma 1 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact fmax31106 fma 1 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact fmax31107 fma 1 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact fmax31108 fma 1 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact fmax31109 fma 1 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact rounding: ceiling fmax31110 fma 1 -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact fmax31111 fma 1 -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact fmax31113 fma 1 -1 +1e-383 -> -0.9999999999999999 Rounded Inexact fmax31114 fma 1 -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact fmax31115 fma 1 -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact fmax31116 fma 1 -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact fmax31117 fma 1 -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact fmax31118 fma 1 -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact fmax31119 fma 1 -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact rounding: down precision: 7 maxExponent: +96 minExponent: -95 fmax31130 fma 1 1 -1e-200 -> 0.9999999 Rounded Inexact -- subnormal boundary fmax31131 fma 1 1.000000E-94 -1e-200 -> 9.999999E-95 Rounded Inexact fmax31132 fma 1 1.000001E-95 -1e-200 -> 1.000000E-95 Rounded Inexact fmax31133 fma 1 1.000000E-95 -1e-200 -> 9.99999E-96 Rounded Inexact Subnormal Underflow fmax31134 fma 1 0.999999E-95 -1e-200 -> 9.99998E-96 Rounded Inexact Subnormal Underflow fmax31135 fma 1 0.001000E-95 -1e-200 -> 9.99E-99 Rounded Inexact Subnormal Underflow fmax31136 fma 1 0.000999E-95 -1e-200 -> 9.98E-99 Rounded Inexact Subnormal Underflow fmax31137 fma 1 1.000000E-95 -1e-101 -> 9.99999E-96 Subnormal fmax31138 fma 1 10000E-101 -1e-200 -> 9.999E-98 Subnormal Inexact Rounded Underflow fmax31139 fma 1 1000E-101 -1e-200 -> 9.99E-99 Subnormal Inexact Rounded Underflow fmax31140 fma 1 100E-101 -1e-200 -> 9.9E-100 Subnormal Inexact Rounded Underflow fmax31141 fma 1 10E-101 -1e-200 -> 9E-101 Subnormal Inexact Rounded Underflow fmax31142 fma 1 1E-101 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped fmax31143 fma 1 0E-101 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped fmax31144 fma 1 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped fmax31151 fma 1 10000E-102 -1e-200 -> 9.99E-99 Subnormal Inexact Rounded Underflow fmax31152 fma 1 1000E-102 -1e-200 -> 9.9E-100 Subnormal Inexact Rounded Underflow fmax31153 fma 1 100E-102 -1e-200 -> 9E-101 Subnormal Inexact Rounded Underflow fmax31154 fma 1 10E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped fmax31155 fma 1 1E-102 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped fmax31156 fma 1 0E-102 -1e-200 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped fmax31157 fma 1 1E-103 -1e-200 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped fmax31160 fma 1 100E-105 -1e-101 -> -0E-101 Subnormal Inexact Rounded Underflow Clamped fmax31161 fma 1 100E-105 -1e-201 -> 0E-101 Subnormal Inexact Rounded Underflow Clamped -- tests based on Gunnar Degnbol's edge case precision: 15 rounding: half_up maxExponent: 384 minexponent: -383 fmax31200 fma 1 1E15 -0.5 -> 1.00000000000000E+15 Inexact Rounded fmax31201 fma 1 1E15 -0.50 -> 1.00000000000000E+15 Inexact Rounded fmax31210 fma 1 1E15 -0.51 -> 999999999999999 Inexact Rounded fmax31211 fma 1 1E15 -0.501 -> 999999999999999 Inexact Rounded fmax31212 fma 1 1E15 -0.5001 -> 999999999999999 Inexact Rounded fmax31213 fma 1 1E15 -0.50001 -> 999999999999999 Inexact Rounded fmax31214 fma 1 1E15 -0.500001 -> 999999999999999 Inexact Rounded fmax31215 fma 1 1E15 -0.5000001 -> 999999999999999 Inexact Rounded fmax31216 fma 1 1E15 -0.50000001 -> 999999999999999 Inexact Rounded fmax31217 fma 1 1E15 -0.500000001 -> 999999999999999 Inexact Rounded fmax31218 fma 1 1E15 -0.5000000001 -> 999999999999999 Inexact Rounded fmax31219 fma 1 1E15 -0.50000000001 -> 999999999999999 Inexact Rounded fmax31220 fma 1 1E15 -0.500000000001 -> 999999999999999 Inexact Rounded fmax31221 fma 1 1E15 -0.5000000000001 -> 999999999999999 Inexact Rounded fmax31222 fma 1 1E15 -0.50000000000001 -> 999999999999999 Inexact Rounded fmax31223 fma 1 1E15 -0.500000000000001 -> 999999999999999 Inexact Rounded fmax31224 fma 1 1E15 -0.5000000000000001 -> 999999999999999 Inexact Rounded fmax31225 fma 1 1E15 -0.5000000000000000 -> 1.00000000000000E+15 Inexact Rounded fmax31230 fma 1 1E15 -5000000.000000001 -> 999999995000000 Inexact Rounded precision: 16 fmax31300 fma 1 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded fmax31310 fma 1 1E16 -0.51 -> 9999999999999999 Inexact Rounded fmax31311 fma 1 1E16 -0.501 -> 9999999999999999 Inexact Rounded fmax31312 fma 1 1E16 -0.5001 -> 9999999999999999 Inexact Rounded fmax31313 fma 1 1E16 -0.50001 -> 9999999999999999 Inexact Rounded fmax31314 fma 1 1E16 -0.500001 -> 9999999999999999 Inexact Rounded fmax31315 fma 1 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded fmax31316 fma 1 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded fmax31317 fma 1 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded fmax31318 fma 1 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded fmax31319 fma 1 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded fmax31320 fma 1 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded fmax31321 fma 1 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded fmax31322 fma 1 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded fmax31323 fma 1 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded fmax31324 fma 1 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded fmax31325 fma 1 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31326 fma 1 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31327 fma 1 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31328 fma 1 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31329 fma 1 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31330 fma 1 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31331 fma 1 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31332 fma 1 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded fmax31333 fma 1 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded fmax31334 fma 1 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded fmax31335 fma 1 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded fmax31336 fma 1 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded fmax31337 fma 1 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded fmax31338 fma 1 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded fmax31339 fma 1 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded fmax31340 fma 1 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded fmax31341 fma 1 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded fmax31349 fma 1 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded fmax31350 fma 1 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded fmax31351 fma 1 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded fmax31352 fma 1 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded fmax31353 fma 1 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded fmax31354 fma 1 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded fmax31355 fma 1 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded fmax31356 fma 1 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded fmax31357 fma 1 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded fmax31358 fma 1 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded fmax31359 fma 1 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded fmax31360 fma 1 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded fmax31361 fma 1 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded fmax31362 fma 1 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded fmax31363 fma 1 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded fmax31364 fma 1 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded fmax31365 fma 1 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31367 fma 1 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31368 fma 1 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31369 fma 1 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31370 fma 1 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31371 fma 1 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31372 fma 1 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded fmax31373 fma 1 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded fmax31374 fma 1 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded fmax31375 fma 1 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded fmax31376 fma 1 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded fmax31377 fma 1 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded fmax31378 fma 1 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded fmax31379 fma 1 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded fmax31380 fma 1 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded fmax31381 fma 1 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded fmax31382 fma 1 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded fmax31383 fma 1 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded fmax31384 fma 1 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded fmax31385 fma 1 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded fmax31386 fma 1 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded fmax31387 fma 1 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded fmax31388 fma 1 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded fmax31389 fma 1 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded fmax31390 fma 1 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded fmax31391 fma 1 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded fmax31392 fma 1 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded fmax31393 fma 1 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded fmax31394 fma 1 