/* ------------------------------------------------------------------ */ /* decNumber package local type, tuning, and macro definitions */ /* ------------------------------------------------------------------ */ /* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */ /* */ /* This software is made available under the terms of the */ /* ICU License -- ICU 1.8.1 and later. */ /* */ /* The description and User's Guide ("The decNumber C Library") for */ /* this software is called decNumber.pdf. This document is */ /* available, together with arithmetic and format specifications, */ /* testcases, and Web links, on the General Decimal Arithmetic page. */ /* */ /* Please send comments, suggestions, and corrections to the author: */ /* mfc@uk.ibm.com */ /* Mike Cowlishaw, IBM Fellow */ /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ /* ------------------------------------------------------------------ */ /* This header file is included by all modules in the decNumber */ /* library, and contains local type definitions, tuning parameters, */ /* etc. It should not need to be used by application programs. */ /* decNumber.h or one of decDouble (etc.) must be included first. */ /* ------------------------------------------------------------------ */ #if !defined(DECNUMBERLOC) #define DECNUMBERLOC #define DECVERSION "decNumber 3.68" /* Package Version [16 max.] */ #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */ #include /* for abs */ #include /* for memset, strcpy */ /* Conditional code flag -- set this to match hardware platform */ #if !defined(DECLITEND) #define DECLITEND 1 /* 1=little-endian, 0=big-endian */ #endif /* Conditional code flag -- set this to 1 for best performance */ #if !defined(DECUSE64) #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */ #endif /* Conditional code flag -- set this to 0 to exclude printf calls */ #if !defined(DECPRINT) #define DECPRINT 1 /* 1=allow printf calls; 0=no printf */ #endif /* Conditional check flags -- set these to 0 for best performance */ #if !defined(DECCHECK) #define DECCHECK 0 /* 1 to enable robust checking */ #endif #if !defined(DECALLOC) #define DECALLOC 0 /* 1 to enable memory accounting */ #endif #if !defined(DECTRACE) #define DECTRACE 0 /* 1 to trace certain internals, etc. */ #endif /* Tuning parameter for decNumber (arbitrary precision) module */ #if !defined(DECBUFFER) #define DECBUFFER 36 /* Size basis for local buffers. This */ /* should be a common maximum precision */ /* rounded up to a multiple of 4; must */ /* be zero or positive. */ #endif /* ---------------------------------------------------------------- */ /* Check parameter dependencies */ /* ---------------------------------------------------------------- */ #if DECCHECK & !DECPRINT #error DECCHECK needs DECPRINT to be useful #endif #if DECALLOC & !DECPRINT #error DECALLOC needs DECPRINT to be useful #endif #if DECTRACE & !DECPRINT #error DECTRACE needs DECPRINT to be useful #endif /* ---------------------------------------------------------------- */ /* Definitions for all modules (general-purpose) */ /* ---------------------------------------------------------------- */ /* Local names for common types -- for safety, decNumber modules do */ /* not use int or long directly. */ #define Flag uint8_t #define Byte int8_t #define uByte uint8_t #define Short int16_t #define uShort uint16_t #define Int int32_t #define uInt uint32_t #define Unit decNumberUnit #if DECUSE64 #define Long int64_t #define uLong uint64_t #endif /* Development-use definitions */ typedef long int LI; /* for printf arguments only */ #define DECNOINT 0 /* 1 to check no internal use of 'int' */ /* or stdint types */ #if DECNOINT /* if these interfere with your C includes, do not set DECNOINT */ #define int ? /* enable to ensure that plain C 'int' */ #define long ?? /* .. or 'long' types are not used */ #endif /* Shared lookup tables */ extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */ extern const uInt DECPOWERS[10]; /* powers of ten table */ /* The following are included from decDPD.h */ extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */ extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */ extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */ extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */ extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */ extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */ extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/ /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */ /* (that is, sets w to be the high-order word of the 64-bit result; */ /* the low-order word is simply u*v.) */ /* This version is derived from Knuth via Hacker's Delight; */ /* it seems to optimize better than some others tried */ #define LONGMUL32HI(w, u, v) { \ uInt u0, u1, v0, v1, w0, w1, w2, t; \ u0=u & 0xffff; u1=u>>16; \ v0=v & 0xffff; v1=v>>16; \ w0=u0*v0; \ t=u1*v0 + (w0>>16); \ w1=t & 0xffff; w2=t>>16; \ w1=u0*v1 + w1; \ (w)=u1*v1 + w2 + (w1>>16);} /* ROUNDUP -- round an integer up to a multiple of n */ #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n) #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */ /* ROUNDDOWN -- round an integer down to a multiple of n */ #define ROUNDDOWN(i, n) (((i)/n)*n) #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */ /* References to multi-byte sequences under different sizes; these */ /* require locally declared variables, but do not violate strict */ /* aliasing or alignment (as did the UINTAT simple cast to uInt). */ /* Variables needed are uswork, uiwork, etc. [so do not use at same */ /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */ /* Return a uInt, etc., from bytes starting at a char* or uByte* */ #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork) #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork) /* Store a uInt, etc., into bytes starting at a char* or uByte*. */ /* Has to use uiwork because i may be an expression. */ #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2)) #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4)) /* X10 and X100 -- multiply integer i by 10 or 100 */ /* [shifts are usually faster than multiply; could be conditional] */ #define X10(i) (((i)<<1)+((i)<<3)) #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6)) /* MAXI and MINI -- general max & min (not in ANSI) for integers */ #define MAXI(x,y) ((x)<(y)?