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded fmax31395 fma 1 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded fmax31396 fma 1 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded -- More GD edge cases, where difference between the unadjusted -- exponents is larger than the maximum precision and one side is 0 precision: 15 rounding: half_up maxExponent: 384 minexponent: -383 fmax31400 fma 1 0 1.23456789012345 -> 1.23456789012345 fmax31401 fma 1 0 1.23456789012345E-1 -> 0.123456789012345 fmax31402 fma 1 0 1.23456789012345E-2 -> 0.0123456789012345 fmax31403 fma 1 0 1.23456789012345E-3 -> 0.00123456789012345 fmax31404 fma 1 0 1.23456789012345E-4 -> 0.000123456789012345 fmax31405 fma 1 0 1.23456789012345E-5 -> 0.0000123456789012345 fmax31406 fma 1 0 1.23456789012345E-6 -> 0.00000123456789012345 fmax31407 fma 1 0 1.23456789012345E-7 -> 1.23456789012345E-7 fmax31408 fma 1 0 1.23456789012345E-8 -> 1.23456789012345E-8 fmax31409 fma 1 0 1.23456789012345E-9 -> 1.23456789012345E-9 fmax31410 fma 1 0 1.23456789012345E-10 -> 1.23456789012345E-10 fmax31411 fma 1 0 1.23456789012345E-11 -> 1.23456789012345E-11 fmax31412 fma 1 0 1.23456789012345E-12 -> 1.23456789012345E-12 fmax31413 fma 1 0 1.23456789012345E-13 -> 1.23456789012345E-13 fmax31414 fma 1 0 1.23456789012345E-14 -> 1.23456789012345E-14 fmax31415 fma 1 0 1.23456789012345E-15 -> 1.23456789012345E-15 fmax31416 fma 1 0 1.23456789012345E-16 -> 1.23456789012345E-16 fmax31417 fma 1 0 1.23456789012345E-17 -> 1.23456789012345E-17 fmax31418 fma 1 0 1.23456789012345E-18 -> 1.23456789012345E-18 fmax31419 fma 1 0 1.23456789012345E-19 -> 1.23456789012345E-19 -- same, precision 16.. precision: 16 fmax31420 fma 1 0 1.123456789012345 -> 1.123456789012345 fmax31421 fma 1 0 1.123456789012345E-1 -> 0.1123456789012345 fmax31422 fma 1 0 1.123456789012345E-2 -> 0.01123456789012345 fmax31423 fma 1 0 1.123456789012345E-3 -> 0.001123456789012345 fmax31424 fma 1 0 1.123456789012345E-4 -> 0.0001123456789012345 fmax31425 fma 1 0 1.123456789012345E-5 -> 0.00001123456789012345 fmax31426 fma 1 0 1.123456789012345E-6 -> 0.000001123456789012345 fmax31427 fma 1 0 1.123456789012345E-7 -> 1.123456789012345E-7 fmax31428 fma 1 0 1.123456789012345E-8 -> 1.123456789012345E-8 fmax31429 fma 1 0 1.123456789012345E-9 -> 1.123456789012345E-9 fmax31430 fma 1 0 1.123456789012345E-10 -> 1.123456789012345E-10 fmax31431 fma 1 0 1.123456789012345E-11 -> 1.123456789012345E-11 fmax31432 fma 1 0 1.123456789012345E-12 -> 1.123456789012345E-12 fmax31433 fma 1 0 1.123456789012345E-13 -> 1.123456789012345E-13 fmax31434 fma 1 0 1.123456789012345E-14 -> 1.123456789012345E-14 fmax31435 fma 1 0 1.123456789012345E-15 -> 1.123456789012345E-15 fmax31436 fma 1 0 1.123456789012345E-16 -> 1.123456789012345E-16 fmax31437 fma 1 0 1.123456789012345E-17 -> 1.123456789012345E-17 fmax31438 fma 1 0 1.123456789012345E-18 -> 1.123456789012345E-18 fmax31439 fma 1 0 1.123456789012345E-19 -> 1.123456789012345E-19 -- same, reversed 0 fmax31440 fma 1 1.123456789012345 0 -> 1.123456789012345 fmax31441 fma 1 1.123456789012345E-1 0 -> 0.1123456789012345 fmax31442 fma 1 1.123456789012345E-2 0 -> 0.01123456789012345 fmax31443 fma 1 1.123456789012345E-3 0 -> 0.001123456789012345 fmax31444 fma 1 1.123456789012345E-4 0 -> 0.0001123456789012345 fmax31445 fma 1 1.123456789012345E-5 0 -> 0.00001123456789012345 fmax31446 fma 1 1.123456789012345E-6 0 -> 0.000001123456789012345 fmax31447 fma 1 1.123456789012345E-7 0 -> 1.123456789012345E-7 fmax31448 fma 1 1.123456789012345E-8 0 -> 1.123456789012345E-8 fmax31449 fma 1 1.123456789012345E-9 0 -> 1.123456789012345E-9 fmax31450 fma 1 1.123456789012345E-10 0 -> 1.123456789012345E-10 fmax31451 fma 1 1.123456789012345E-11 0 -> 1.123456789012345E-11 fmax31452 fma 1 1.123456789012345E-12 0 -> 1.123456789012345E-12 fmax31453 fma 1 1.123456789012345E-13 0 -> 1.123456789012345E-13 fmax31454 fma 1 1.123456789012345E-14 0 -> 1.123456789012345E-14 fmax31455 fma 1 1.123456789012345E-15 0 -> 1.123456789012345E-15 fmax31456 fma 1 1.123456789012345E-16 0 -> 1.123456789012345E-16 fmax31457 fma 1 1.123456789012345E-17 0 -> 1.123456789012345E-17 fmax31458 fma 1 1.123456789012345E-18 0 -> 1.123456789012345E-18 fmax31459 fma 1 1.123456789012345E-19 0 -> 1.123456789012345E-19 -- same, Es on the 0 fmax31460 fma 1 1.123456789012345 0E-0 -> 1.123456789012345 fmax31461 fma 1 1.123456789012345 0E-1 -> 1.123456789012345 fmax31462 fma 1 1.123456789012345 0E-2 -> 1.123456789012345 fmax31463 fma 1 1.123456789012345 0E-3 -> 1.123456789012345 fmax31464 fma 1 1.123456789012345 0E-4 -> 1.123456789012345 fmax31465 fma 1 1.123456789012345 0E-5 -> 1.123456789012345 fmax31466 fma 1 1.123456789012345 0E-6 -> 1.123456789012345 fmax31467 fma 1 1.123456789012345 0E-7 -> 1.123456789012345 fmax31468 fma 1 1.123456789012345 0E-8 -> 1.123456789012345 fmax31469 fma 1 1.123456789012345 0E-9 -> 1.123456789012345 fmax31470 fma 1 1.123456789012345 0E-10 -> 1.123456789012345 fmax31471 fma 1 1.123456789012345 0E-11 -> 1.123456789012345 fmax31472 fma 1 1.123456789012345 0E-12 -> 1.123456789012345 fmax31473 fma 1 1.123456789012345 0E-13 -> 1.123456789012345 fmax31474 fma 1 1.123456789012345 0E-14 -> 1.123456789012345 fmax31475 fma 1 1.123456789012345 0E-15 -> 1.123456789012345 -- next four flag Rounded because the 0 extends the result fmax31476 fma 1 1.123456789012345 0E-16 -> 1.123456789012345 Rounded fmax31477 fma 1 1.123456789012345 0E-17 -> 1.123456789012345 Rounded fmax31478 fma 1 1.123456789012345 0E-18 -> 1.123456789012345 Rounded fmax31479 fma 1 1.123456789012345 0E-19 -> 1.123456789012345 Rounded -- sum of two opposite-sign operands is exactly 0 and floor => -0 precision: 16 maxExponent: 384 minexponent: -383 rounding: half_up -- exact zeros from zeros fmax31500 fma 1 0 0E-19 -> 0E-19 fmax31501 fma 1 -0 0E-19 -> 0E-19 fmax31502 fma 1 0 -0E-19 -> 0E-19 fmax31503 fma 1 -0 -0E-19 -> -0E-19 fmax31504 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax31505 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax31506 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax31507 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax31511 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31512 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31513 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31514 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- some exact zeros from non-zeros fmax31515 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31516 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax31517 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax31518 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped rounding: half_down -- exact zeros from zeros fmax31520 fma 1 0 0E-19 -> 0E-19 fmax31521 fma 1 -0 0E-19 -> 0E-19 fmax31522 fma 1 0 -0E-19 -> 0E-19 fmax31523 fma 1 -0 -0E-19 -> -0E-19 fmax31524 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax31525 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax31526 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax31527 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax31531 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31532 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31533 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31534 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- some exact zeros from non-zeros fmax31535 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31536 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax31537 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax31538 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped rounding: half_even -- exact zeros from zeros fmax31540 fma 1 0 0E-19 -> 0E-19 fmax31541 fma 1 -0 0E-19 -> 0E-19 fmax31542 fma 1 0 -0E-19 -> 0E-19 fmax31543 fma 1 -0 -0E-19 -> -0E-19 fmax31544 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax31545 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax31546 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax31547 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax31551 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31552 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31553 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31554 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- some exact zeros from non-zeros fmax31555 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31556 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax31557 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax31558 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped rounding: up -- exact zeros from zeros fmax31560 fma 1 0 0E-19 -> 0E-19 fmax31561 fma 1 -0 0E-19 -> 0E-19 fmax31562 fma 1 0 -0E-19 -> 0E-19 fmax31563 fma 1 -0 -0E-19 -> -0E-19 fmax31564 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax31565 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax31566 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax31567 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax31571 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow fmax31572 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow fmax31573 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow fmax31574 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -- some exact zeros from non-zeros fmax31575 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow fmax31576 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax31577 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax31578 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow rounding: down -- exact zeros from zeros fmax31580 fma 1 0 0E-19 -> 0E-19 fmax31581 fma 1 -0 0E-19 -> 0E-19 fmax31582 fma 1 0 -0E-19 -> 0E-19 fmax31583 fma 1 -0 -0E-19 -> -0E-19 fmax31584 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax31585 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax31586 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax31587 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax31591 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31592 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31593 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31594 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- some exact zeros from non-zeros fmax31595 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31596 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax31597 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax31598 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped rounding: ceiling -- exact zeros from zeros fmax31600 fma 1 0 0E-19 -> 0E-19 fmax31601 fma 1 -0 0E-19 -> 0E-19 fmax31602 fma 1 0 -0E-19 -> 0E-19 fmax31603 fma 1 -0 -0E-19 -> -0E-19 fmax31604 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax31605 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax31606 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax31607 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax31611 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow fmax31612 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow fmax31613 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31614 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- some exact zeros from non-zeros fmax31615 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow fmax31616 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax31617 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax31618 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- and the extra-special ugly case; unusual minuses marked by -- * rounding: floor -- exact zeros from zeros fmax31620 fma 1 0 0E-19 -> 0E-19 fmax31621 fma 1 -0 0E-19 -> -0E-19 -- * fmax31622 fma 1 0 -0E-19 -> -0E-19 -- * fmax31623 fma 1 -0 -0E-19 -> -0E-19 fmax31624 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax31625 fma 1 -0E-400 0E-19 -> -0E-398 Clamped -- * fmax31626 fma 1 0E-400 -0E-19 -> -0E-398 Clamped -- * fmax31627 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax31631 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31632 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31633 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow fmax31634 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -- some exact zeros from non-zeros fmax31635 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax31636 fma 1 -1E-401 1E-401 -> -0E-398 Clamped -- * fmax31637 fma 1 1E-401 -1E-401 -> -0E-398 Clamped -- * fmax31638 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow -- BigDecimal problem testcases 2006.01.23 precision: 16 maxExponent: 384 minexponent: -383 rounding: down precision: 7 fmax31651 fma 1 10001E+2 -2E+1 -> 1.00008E+6 precision: 6 fmax31652 fma 1 10001E+2 -2E+1 -> 1.00008E+6 precision: 5 fmax31653 fma 1 10001E+2 -2E+1 -> 1.0000E+6 Inexact Rounded precision: 4 fmax31654 fma 1 10001E+2 -2E+1 -> 1.000E+6 Inexact Rounded precision: 3 fmax31655 fma 1 10001E+2 -2E+1 -> 1.00E+6 Inexact Rounded precision: 2 fmax31656 fma 1 10001E+2 -2E+1 -> 1.0E+6 Inexact Rounded precision: 1 fmax31657 fma 1 10001E+2 -2E+1 -> 1E+6 Inexact Rounded rounding: half_even precision: 7 fmax31661 fma 1 10001E+2 -2E+1 -> 1.00008E+6 precision: 6 fmax31662 fma 1 10001E+2 -2E+1 -> 1.00008E+6 precision: 5 fmax31663 fma 1 10001E+2 -2E+1 -> 1.0001E+6 Inexact Rounded precision: 4 fmax31664 fma 1 10001E+2 -2E+1 -> 1.000E+6 Inexact Rounded precision: 3 fmax31665 fma 1 10001E+2 -2E+1 -> 1.00E+6 Inexact Rounded precision: 2 fmax31666 fma 1 10001E+2 -2E+1 -> 1.0E+6 Inexact Rounded precision: 1 fmax31667 fma 1 10001E+2 -2E+1 -> 1E+6 Inexact Rounded rounding: up precision: 7 fmax31671 fma 1 10001E+2 -2E+1 -> 1.00008E+6 precision: 6 fmax31672 fma 1 10001E+2 -2E+1 -> 1.00008E+6 precision: 5 fmax31673 fma 1 10001E+2 -2E+1 -> 1.0001E+6 Inexact Rounded precision: 4 fmax31674 fma 1 10001E+2 -2E+1 -> 1.001E+6 Inexact Rounded precision: 3 fmax31675 fma 1 10001E+2 -2E+1 -> 1.01E+6 Inexact Rounded precision: 2 fmax31676 fma 1 10001E+2 -2E+1 -> 1.1E+6 Inexact Rounded precision: 1 fmax31677 fma 1 10001E+2 -2E+1 -> 2E+6 Inexact Rounded precision: 34 rounding: half_up maxExponent: 6144 minExponent: -6143 -- Examples from SQL proposal (Krishna Kulkarni) fmax31701 fma 1 130E-2 120E-2 -> 2.50 fmax31702 fma 1 130E-2 12E-1 -> 2.50 fmax31703 fma 1 130E-2 1E0 -> 2.30 fmax31704 fma 1 1E2 1E4 -> 1.01E+4 fmax31705 subtract 130E-2 120E-2 -> 0.10 fmax31706 subtract 130E-2 12E-1 -> 0.10 fmax31707 subtract 130E-2 1E0 -> 0.30 fmax31708 subtract 1E2 1E4 -> -9.9E+3 ------------------------------------------------------------------------ -- Same as above, using decimal64 default parameters -- ------------------------------------------------------------------------ precision: 16 rounding: half_even maxExponent: 384 minexponent: -383 -- [first group are 'quick confidence check'] fmax36001 fma 1 1 1 -> 2 fmax36002 fma 1 2 3 -> 5 fmax36003 fma 1 '5.75' '3.3' -> 9.05 fmax36004 fma 1 '5' '-3' -> 2 fmax36005 fma 1 '-5' '-3' -> -8 fmax36006 fma 1 '-7' '2.5' -> -4.5 fmax36007 fma 1 '0.7' '0.3' -> 1.0 fmax36008 fma 1 '1.25' '1.25' -> 2.50 fmax36009 fma 1 '1.23456789' '1.00000000' -> '2.23456789' fmax36010 fma 1 '1.23456789' '1.00000011' -> '2.23456800' fmax36011 fma 1 '0.44444444444444444' '0.55555555555555555' -> '1.000000000000000' Inexact Rounded fmax36012 fma 1 '0.44444444444444440' '0.55555555555555555' -> '1.000000000000000' Inexact Rounded fmax36013 fma 1 '0.44444444444444444' '0.55555555555555550' -> '0.9999999999999999' Inexact Rounded fmax36014 fma 1 '0.444444444444444449' '0' -> '0.4444444444444444' Inexact Rounded fmax36015 fma 1 '0.4444444444444444499' '0' -> '0.4444444444444444' Inexact Rounded fmax36016 fma 1 '0.44444444444444444999' '0' -> '0.4444444444444444' Inexact Rounded fmax36017 fma 1 '0.44444444444444445000' '0' -> '0.4444444444444444' Inexact Rounded fmax36018 fma 1 '0.44444444444444445001' '0' -> '0.4444444444444445' Inexact Rounded fmax36019 fma 1 '0.4444444444444444501' '0' -> '0.4444444444444445' Inexact Rounded fmax36020 fma 1 '0.444444444444444451' '0' -> '0.4444444444444445' Inexact Rounded fmax36021 fma 1 0 1 -> 1 fmax36022 fma 1 1 1 -> 2 fmax36023 fma 1 2 1 -> 3 fmax36024 fma 1 3 1 -> 4 fmax36025 fma 1 4 1 -> 5 fmax36026 fma 1 5 1 -> 6 fmax36027 fma 1 6 1 -> 7 fmax36028 fma 1 7 1 -> 8 fmax36029 fma 1 8 1 -> 9 fmax36030 fma 1 9 1 -> 10 -- some carrying effects fmax36031 fma 1 '0.9998' '0.0000' -> '0.9998' fmax36032 fma 1 '0.9998' '0.0001' -> '0.9999' fmax36033 fma 1 '0.9998' '0.0002' -> '1.0000' fmax36034 fma 1 '0.9998' '0.0003' -> '1.0001' fmax36035 fma 1 '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded fmax36036 fma 1 '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded fmax36037 fma 1 '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded fmax36038 fma 1 '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded fmax36039 fma 1 '700000' '10000e+16' -> '1.000000000000007E+20' Rounded -- symmetry: fmax36040 fma 1 '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded fmax36041 fma 1 '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded fmax36042 fma 1 '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded fmax36044 fma 1 '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded fmax36045 fma 1 '10000e+16' '700000' -> '1.000000000000007E+20' Rounded fmax36046 fma 1 '10000e+9' '7' -> '10000000000007' fmax36047 fma 1 '10000e+9' '70' -> '10000000000070' fmax36048 fma 1 '10000e+9' '700' -> '10000000000700' fmax36049 fma 1 '10000e+9' '7000' -> '10000000007000' fmax36050 fma 1 '10000e+9' '70000' -> '10000000070000' fmax36051 fma 1 '10000e+9' '700000' -> '10000000700000' -- examples from decarith fmax36053 fma 1 '12' '7.00' -> '19.00' fmax36054 fma 1 '1.3' '-1.07' -> '0.23' fmax36055 fma 1 '1.3' '-1.30' -> '0.00' fmax36056 fma 1 '1.3' '-2.07' -> '-0.77' fmax36057 fma 1 '1E+2' '1E+4' -> '1.01E+4' -- from above fmax36061 fma 1 1 '0.1' -> '1.1' fmax36062 fma 1 1 '0.01' -> '1.01' fmax36063 fma 1 1 '0.001' -> '1.001' fmax36064 fma 1 1 '0.0001' -> '1.0001' fmax36065 fma 1 1 '0.00001' -> '1.00001' fmax36066 fma 1 1 '0.000001' -> '1.000001' fmax36067 fma 1 1 '0.0000001' -> '1.0000001' fmax36068 fma 1 1 '0.00000001' -> '1.00000001' -- some funny zeros [in case of bad signum] fmax36070 fma 1 1 0 -> 1 fmax36071 fma 1 1 0. -> 1 fmax36072 fma 1 1 .0 -> 1.0 fmax36073 fma 1 1 0.0 -> 1.0 fmax36074 fma 1 1 0.00 -> 1.00 fmax36075 fma 1 0 1 -> 1 fmax36076 fma 1 0. 1 -> 1 fmax36077 fma 1 .0 1 -> 1.0 fmax36078 fma 1 0.0 1 -> 1.0 fmax36079 fma 1 0.00 1 -> 1.00 -- some carries fmax36080 fma 1 9999999999999998 1 -> 9999999999999999 fmax36081 fma 1 9999999999999999 1 -> 1.000000000000000E+16 Rounded fmax36082 fma 1 999999999999999 1 -> 1000000000000000 fmax36083 fma 1 9999999999999 1 -> 10000000000000 fmax36084 fma 1 99999999999 1 -> 100000000000 fmax36085 fma 1 999999999 1 -> 1000000000 fmax36086 fma 1 9999999 1 -> 10000000 fmax36087 fma 1 99999 1 -> 100000 fmax36088 fma 1 999 1 -> 1000 fmax36089 fma 1 9 1 -> 10 -- more LHS swaps fmax36090 fma 1 '-56267E-10' 0 -> '-0.0000056267' fmax36091 fma 1 '-56267E-6' 0 -> '-0.056267' fmax36092 fma 1 '-56267E-5' 0 -> '-0.56267' fmax36093 fma 1 '-56267E-4' 0 -> '-5.6267' fmax36094 fma 1 '-56267E-3' 0 -> '-56.267' fmax36095 fma 1 '-56267E-2' 0 -> '-562.67' fmax36096 fma 1 '-56267E-1' 0 -> '-5626.7' fmax36097 fma 1 '-56267E-0' 0 -> '-56267' fmax36098 fma 1 '-5E-10' 0 -> '-5E-10' fmax36099 fma 1 '-5E-7' 0 -> '-5E-7' fmax36100 fma 1 '-5E-6' 0 -> '-0.000005' fmax36101 fma 1 '-5E-5' 0 -> '-0.00005' fmax36102 fma 1 '-5E-4' 0 -> '-0.0005' fmax36103 fma 1 '-5E-1' 0 -> '-0.5' fmax36104 fma 1 '-5E0' 0 -> '-5' fmax36105 fma 1 '-5E1' 0 -> '-50' fmax36106 fma 1 '-5E5' 0 -> '-500000' fmax36107 fma 1 '-5E15' 0 -> '-5000000000000000' fmax36108 fma 1 '-5E16' 0 -> '-5.000000000000000E+16' Rounded fmax36109 fma 1 '-5E17' 0 -> '-5.000000000000000E+17' Rounded fmax36110 fma 1 '-5E18' 0 -> '-5.000000000000000E+18' Rounded fmax36111 fma 1 '-5E100' 0 -> '-5.000000000000000E+100' Rounded -- more RHS swaps fmax36113 fma 1 0 '-56267E-10' -> '-0.0000056267' fmax36114 fma 1 0 '-56267E-6' -> '-0.056267' fmax36116 fma 1 0 '-56267E-5' -> '-0.56267' fmax36117 fma 1 0 '-56267E-4' -> '-5.6267' fmax36119 fma 1 0 '-56267E-3' -> '-56.267' fmax36120 fma 1 0 '-56267E-2' -> '-562.67' fmax36121 fma 1 0 '-56267E-1' -> '-5626.7' fmax36122 fma 1 0 '-56267E-0' -> '-56267' fmax36123 fma 1 0 '-5E-10' -> '-5E-10' fmax36124 fma 1 0 '-5E-7' -> '-5E-7' fmax36125 fma 1 0 '-5E-6' -> '-0.000005' fmax36126 fma 1 0 '-5E-5' -> '-0.00005' fmax36127 fma 1 0 '-5E-4' -> '-0.0005' fmax36128 fma 1 0 '-5E-1' -> '-0.5' fmax36129 fma 1 0 '-5E0' -> '-5' fmax36130 fma 1 0 '-5E1' -> '-50' fmax36131 fma 1 0 '-5E5' -> '-500000' fmax36132 fma 1 0 '-5E15' -> '-5000000000000000' fmax36133 fma 1 0 '-5E16' -> '-5.000000000000000E+16' Rounded fmax36134 fma 1 0 '-5E17' -> '-5.000000000000000E+17' Rounded fmax36135 fma 1 0 '-5E18' -> '-5.000000000000000E+18' Rounded fmax36136 fma 1 0 '-5E100' -> '-5.000000000000000E+100' Rounded -- related fmax36137 fma 1 1 '0E-19' -> '1.000000000000000' Rounded fmax36138 fma 1 -1 '0E-19' -> '-1.000000000000000' Rounded fmax36139 fma 1 '0E-19' 1 -> '1.000000000000000' Rounded fmax36140 fma 1 '0E-19' -1 -> '-1.000000000000000' Rounded fmax36141 fma 1 1E+11 0.0000 -> '100000000000.0000' fmax36142 fma 1 1E+11 0.00000 -> '100000000000.0000' Rounded fmax36143 fma 1 0.000 1E+12 -> '1000000000000.000' fmax36144 fma 1 0.0000 1E+12 -> '1000000000000.000' Rounded -- [some of the next group are really constructor tests] fmax36146 fma 1 '00.0' 0 -> '0.0' fmax36147 fma 1 '0.00' 0 -> '0.00' fmax36148 fma 1 0 '0.00' -> '0.00' fmax36149 fma 1 0 '00.0' -> '0.0' fmax36150 fma 1 '00.0' '0.00' -> '0.00' fmax36151 fma 1 '0.00' '00.0' -> '0.00' fmax36152 fma 1 '3' '.3' -> '3.3' fmax36153 fma 1 '3.' '.3' -> '3.3' fmax36154 fma 1 '3.0' '.3' -> '3.3' fmax36155 fma 1 '3.00' '.3' -> '3.30' fmax36156 fma 1 '3' '3' -> '6' fmax36157 fma 1 '3' '+3' -> '6' fmax36158 fma 1 '3' '-3' -> '0' fmax36159 fma 1 '0.3' '-0.3' -> '0.0' fmax36160 fma 1 '0.03' '-0.03' -> '0.00' -- try borderline precision, with carries, etc. fmax36161 fma 1 '1E+13' '-1' -> '9999999999999' fmax36162 fma 1 '1E+13' '1.11' -> '10000000000001.11' fmax36163 fma 1 '1.11' '1E+13' -> '10000000000001.11' fmax36164 fma 1 '-1' '1E+13' -> '9999999999999' fmax36165 fma 1 '7E+13' '-1' -> '69999999999999' fmax36166 fma 1 '7E+13' '1.11' -> '70000000000001.11' fmax36167 fma 1 '1.11' '7E+13' -> '70000000000001.11' fmax36168 fma 1 '-1' '7E+13' -> '69999999999999' -- 1234567890123456 1234567890123456 1 234567890123456 fmax36170 fma 1 '0.4444444444444444' '0.5555555555555563' -> '1.000000000000001' Inexact Rounded fmax36171 fma 1 '0.4444444444444444' '0.5555555555555562' -> '1.000000000000001' Inexact Rounded fmax36172 fma 1 '0.4444444444444444' '0.5555555555555561' -> '1.000000000000000' Inexact Rounded fmax36173 fma 1 '0.4444444444444444' '0.5555555555555560' -> '1.000000000000000' Inexact Rounded fmax36174 fma 1 '0.4444444444444444' '0.5555555555555559' -> '1.000000000000000' Inexact Rounded fmax36175 fma 1 '0.4444444444444444' '0.5555555555555558' -> '1.000000000000000' Inexact Rounded fmax36176 fma 1 '0.4444444444444444' '0.5555555555555557' -> '1.000000000000000' Inexact Rounded fmax36177 fma 1 '0.4444444444444444' '0.5555555555555556' -> '1.000000000000000' Rounded fmax36178 fma 1 '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999' fmax36179 fma 1 '0.4444444444444444' '0.5555555555555554' -> '0.9999999999999998' fmax36180 fma 1 '0.4444444444444444' '0.5555555555555553' -> '0.9999999999999997' fmax36181 fma 1 '0.4444444444444444' '0.5555555555555552' -> '0.9999999999999996' fmax36182 fma 1 '0.4444444444444444' '0.5555555555555551' -> '0.9999999999999995' fmax36183 fma 1 '0.4444444444444444' '0.5555555555555550' -> '0.9999999999999994' -- and some more, including residue effects and different roundings rounding: half_up fmax36200 fma 1 '6543210123456789' 0 -> '6543210123456789' fmax36201 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded fmax36202 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded fmax36203 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded fmax36204 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded fmax36205 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded fmax36206 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded fmax36207 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded fmax36208 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded fmax36209 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded fmax36210 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded fmax36211 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded fmax36212 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded fmax36213 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded fmax36214 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded fmax36215 fma 1 '6543210123456789' 0.999999 -> '6543210123456790' Inexact Rounded fmax36216 fma 1 '6543210123456789' 1 -> '6543210123456790' fmax36217 fma 1 '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded fmax36218 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded fmax36219 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded rounding: half_even fmax36220 fma 1 '6543210123456789' 0 -> '6543210123456789' fmax36221 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded fmax36222 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded fmax36223 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded fmax36224 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded fmax36225 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded fmax36226 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded fmax36227 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded fmax36228 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded fmax36229 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded fmax36230 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded fmax36231 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded fmax36232 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded fmax36233 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded fmax36234 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded fmax36235 fma 1 '6543210123456789' 0.999999 -> '6543210123456790' Inexact Rounded fmax36236 fma 1 '6543210123456789' 1 -> '6543210123456790' fmax36237 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded fmax36238 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded fmax36239 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded -- critical few with even bottom digit... fmax36240 fma 1 '6543210123456788' 0.499999 -> '6543210123456788' Inexact Rounded fmax36241 fma 1 '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded fmax36242 fma 1 '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded rounding: down fmax36250 fma 1 '6543210123456789' 0 -> '6543210123456789' fmax36251 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded fmax36252 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded fmax36253 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded fmax36254 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded fmax36255 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded fmax36256 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded fmax36257 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded fmax36258 fma 1 '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded fmax36259 fma 1 '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded fmax36260 fma 1 '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded fmax36261 fma 1 '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded fmax36262 fma 1 '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded fmax36263 fma 1 '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded fmax36264 fma 1 '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded fmax36265 fma 1 '6543210123456789' 0.999999 -> '6543210123456789' Inexact Rounded fmax36266 fma 1 '6543210123456789' 1 -> '6543210123456790' fmax36267 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded fmax36268 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded fmax36269 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded -- 1 in last place tests rounding: half_even fmax36301 fma 1 -1 1 -> 0 fmax36302 fma 1 0 1 -> 1 fmax36303 fma 1 1 1 -> 2 fmax36304 fma 1 12 1 -> 13 fmax36305 fma 1 98 1 -> 99 fmax36306 fma 1 99 1 -> 100 fmax36307 fma 1 100 1 -> 101 fmax36308 fma 1 101 1 -> 102 fmax36309 fma 1 -1 -1 -> -2 fmax36310 fma 1 0 -1 -> -1 fmax36311 fma 1 1 -1 -> 0 fmax36312 fma 1 12 -1 -> 11 fmax36313 fma 1 98 -1 -> 97 fmax36314 fma 1 99 -1 -> 98 fmax36315 fma 1 100 -1 -> 99 fmax36316 fma 1 101 -1 -> 100 fmax36321 fma 1 -0.01 0.01 -> 0.00 fmax36322 fma 1 0.00 0.01 -> 0.01 fmax36323 fma 1 0.01 0.01 -> 0.02 fmax36324 fma 1 0.12 0.01 -> 0.13 fmax36325 fma 1 0.98 0.01 -> 0.99 fmax36326 fma 1 0.99 0.01 -> 1.00 fmax36327 fma 1 1.00 0.01 -> 1.01 fmax36328 fma 1 1.01 0.01 -> 1.02 fmax36329 fma 1 -0.01 -0.01 -> -0.02 fmax36330 fma 1 0.00 -0.01 -> -0.01 fmax36331 fma 1 0.01 -0.01 -> 0.00 fmax36332 fma 1 0.12 -0.01 -> 0.11 fmax36333 fma 1 0.98 -0.01 -> 0.97 fmax36334 fma 1 0.99 -0.01 -> 0.98 fmax36335 fma 1 1.00 -0.01 -> 0.99 fmax36336 fma 1 1.01 -0.01 -> 1.00 -- some more cases where fma 1 ing 0 affects the coefficient fmax36340 fma 1 1E+3 0 -> 1000 fmax36341 fma 1 1E+15 0 -> 1000000000000000 fmax36342 fma 1 1E+16 0 -> 1.000000000000000E+16 Rounded fmax36343 fma 1 1E+17 0 -> 1.000000000000000E+17 Rounded -- which simply follow from these cases ... fmax36344 fma 1 1E+3 1 -> 1001 fmax36345 fma 1 1E+15 1 -> 1000000000000001 fmax36346 fma 1 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded fmax36347 fma 1 1E+17 1 -> 1.000000000000000E+17 Inexact Rounded fmax36348 fma 1 1E+3 7 -> 1007 fmax36349 fma 1 1E+15 7 -> 1000000000000007 fmax36350 fma 1 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded fmax36351 fma 1 1E+17 7 -> 1.000000000000000E+17 Inexact Rounded -- tryzeros cases fmax36361 fma 1 0E+50 10000E+1 -> 1.0000E+5 fmax36362 fma 1 10000E+1 0E-50 -> 100000.0000000000 Rounded fmax36363 fma 1 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact fmax36364 fma 1 12.34 0e-398 -> 12.34000000000000 Rounded -- ulp replacement tests fmax36400 fma 1 1 77e-14 -> 1.00000000000077 fmax36401 fma 1 1 77e-15 -> 1.000000000000077 fmax36402 fma 1 1 77e-16 -> 1.000000000000008 Inexact Rounded fmax36403 fma 1 1 77e-17 -> 1.000000000000001 Inexact Rounded fmax36404 fma 1 1 77e-18 -> 1.000000000000000 Inexact Rounded fmax36405 fma 1 1 77e-19 -> 1.000000000000000 Inexact Rounded fmax36406 fma 1 1 77e-99 -> 1.000000000000000 Inexact Rounded fmax36410 fma 1 10 77e-14 -> 10.00000000000077 fmax36411 fma 1 10 77e-15 -> 10.00000000000008 Inexact Rounded fmax36412 fma 1 10 77e-16 -> 10.00000000000001 Inexact Rounded fmax36413 fma 1 10 77e-17 -> 10.00000000000000 Inexact Rounded fmax36414 fma 1 10 77e-18 -> 10.00000000000000 Inexact Rounded fmax36415 fma 1 10 77e-19 -> 10.00000000000000 Inexact Rounded fmax36416 fma 1 10 77e-99 -> 10.00000000000000 Inexact Rounded fmax36420 fma 1 77e-14 1 -> 1.00000000000077 fmax36421 fma 1 77e-15 1 -> 1.000000000000077 fmax36422 fma 1 77e-16 1 -> 1.000000000000008 Inexact Rounded fmax36423 fma 1 77e-17 1 -> 1.000000000000001 Inexact Rounded fmax36424 fma 1 77e-18 1 -> 1.000000000000000 Inexact Rounded fmax36425 fma 1 77e-19 1 -> 1.000000000000000 Inexact Rounded fmax36426 fma 1 77e-99 1 -> 1.000000000000000 Inexact Rounded fmax36430 fma 1 77e-14 10 -> 10.00000000000077 fmax36431 fma 1 77e-15 10 -> 10.00000000000008 Inexact Rounded fmax36432 fma 1 77e-16 10 -> 10.00000000000001 Inexact Rounded fmax36433 fma 1 77e-17 10 -> 10.00000000000000 Inexact Rounded fmax36434 fma 1 77e-18 10 -> 10.00000000000000 Inexact Rounded fmax36435 fma 1 77e-19 10 -> 10.00000000000000 Inexact Rounded fmax36436 fma 1 77e-99 10 -> 10.00000000000000 Inexact Rounded -- negative ulps fmax36440 fma 1 1 -77e-14 -> 0.99999999999923 fmax36441 fma 1 1 -77e-15 -> 0.999999999999923 fmax36442 fma 1 1 -77e-16 -> 0.9999999999999923 fmax36443 fma 1 1 -77e-17 -> 0.9999999999999992 Inexact Rounded fmax36444 fma 1 1 -77e-18 -> 0.9999999999999999 Inexact Rounded fmax36445 fma 1 1 -77e-19 -> 1.000000000000000 Inexact Rounded fmax36446 fma 1 1 -77e-99 -> 1.000000000000000 Inexact Rounded fmax36450 fma 1 10 -77e-14 -> 9.99999999999923 fmax36451 fma 1 10 -77e-15 -> 9.999999999999923 fmax36452 fma 1 10 -77e-16 -> 9.999999999999992 Inexact Rounded fmax36453 fma 1 10 -77e-17 -> 9.999999999999999 Inexact Rounded fmax36454 fma 1 10 -77e-18 -> 10.00000000000000 Inexact Rounded fmax36455 fma 1 10 -77e-19 -> 10.00000000000000 Inexact Rounded fmax36456 fma 1 10 -77e-99 -> 10.00000000000000 Inexact Rounded fmax36460 fma 1 -77e-14 1 -> 0.99999999999923 fmax36461 fma 1 -77e-15 1 -> 0.999999999999923 fmax36462 fma 1 -77e-16 1 -> 0.9999999999999923 fmax36463 fma 1 -77e-17 1 -> 0.9999999999999992 Inexact Rounded fmax36464 fma 1 -77e-18 1 -> 0.9999999999999999 Inexact Rounded fmax36465 fma 1 -77e-19 1 -> 1.000000000000000 Inexact Rounded fmax36466 fma 1 -77e-99 1 -> 1.000000000000000 Inexact Rounded fmax36470 fma 1 -77e-14 10 -> 9.99999999999923 fmax36471 fma 1 -77e-15 10 -> 9.999999999999923 fmax36472 fma 1 -77e-16 10 -> 9.999999999999992 Inexact Rounded fmax36473 fma 1 -77e-17 10 -> 9.999999999999999 Inexact Rounded fmax36474 fma 1 -77e-18 10 -> 10.00000000000000 Inexact Rounded fmax36475 fma 1 -77e-19 10 -> 10.00000000000000 Inexact Rounded fmax36476 fma 1 -77e-99 10 -> 10.00000000000000 Inexact Rounded -- negative ulps fmax36480 fma 1 -1 77e-14 -> -0.99999999999923 fmax36481 fma 1 -1 77e-15 -> -0.999999999999923 fmax36482 fma 1 -1 77e-16 -> -0.9999999999999923 fmax36483 fma 1 -1 77e-17 -> -0.9999999999999992 Inexact Rounded fmax36484 fma 1 -1 77e-18 -> -0.9999999999999999 Inexact Rounded fmax36485 fma 1 -1 77e-19 -> -1.000000000000000 Inexact Rounded fmax36486 fma 1 -1 77e-99 -> -1.000000000000000 Inexact Rounded fmax36490 fma 1 -10 77e-14 -> -9.99999999999923 fmax36491 fma 1 -10 77e-15 -> -9.999999999999923 fmax36492 fma 1 -10 77e-16 -> -9.999999999999992 Inexact Rounded fmax36493 fma 1 -10 77e-17 -> -9.999999999999999 Inexact Rounded fmax36494 fma 1 -10 77e-18 -> -10.00000000000000 Inexact Rounded fmax36495 fma 1 -10 77e-19 -> -10.00000000000000 Inexact Rounded fmax36496 fma 1 -10 77e-99 -> -10.00000000000000 Inexact Rounded fmax36500 fma 1 77e-14 -1 -> -0.99999999999923 fmax36501 fma 1 77e-15 -1 -> -0.999999999999923 fmax36502 fma 1 77e-16 -1 -> -0.9999999999999923 fmax36503 fma 1 77e-17 -1 -> -0.9999999999999992 Inexact Rounded fmax36504 fma 1 77e-18 -1 -> -0.9999999999999999 Inexact Rounded fmax36505 fma 1 77e-19 -1 -> -1.000000000000000 Inexact Rounded fmax36506 fma 1 77e-99 -1 -> -1.000000000000000 Inexact Rounded fmax36510 fma 1 77e-14 -10 -> -9.99999999999923 fmax36511 fma 1 77e-15 -10 -> -9.999999999999923 fmax36512 fma 1 77e-16 -10 -> -9.999999999999992 Inexact Rounded fmax36513 fma 1 77e-17 -10 -> -9.999999999999999 Inexact Rounded fmax36514 fma 1 77e-18 -10 -> -10.00000000000000 Inexact Rounded fmax36515 fma 1 77e-19 -10 -> -10.00000000000000 Inexact Rounded fmax36516 fma 1 77e-99 -10 -> -10.00000000000000 Inexact Rounded -- long operands fmax36521 fma 1 101234562345678000 0 -> 1.012345623456780E+17 Rounded fmax36522 fma 1 0 101234562345678000 -> 1.012345623456780E+17 Rounded fmax36523 fma 1 10123456234567800 0 -> 1.012345623456780E+16 Rounded fmax36524 fma 1 0 10123456234567800 -> 1.012345623456780E+16 Rounded fmax36525 fma 1 10123456234567890 0 -> 1.012345623456789E+16 Rounded fmax36526 fma 1 0 10123456234567890 -> 1.012345623456789E+16 Rounded fmax36527 fma 1 10123456234567891 0 -> 1.012345623456789E+16 Inexact Rounded fmax36528 fma 1 0 10123456234567891 -> 1.012345623456789E+16 Inexact Rounded fmax36529 fma 1 101234562345678901 0 -> 1.012345623456789E+17 Inexact Rounded fmax36530 fma 1 0 101234562345678901 -> 1.012345623456789E+17 Inexact Rounded fmax36531 fma 1 10123456234567896 0 -> 1.012345623456790E+16 Inexact Rounded fmax36532 fma 1 0 10123456234567896 -> 1.012345623456790E+16 Inexact Rounded -- verify a query rounding: down fmax36561 fma 1 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded fmax36562 fma 1 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded -- and using decimal64 bounds... rounding: down fmax36563 fma 1 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded fmax36564 fma 1 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded -- more zeros, etc. rounding: half_even fmax36701 fma 1 5.00 1.00E-3 -> 5.00100 fmax36702 fma 1 00.00 0.000 -> 0.000 fmax36703 fma 1 00.00 0E-3 -> 0.000 fmax36704 fma 1 0E-3 00.00 -> 0.000 fmax36710 fma 1 0E+3 00.00 -> 0.00 fmax36711 fma 1 0E+3 00.0 -> 0.0 fmax36712 fma 1 0E+3 00. -> 0 fmax36713 fma 1 0E+3 00.E+1 -> 0E+1 fmax36714 fma 1 0E+3 00.E+2 -> 0E+2 fmax36715 fma 1 0E+3 00.E+3 -> 0E+3 fmax36716 fma 1 0E+3 00.E+4 -> 0E+3 fmax36717 fma 1 0E+3 00.E+5 -> 0E+3 fmax36718 fma 1 0E+3 -00.0 -> 0.0 fmax36719 fma 1 0E+3 -00. -> 0 fmax36731 fma 1 0E+3 -00.E+1 -> 0E+1 fmax36720 fma 1 00.00 0E+3 -> 0.00 fmax36721 fma 1 00.0 0E+3 -> 0.0 fmax36722 fma 1 00. 0E+3 -> 0 fmax36723 fma 1 00.E+1 0E+3 -> 0E+1 fmax36724 fma 1 00.E+2 0E+3 -> 0E+2 fmax36725 fma 1 00.E+3 0E+3 -> 0E+3 fmax36726 fma 1 00.E+4 0E+3 -> 0E+3 fmax36727 fma 1 00.E+5 0E+3 -> 0E+3 fmax36728 fma 1 -00.00 0E+3 -> 0.00 fmax36729 fma 1 -00.0 0E+3 -> 0.0 fmax36730 fma 1 -00. 0E+3 -> 0 fmax36732 fma 1 0 0 -> 0 fmax36733 fma 1 0 -0 -> 0 fmax36734 fma 1 -0 0 -> 0 fmax36735 fma 1 -0 -0 -> -0 -- IEEE 854 special case fmax36736 fma 1 1 -1 -> 0 fmax36737 fma 1 -1 -1 -> -2 fmax36738 fma 1 1 1 -> 2 fmax36739 fma 1 -1 1 -> 0 fmax36741 fma 1 0 -1 -> -1 fmax36742 fma 1 -0 -1 -> -1 fmax36743 fma 1 0 1 -> 1 fmax36744 fma 1 -0 1 -> 1 fmax36745 fma 1 -1 0 -> -1 fmax36746 fma 1 -1 -0 -> -1 fmax36747 fma 1 1 0 -> 1 fmax36748 fma 1 1 -0 -> 1 fmax36751 fma 1 0.0 -1 -> -1.0 fmax36752 fma 1 -0.0 -1 -> -1.0 fmax36753 fma 1 0.0 1 -> 1.0 fmax36754 fma 1 -0.0 1 -> 1.0 fmax36755 fma 1 -1.0 0 -> -1.0 fmax36756 fma 1 -1.0 -0 -> -1.0 fmax36757 fma 1 1.0 0 -> 1.0 fmax36758 fma 1 1.0 -0 -> 1.0 fmax36761 fma 1 0 -1.0 -> -1.0 fmax36762 fma 1 -0 -1.0 -> -1.0 fmax36763 fma 1 0 1.0 -> 1.0 fmax36764 fma 1 -0 1.0 -> 1.0 fmax36765 fma 1 -1 0.0 -> -1.0 fmax36766 fma 1 -1 -0.0 -> -1.0 fmax36767 fma 1 1 0.0 -> 1.0 fmax36768 fma 1 1 -0.0 -> 1.0 fmax36771 fma 1 0.0 -1.0 -> -1.0 fmax36772 fma 1 -0.0 -1.0 -> -1.0 fmax36773 fma 1 0.0 1.0 -> 1.0 fmax36774 fma 1 -0.0 1.0 -> 1.0 fmax36775 fma 1 -1.0 0.0 -> -1.0 fmax36776 fma 1 -1.0 -0.0 -> -1.0 fmax36777 fma 1 1.0 0.0 -> 1.0 fmax36778 fma 1 1.0 -0.0 -> 1.0 -- Specials fmax36780 fma 1 -Inf -Inf -> -Infinity fmax36781 fma 1 -Inf -1000 -> -Infinity fmax36782 fma 1 -Inf -1 -> -Infinity fmax36783 fma 1 -Inf -0 -> -Infinity fmax36784 fma 1 -Inf 0 -> -Infinity fmax36785 fma 1 -Inf 1 -> -Infinity fmax36786 fma 1 -Inf 1000 -> -Infinity fmax36787 fma 1 -1000 -Inf -> -Infinity fmax36788 fma 1 -Inf -Inf -> -Infinity fmax36789 fma 1 -1 -Inf -> -Infinity fmax36790 fma 1 -0 -Inf -> -Infinity fmax36791 fma 1 0 -Inf -> -Infinity fmax36792 fma 1 1 -Inf -> -Infinity fmax36793 fma 1 1000 -Inf -> -Infinity fmax36794 fma 1 Inf -Inf -> NaN Invalid_operation fmax36800 fma 1 Inf -Inf -> NaN Invalid_operation fmax36801 fma 1 Inf -1000 -> Infinity fmax36802 fma 1 Inf -1 -> Infinity fmax36803 fma 1 Inf -0 -> Infinity fmax36804 fma 1 Inf 0 -> Infinity fmax36805 fma 1 Inf 1 -> Infinity fmax36806 fma 1 Inf 1000 -> Infinity fmax36807 fma 1 Inf Inf -> Infinity fmax36808 fma 1 -1000 Inf -> Infinity fmax36809 fma 1 -Inf Inf -> NaN Invalid_operation fmax36810 fma 1 -1 Inf -> Infinity fmax36811 fma 1 -0 Inf -> Infinity fmax36812 fma 1 0 Inf -> Infinity fmax36813 fma 1 1 Inf -> Infinity fmax36814 fma 1 1000 Inf -> Infinity fmax36815 fma 1 Inf Inf -> Infinity fmax36821 fma 1 NaN -Inf -> NaN fmax36822 fma 1 NaN -1000 -> NaN fmax36823 fma 1 NaN -1 -> NaN fmax36824 fma 1 NaN -0 -> NaN fmax36825 fma 1 NaN 0 -> NaN fmax36826 fma 1 NaN 1 -> NaN fmax36827 fma 1 NaN 1000 -> NaN fmax36828 fma 1 NaN Inf -> NaN fmax36829 fma 1 NaN NaN -> NaN fmax36830 fma 1 -Inf NaN -> NaN fmax36831 fma 1 -1000 NaN -> NaN fmax36832 fma 1 -1 NaN -> NaN fmax36833 fma 1 -0 NaN -> NaN fmax36834 fma 1 0 NaN -> NaN fmax36835 fma 1 1 NaN -> NaN fmax36836 fma 1 1000 NaN -> NaN fmax36837 fma 1 Inf NaN -> NaN fmax36841 fma 1 sNaN -Inf -> NaN Invalid_operation fmax36842 fma 1 sNaN -1000 -> NaN Invalid_operation fmax36843 fma 1 sNaN -1 -> NaN Invalid_operation fmax36844 fma 1 sNaN -0 -> NaN Invalid_operation fmax36845 fma 1 sNaN 0 -> NaN Invalid_operation fmax36846 fma 1 sNaN 1 -> NaN Invalid_operation fmax36847 fma 1 sNaN 1000 -> NaN Invalid_operation fmax36848 fma 1 sNaN NaN -> NaN Invalid_operation fmax36849 fma 1 sNaN sNaN -> NaN Invalid_operation fmax36850 fma 1 NaN sNaN -> NaN Invalid_operation fmax36851 fma 1 -Inf sNaN -> NaN Invalid_operation fmax36852 fma 1 -1000 sNaN -> NaN Invalid_operation fmax36853 fma 1 -1 sNaN -> NaN Invalid_operation fmax36854 fma 1 -0 sNaN -> NaN Invalid_operation fmax36855 fma 1 0 sNaN -> NaN Invalid_operation fmax36856 fma 1 1 sNaN -> NaN Invalid_operation fmax36857 fma 1 1000 sNaN -> NaN Invalid_operation fmax36858 fma 1 Inf sNaN -> NaN Invalid_operation fmax36859 fma 1 NaN sNaN -> NaN Invalid_operation -- propagating NaNs fmax36861 fma 1 NaN1 -Inf -> NaN1 fmax36862 fma 1 +NaN2 -1000 -> NaN2 fmax36863 fma 1 NaN3 1000 -> NaN3 fmax36864 fma 1 NaN4 Inf -> NaN4 fmax36865 fma 1 NaN5 +NaN6 -> NaN5 fmax36866 fma 1 -Inf NaN7 -> NaN7 fmax36867 fma 1 -1000 NaN8 -> NaN8 fmax36868 fma 1 1000 NaN9 -> NaN9 fmax36869 fma 1 Inf +NaN10 -> NaN10 fmax36871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation fmax36872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation fmax36873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation fmax36874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation fmax36875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation fmax36876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation fmax36877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation fmax36878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation fmax36879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation fmax36880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation fmax36881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation fmax36882 fma 1 -NaN26 NaN28 -> -NaN26 fmax36883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation fmax36884 fma 1 1000 -NaN30 -> -NaN30 fmax36885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation -- now the case where we can get underflow but the result is normal -- [note this can't happen if the operands are also bounded, as we -- cannot represent 1E-399, for example] fmax36571 fma 1 1E-383 0 -> 1E-383 fmax36572 fma 1 1E-384 0 -> 1E-384 Subnormal fmax36573 fma 1 1E-383 1E-384 -> 1.1E-383 fmax36574 subtract 1E-383 1E-384 -> 9E-384 Subnormal -- Here we explore the boundary of rounding a subnormal to Nmin fmax36575 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal fmax36576 subtract 1E-383 1E-398 -> 9.99999999999999E-384 Subnormal fmax36577 subtract 1E-383 1E-399 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded fmax36578 subtract 1E-383 1E-400 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded fmax36579 subtract 1E-383 1E-401 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded fmax36580 subtract 1E-383 1E-402 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -- check overflow edge case -- 1234567890123456 fmax36972 apply 9.999999999999999E+384 -> 9.999999999999999E+384 fmax36973 fma 1 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded fmax36974 fma 1 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded fmax36975 fma 1 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded fmax36976 fma 1 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded fmax36977 fma 1 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded fmax36978 fma 1 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded fmax36979 fma 1 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded fmax36980 fma 1 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded fmax36981 fma 1 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded fmax36982 fma 1 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded fmax36983 fma 1 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded fmax36984 fma 1 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded fmax36985 apply -9.999999999999999E+384 -> -9.999999999999999E+384 fmax36986 fma 1 -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded fmax36987 fma 1 -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded fmax36988 fma 1 -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded fmax36989 fma 1 -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded fmax36990 fma 1 -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded fmax36991 fma 1 -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded fmax36992 fma 1 -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded fmax36993 fma 1 -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded fmax36994 fma 1 -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded fmax36995 fma 1 -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded fmax36996 fma 1 -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded fmax36997 fma 1 -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded -- And for round down full and subnormal results rounding: down fmax361100 fma 1 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact fmax361101 fma 1 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact fmax361103 fma 1 +1 -1e-383 -> 0.9999999999999999 Rounded Inexact fmax361104 fma 1 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact fmax361105 fma 1 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact fmax361106 fma 1 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact fmax361107 fma 1 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact fmax361108 fma 1 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact fmax361109 fma 1 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact rounding: ceiling fmax361110 fma 1 -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact fmax361111 fma 1 -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact fmax361113 fma 1 -1 +1e-383 -> -0.9999999999999999 Rounded Inexact fmax361114 fma 1 -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact fmax361115 fma 1 -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact fmax361116 fma 1 -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact fmax361117 fma 1 -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact fmax361118 fma 1 -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact fmax361119 fma 1 -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact -- tests based on Gunnar Degnbol's edge case rounding: half_even fmax361300 fma 1 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded fmax361310 fma 1 1E16 -0.51 -> 9999999999999999 Inexact Rounded fmax361311 fma 1 1E16 -0.501 -> 9999999999999999 Inexact Rounded fmax361312 fma 1 1E16 -0.5001 -> 9999999999999999 Inexact Rounded fmax361313 fma 1 1E16 -0.50001 -> 9999999999999999 Inexact Rounded fmax361314 fma 1 1E16 -0.500001 -> 9999999999999999 Inexact Rounded fmax361315 fma 1 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded fmax361316 fma 1 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded fmax361317 fma 1 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded fmax361318 fma 1 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded fmax361319 fma 1 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded fmax361320 fma 1 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded fmax361321 fma 1 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded fmax361322 fma 1 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded fmax361323 fma 1 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded fmax361324 fma 1 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded fmax361325 fma 1 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361326 fma 1 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361327 fma 1 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361328 fma 1 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361329 fma 1 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361330 fma 1 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361331 fma 1 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361332 fma 1 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded fmax361333 fma 1 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded fmax361334 fma 1 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded fmax361335 fma 1 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded fmax361336 fma 1 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded fmax361337 fma 1 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded fmax361338 fma 1 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded fmax361339 fma 1 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded fmax361340 fma 1 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded fmax361341 fma 1 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded fmax361349 fma 1 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded fmax361350 fma 1 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded fmax361351 fma 1 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded fmax361352 fma 1 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded fmax361353 fma 1 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded fmax361354 fma 1 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded fmax361355 fma 1 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded fmax361356 fma 1 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded fmax361357 fma 1 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded fmax361358 fma 1 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded fmax361359 fma 1 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded fmax361360 fma 1 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded fmax361361 fma 1 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded fmax361362 fma 1 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded fmax361363 fma 1 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded fmax361364 fma 1 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded fmax361365 fma 1 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361367 fma 1 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361368 fma 1 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361369 fma 1 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361370 fma 1 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361371 fma 1 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361372 fma 1 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded fmax361373 fma 1 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded fmax361374 fma 1 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded fmax361375 fma 1 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded fmax361376 fma 1 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded fmax361377 fma 1 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded fmax361378 fma 1 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded fmax361379 fma 1 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded fmax361380 fma 1 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded fmax361381 fma 1 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded fmax361382 fma 1 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded fmax361383 fma 1 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded fmax361384 fma 1 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded fmax361385 fma 1 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded fmax361386 fma 1 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded fmax361387 fma 1 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded fmax361388 fma 1 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded fmax361389 fma 1 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded fmax361390 fma 1 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded fmax361391 fma 1 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded fmax361392 fma 1 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded fmax361393 fma 1 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded fmax361394 fma 1 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded fmax361395 fma 1 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded fmax361396 fma 1 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded -- More GD edge cases, where difference between the unadjusted -- exponents is larger than the maximum precision and one side is 0 fmax361420 fma 1 0 1.123456789012345 -> 1.123456789012345 fmax361421 fma 1 0 1.123456789012345E-1 -> 0.1123456789012345 fmax361422 fma 1 0 1.123456789012345E-2 -> 0.01123456789012345 fmax361423 fma 1 0 1.123456789012345E-3 -> 0.001123456789012345 fmax361424 fma 1 0 1.123456789012345E-4 -> 0.0001123456789012345 fmax361425 fma 1 0 1.123456789012345E-5 -> 0.00001123456789012345 fmax361426 fma 1 0 1.123456789012345E-6 -> 0.000001123456789012345 fmax361427 fma 1 0 1.123456789012345E-7 -> 1.123456789012345E-7 fmax361428 fma 1 0 1.123456789012345E-8 -> 1.123456789012345E-8 fmax361429 fma 1 0 1.123456789012345E-9 -> 1.123456789012345E-9 fmax361430 fma 1 0 1.123456789012345E-10 -> 1.123456789012345E-10 fmax361431 fma 1 0 1.123456789012345E-11 -> 1.123456789012345E-11 fmax361432 fma 1 0 1.123456789012345E-12 -> 1.123456789012345E-12 fmax361433 fma 1 0 1.123456789012345E-13 -> 1.123456789012345E-13 fmax361434 fma 1 0 1.123456789012345E-14 -> 1.123456789012345E-14 fmax361435 fma 1 0 1.123456789012345E-15 -> 1.123456789012345E-15 fmax361436 fma 1 0 1.123456789012345E-16 -> 1.123456789012345E-16 fmax361437 fma 1 0 1.123456789012345E-17 -> 1.123456789012345E-17 fmax361438 fma 1 0 1.123456789012345E-18 -> 1.123456789012345E-18 fmax361439 fma 1 0 1.123456789012345E-19 -> 1.123456789012345E-19 -- same, reversed 0 fmax361440 fma 1 1.123456789012345 0 -> 1.123456789012345 fmax361441 fma 1 1.123456789012345E-1 0 -> 0.1123456789012345 fmax361442 fma 1 1.123456789012345E-2 0 -> 0.01123456789012345 fmax361443 fma 1 1.123456789012345E-3 0 -> 0.001123456789012345 fmax361444 fma 1 1.123456789012345E-4 0 -> 0.0001123456789012345 fmax361445 fma 1 1.123456789012345E-5 0 -> 0.00001123456789012345 fmax361446 fma 1 1.123456789012345E-6 0 -> 0.000001123456789012345 fmax361447 fma 1 1.123456789012345E-7 0 -> 1.123456789012345E-7 fmax361448 fma 1 1.123456789012345E-8 0 -> 1.123456789012345E-8 fmax361449 fma 1 1.123456789012345E-9 0 -> 1.123456789012345E-9 fmax361450 fma 1 1.123456789012345E-10 0 -> 1.123456789012345E-10 fmax361451 fma 1 1.123456789012345E-11 0 -> 1.123456789012345E-11 fmax361452 fma 1 1.123456789012345E-12 0 -> 1.123456789012345E-12 fmax361453 fma 1 1.123456789012345E-13 0 -> 1.123456789012345E-13 fmax361454 fma 1 1.123456789012345E-14 0 -> 1.123456789012345E-14 fmax361455 fma 1 1.123456789012345E-15 0 -> 1.123456789012345E-15 fmax361456 fma 1 1.123456789012345E-16 0 -> 1.123456789012345E-16 fmax361457 fma 1 1.123456789012345E-17 0 -> 1.123456789012345E-17 fmax361458 fma 1 1.123456789012345E-18 0 -> 1.123456789012345E-18 fmax361459 fma 1 1.123456789012345E-19 0 -> 1.123456789012345E-19 -- same, Es on the 0 fmax361460 fma 1 1.123456789012345 0E-0 -> 1.123456789012345 fmax361461 fma 1 1.123456789012345 0E-1 -> 1.123456789012345 fmax361462 fma 1 1.123456789012345 0E-2 -> 1.123456789012345 fmax361463 fma 1 1.123456789012345 0E-3 -> 1.123456789012345 fmax361464 fma 1 1.123456789012345 0E-4 -> 1.123456789012345 fmax361465 fma 1 1.123456789012345 0E-5 -> 1.123456789012345 fmax361466 fma 1 1.123456789012345 0E-6 -> 1.123456789012345 fmax361467 fma 1 1.123456789012345 0E-7 -> 1.123456789012345 fmax361468 fma 1 1.123456789012345 0E-8 -> 1.123456789012345 fmax361469 fma 1 1.123456789012345 0E-9 -> 1.123456789012345 fmax361470 fma 1 1.123456789012345 0E-10 -> 1.123456789012345 fmax361471 fma 1 1.123456789012345 0E-11 -> 1.123456789012345 fmax361472 fma 1 1.123456789012345 0E-12 -> 1.123456789012345 fmax361473 fma 1 1.123456789012345 0E-13 -> 1.123456789012345 fmax361474 fma 1 1.123456789012345 0E-14 -> 1.123456789012345 fmax361475 fma 1 1.123456789012345 0E-15 -> 1.123456789012345 -- next four flag Rounded because the 0 extends the result fmax361476 fma 1 1.123456789012345 0E-16 -> 1.123456789012345 Rounded fmax361477 fma 1 1.123456789012345 0E-17 -> 1.123456789012345 Rounded fmax361478 fma 1 1.123456789012345 0E-18 -> 1.123456789012345 Rounded fmax361479 fma 1 1.123456789012345 0E-19 -> 1.123456789012345 Rounded -- sum of two opposite-sign operands is exactly 0 and floor => -0 rounding: half_up -- exact zeros from zeros fmax361500 fma 1 0 0E-19 -> 0E-19 fmax361501 fma 1 -0 0E-19 -> 0E-19 fmax361502 fma 1 0 -0E-19 -> 0E-19 fmax361503 fma 1 -0 -0E-19 -> -0E-19 fmax361504 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax361505 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax361506 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax361507 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax361511 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361512 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361513 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361514 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- some exact zeros from non-zeros fmax361515 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361516 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax361517 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax361518 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped rounding: half_down -- exact zeros from zeros fmax361520 fma 1 0 0E-19 -> 0E-19 fmax361521 fma 1 -0 0E-19 -> 0E-19 fmax361522 fma 1 0 -0E-19 -> 0E-19 fmax361523 fma 1 -0 -0E-19 -> -0E-19 fmax361524 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax361525 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax361526 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax361527 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax361531 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361532 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361533 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361534 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- some exact zeros from non-zeros fmax361535 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361536 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax361537 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax361538 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped rounding: half_even -- exact zeros from zeros fmax361540 fma 1 0 0E-19 -> 0E-19 fmax361541 fma 1 -0 0E-19 -> 0E-19 fmax361542 fma 1 0 -0E-19 -> 0E-19 fmax361543 fma 1 -0 -0E-19 -> -0E-19 fmax361544 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax361545 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax361546 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax361547 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax361551 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361552 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361553 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361554 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- some exact zeros from non-zeros fmax361555 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361556 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax361557 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax361558 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped rounding: up -- exact zeros from zeros fmax361560 fma 1 0 0E-19 -> 0E-19 fmax361561 fma 1 -0 0E-19 -> 0E-19 fmax361562 fma 1 0 -0E-19 -> 0E-19 fmax361563 fma 1 -0 -0E-19 -> -0E-19 fmax361564 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax361565 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax361566 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax361567 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax361571 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow fmax361572 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow fmax361573 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow fmax361574 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -- some exact zeros from non-zeros fmax361575 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow fmax361576 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax361577 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax361578 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow rounding: down -- exact zeros from zeros fmax361580 fma 1 0 0E-19 -> 0E-19 fmax361581 fma 1 -0 0E-19 -> 0E-19 fmax361582 fma 1 0 -0E-19 -> 0E-19 fmax361583 fma 1 -0 -0E-19 -> -0E-19 fmax361584 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax361585 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax361586 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax361587 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax361591 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361592 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361593 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361594 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- some exact zeros from non-zeros fmax361595 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361596 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax361597 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax361598 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped rounding: ceiling -- exact zeros from zeros fmax361600 fma 1 0 0E-19 -> 0E-19 fmax361601 fma 1 -0 0E-19 -> 0E-19 fmax361602 fma 1 0 -0E-19 -> 0E-19 fmax361603 fma 1 -0 -0E-19 -> -0E-19 fmax361604 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax361605 fma 1 -0E-400 0E-19 -> 0E-398 Clamped fmax361606 fma 1 0E-400 -0E-19 -> 0E-398 Clamped fmax361607 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax361611 fma 1 1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow fmax361612 fma 1 -1E-401 1E-400 -> 1E-398 Subnormal Inexact Rounded Underflow fmax361613 fma 1 1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361614 fma 1 -1E-401 -1E-400 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- some exact zeros from non-zeros fmax361615 fma 1 1E-401 1E-401 -> 1E-398 Subnormal Inexact Rounded Underflow fmax361616 fma 1 -1E-401 1E-401 -> 0E-398 Clamped fmax361617 fma 1 1E-401 -1E-401 -> 0E-398 Clamped fmax361618 fma 1 -1E-401 -1E-401 -> -0E-398 Subnormal Inexact Rounded Underflow Clamped -- and the extra-special ugly case; unusual minuses marked by -- * rounding: floor -- exact zeros from zeros fmax361620 fma 1 0 0E-19 -> 0E-19 fmax361621 fma 1 -0 0E-19 -> -0E-19 -- * fmax361622 fma 1 0 -0E-19 -> -0E-19 -- * fmax361623 fma 1 -0 -0E-19 -> -0E-19 fmax361624 fma 1 0E-400 0E-19 -> 0E-398 Clamped fmax361625 fma 1 -0E-400 0E-19 -> -0E-398 Clamped -- * fmax361626 fma 1 0E-400 -0E-19 -> -0E-398 Clamped -- * fmax361627 fma 1 -0E-400 -0E-19 -> -0E-398 Clamped -- inexact zeros fmax361631 fma 1 1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361632 fma 1 -1E-401 1E-400 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361633 fma 1 1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow fmax361634 fma 1 -1E-401 -1E-400 -> -1E-398 Subnormal Inexact Rounded Underflow -- some exact zeros from non-zeros fmax361635 fma 1 1E-401 1E-401 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped fmax361636 fma 1 -1E-401 1E-401 -> -0E-398 Clamped -- * fmax361637 fma 1 1E-401 -1E-401 -> -0E-398 Clamped -- * fmax361638 fma 1 -1E-401 -1E-401 -> -1E-398 Subnormal Inexact Rounded Underflow -- Examples from SQL proposal (Krishna Kulkarni) fmax361701 fma 1 130E-2 120E-2 -> 2.50 fmax361702 fma 1 130E-2 12E-1 -> 2.50 fmax361703 fma 1 130E-2 1E0 -> 2.30 fmax361704 fma 1 1E2 1E4 -> 1.01E+4 fmax361705 subtract 130E-2 120E-2 -> 0.10 fmax361706 subtract 130E-2 12E-1 -> 0.10 fmax361707 subtract 130E-2 1E0 -> 0.30 fmax361708 subtract 1E2 1E4 -> -9.9E+3 -- Gappy coefficients; check residue handling even with full coefficient gap rounding: half_even fmax362001 fma 1 1234567890123456 1 -> 1234567890123457 fmax362002 fma 1 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded fmax362003 fma 1 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded fmax362004 fma 1 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded fmax362005 fma 1 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded fmax362006 fma 1 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded fmax362007 fma 1 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded fmax362008 fma 1 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded fmax362009 fma 1 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded fmax362010 fma 1 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded fmax362011 fma 1 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded fmax362012 fma 1 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded fmax362013 fma 1 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded fmax362014 fma 1 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded fmax362015 fma 1 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded fmax362016 fma 1 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded fmax362017 fma 1 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded fmax362018 fma 1 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded fmax362019 fma 1 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded fmax362020 fma 1 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded fmax362021 fma 1 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded -- widening second argument at gap fmax362030 fma 1 12345678 1 -> 12345679 fmax362031 fma 1 12345678 0.1 -> 12345678.1 fmax362032 fma 1 12345678 0.12 -> 12345678.12 fmax362033 fma 1 12345678 0.123 -> 12345678.123 fmax362034 fma 1 12345678 0.1234 -> 12345678.1234 fmax362035 fma 1 12345678 0.12345 -> 12345678.12345 fmax362036 fma 1 12345678 0.123456 -> 12345678.123456 fmax362037 fma 1 12345678 0.1234567 -> 12345678.1234567 fmax362038 fma 1 12345678 0.12345678 -> 12345678.12345678 fmax362039 fma 1 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded fmax362040 fma 1 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded fmax362041 fma 1 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded fmax362042 fma 1 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded fmax362043 fma 1 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded fmax362044 fma 1 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded fmax362045 fma 1 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded fmax362046 fma 1 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded fmax362047 fma 1 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded fmax362048 fma 1 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded fmax362049 fma 1 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded -- 90123456 rounding: half_even fmax362050 fma 1 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded fmax362051 fma 1 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded fmax362052 fma 1 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded fmax362053 fma 1 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded fmax362054 fma 1 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded fmax362055 fma 1 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded fmax362056 fma 1 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded fmax362057 fma 1 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded fmax362060 fma 1 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded fmax362061 fma 1 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded fmax362062 fma 1 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded fmax362063 fma 1 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded fmax362064 fma 1 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded fmax362065 fma 1 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded fmax362066 fma 1 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded fmax362067 fma 1 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded -- far-out residues (full coefficient gap is 16+15 digits) rounding: up fmax362070 fma 1 12345678 1E-8 -> 12345678.00000001 fmax362071 fma 1 12345678 1E-9 -> 12345678.00000001 Inexact Rounded fmax362072 fma 1 12345678 1E-10 -> 12345678.00000001 Inexact Rounded fmax362073 fma 1 12345678 1E-11 -> 12345678.00000001 Inexact Rounded fmax362074 fma 1 12345678 1E-12 -> 12345678.00000001 Inexact Rounded fmax362075 fma 1 12345678 1E-13 -> 12345678.00000001 Inexact Rounded fmax362076 fma 1 12345678 1E-14 -> 12345678.00000001 Inexact Rounded fmax362077 fma 1 12345678 1E-15 -> 12345678.00000001 Inexact Rounded fmax362078 fma 1 12345678 1E-16 -> 12345678.00000001 Inexact Rounded fmax362079 fma 1 12345678 1E-17 -> 12345678.00000001 Inexact Rounded fmax362080 fma 1 12345678 1E-18 -> 12345678.00000001 Inexact Rounded fmax362081 fma 1 12345678 1E-19 -> 12345678.00000001 Inexact Rounded fmax362082 fma 1 12345678 1E-20 -> 12345678.00000001 Inexact Rounded fmax362083 fma 1 12345678 1E-25 -> 12345678.00000001 Inexact Rounded fmax362084 fma 1 12345678 1E-30 -> 12345678.00000001 Inexact Rounded fmax362085 fma 1 12345678 1E-31 -> 12345678.00000001 Inexact Rounded fmax362086 fma 1 12345678 1E-32 -> 12345678.00000001 Inexact Rounded fmax362087 fma 1 12345678 1E-33 -> 12345678.00000001 Inexact Rounded fmax362088 fma 1 12345678 1E-34 -> 12345678.00000001 Inexact Rounded fmax362089 fma 1 12345678 1E-35 -> 12345678.00000001 Inexact Rounded -- payload decapitate x3 precision: 5 fmax363000 fma 1 1 sNaN1234567890 -> NaN67890 Invalid_operation fmax363001 fma 1 -sNaN1234512345 1 -> -NaN12345 Invalid_operation fmax363002 fma sNaN1234554321 1 1 -> NaN54321 Invalid_operation -- Null tests fmax39990 fma 1 10 # -> NaN Invalid_operation fmax39991 fma 1 # 10 -> NaN Invalid_operation