(y):(x)) #define MINI(x,y) ((x)>(y)?(y):(x)) /* Useful constants */ #define BILLION 1000000000 /* 10**9 */ /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */ #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0') /* ---------------------------------------------------------------- */ /* Definitions for arbitary-precision modules (only valid after */ /* decNumber.h has been included) */ /* ---------------------------------------------------------------- */ /* Limits and constants */ #define DECNUMMAXP 999999999 /* maximum precision code can handle */ #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */ #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */ #if (DECNUMMAXP != DEC_MAX_DIGITS) #error Maximum digits mismatch #endif #if (DECNUMMAXE != DEC_MAX_EMAX) #error Maximum exponent mismatch #endif #if (DECNUMMINE != DEC_MIN_EMIN) #error Minimum exponent mismatch #endif /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */ /* digits, and D2UTABLE -- the initializer for the D2U table */ #if DECDPUN==1 #define DECDPUNMAX 9 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \ 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \ 48,49} #elif DECDPUN==2 #define DECDPUNMAX 99 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \ 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \ 18,19,19,20,20,21,21,22,22,23,23,24,24,25} #elif DECDPUN==3 #define DECDPUNMAX 999 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \ 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \ 13,14,14,14,15,15,15,16,16,16,17} #elif DECDPUN==4 #define DECDPUNMAX 9999 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \ 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \ 11,11,11,12,12,12,12,13} #elif DECDPUN==5 #define DECDPUNMAX 99999 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \ 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \ 9,9,10,10,10,10} #elif DECDPUN==6 #define DECDPUNMAX 999999 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \ 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \ 8,8,8,8,8,9} #elif DECDPUN==7 #define DECDPUNMAX 9999999 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \ 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ 7,7,7,7,7,7} #elif DECDPUN==8 #define DECDPUNMAX 99999999 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \ 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \ 6,6,6,6,6,7} #elif DECDPUN==9 #define DECDPUNMAX 999999999 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \ 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \ 5,5,6,6,6,6} #elif defined(DECDPUN) #error DECDPUN must be in the range 1-9 #endif /* ----- Shared data (in decNumber.c) ----- */ /* Public lookup table used by the D2U macro (see below) */ #define DECMAXD2U 49 extern const uByte d2utable[DECMAXD2U+1]; /* ----- Macros ----- */ /* ISZERO -- return true if decNumber dn is a zero */ /* [performance-critical in some situations] */ #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */ /* D2U -- return the number of Units needed to hold d digits */ /* (runtime version, with table lookaside for small d) */ #if DECDPUN==8 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3)) #elif DECDPUN==4 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2)) #else #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN) #endif /* SD2U -- static D2U macro (for compile-time calculation) */ #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN) /* MSUDIGITS -- returns digits in msu, from digits, calculated */ /* using D2U */ #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN) /* D2N -- return the number of decNumber structs that would be */ /* needed to contain that number of digits (and the initial */ /* decNumber struct) safely. Note that one Unit is included in the */ /* initial structure. Used for allocating space that is aligned on */ /* a decNumber struct boundary. */ #define D2N(d) \ ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber)) /* TODIGIT -- macro to remove the leading digit from the unsigned */ /* integer u at column cut (counting from the right, LSD=0) and */ /* place it as an ASCII character into the character pointed to by */ /* c. Note that cut must be <= 9, and the maximum value for u is */ /* 2,000,000,000 (as is needed for negative exponents of */ /* subnormals). The unsigned integer pow is used as a temporary */ /* variable. */ #define TODIGIT(u, cut, c, pow) { \ *(c)='0'; \ pow=DECPOWERS[cut]*2; \ if ((u)>pow) { \ pow*=4; \ if ((u)>=pow) {(u)-=pow; *(c)+=8;} \ pow/=2; \ if ((u)>=pow) {(u)-=pow; *(c)+=4;} \ pow/=2; \ } \ if ((u)>=pow) {(u)-=pow; *(c)+=2;} \ pow/=2; \ if ((u)>=pow) {(u)-=pow; *(c)+=1;} \ } /* ---------------------------------------------------------------- */ /* Definitions for fixed-precision modules (only valid after */ /* decSingle.h, decDouble.h, or decQuad.h has been included) */ /* ---------------------------------------------------------------- */ /* bcdnum -- a structure describing a format-independent finite */ /* number, whose coefficient is a string of bcd8 uBytes */ typedef struct { uByte *msd; /* -> most significant digit */ uByte *lsd; /* -> least ditto */ uInt sign; /* 0=positive, DECFLOAT_Sign=negative */ Int exponent; /* Unadjusted signed exponent (q), or */ /* DECFLOAT_NaN etc. for a special */ } bcdnum; /* Test if exponent or bcdnum exponent must be a special, etc. */ #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp) #define EXPISINF(exp) (exp==DECFLOAT_Inf) #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN) #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent)) /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */ /* (array) notation (the 0 word or byte contains the sign bit), */ /* automatically adjusting for endianness; similarly address a word */ /* in the next-wider format (decFloatWider, or dfw) */ #define DECWORDS (DECBYTES/4) #define DECWWORDS (DECWBYTES/4) #if DECLITEND #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)]) #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)]) #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)]) #else #define DFBYTE(df, off) ((df)->bytes[off]) #define DFWORD(df, off) ((df)->words[off]) #define DFWWORD(dfw, off) ((dfw)->words[off]) #endif /* Tests for sign or specials, directly on DECFLOATs */ #define DFISSIGNED(df) ((DFWORD(df, 0)&0x80000000)!=0) #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000) #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000) #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000) #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000) #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000) /* Shared lookup tables */ extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */ extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */ /* Private generic (utility) routine */ #if DECCHECK || DECTRACE extern void decShowNum(const bcdnum *, const char *); #endif /* Format-dependent macros and constants */ #if defined(DECPMAX) /* Useful constants */ #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */ /* Top words for a zero */ #define SINGLEZERO 0x22500000 #define DOUBLEZERO 0x22380000 #define QUADZERO 0x22080000 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */ /* Format-dependent common tests: */ /* DFISZERO -- test for (any) zero */ /* DFISCCZERO -- test for coefficient continuation being zero */ /* DFISCC01 -- test for coefficient contains only 0s and 1s */ /* DFISINT -- test for finite and exponent q=0 */ /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */ /* MSD=0 or 1 */ /* ZEROWORD is also defined here. */ /* */ /* In DFISZERO the first test checks the least-significant word */ /* (most likely to be non-zero); the penultimate tests MSD and */ /* DPDs in the signword, and the final test excludes specials and */ /* MSD>7. DFISINT similarly has to allow for the two forms of */ /* MSD codes. DFISUINT01 only has to allow for one form of MSD */ /* code. */ #if DECPMAX==7 #define ZEROWORD SINGLEZERO /* [test macros not needed except for Zero] */ #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \ && (DFWORD(df, 0)&0x60000000)!=0x60000000) #elif DECPMAX==16 #define ZEROWORD DOUBLEZERO #define DFISZERO(df) ((DFWORD(df, 1)==0 \ && (DFWORD(df, 0)&0x1c03ffff)==0 \ && (DFWORD(df, 0)&0x60000000)!=0x60000000)) #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \ ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000) #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000) #define DFISCCZERO(df) (DFWORD(df, 1)==0 \ && (DFWORD(df, 0)&0x0003ffff)==0) #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \ && (DFWORD(df, 1)&~0x49124491)==0) #elif DECPMAX==34 #define ZEROWORD QUADZERO #define DFISZERO(df) ((DFWORD(df, 3)==0 \ && DFWORD(df, 2)==0 \ && DFWORD(df, 1)==0 \ && (DFWORD(df, 0)&0x1c003fff)==0 \ && (DFWORD(df, 0)&0x60000000)!=0x60000000)) #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \ ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000) #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000) #define DFISCCZERO(df) (DFWORD(df, 3)==0 \ && DFWORD(df, 2)==0 \ && DFWORD(df, 1)==0 \ && (DFWORD(df, 0)&0x00003fff)==0) #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \ && (DFWORD(df, 1)&~0x44912449)==0 \ && (DFWORD(df, 2)&~0x12449124)==0 \ && (DFWORD(df, 3)&~0x49124491)==0) #endif /* Macros to test if a certain 10 bits of a uInt or pair of uInts */ /* are a canonical declet [higher or lower bits are ignored]. */ /* declet is at offset 0 (from the right) in a uInt: */ #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e) /* declet is at offset k (a multiple of 2) in a uInt: */ #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \ || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) /* declet is at offset k (a multiple of 2) in a pair of uInts: */ /* [the top 2 bits will always be in the more-significant uInt] */ #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \ || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \ || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) /* Macro to test whether a full-length (length DECPMAX) BCD8 */ /* coefficient, starting at uByte u, is all zeros */ /* Test just the LSWord first, then the remainder as a sequence */ /* of tests in order to avoid same-level use of UBTOUI */ #if DECPMAX==7 #define ISCOEFFZERO(u) ( \ UBTOUI((u)+DECPMAX-4)==0 \ && UBTOUS((u)+DECPMAX-6)==0 \ && *(u)==0) #elif DECPMAX==16 #define ISCOEFFZERO(u) ( \ UBTOUI((u)+DECPMAX-4)==0 \ && UBTOUI((u)+DECPMAX-8)==0 \ && UBTOUI((u)+DECPMAX-12)==0 \ && UBTOUI(u)==0) #elif DECPMAX==34 #define ISCOEFFZERO(u) ( \ UBTOUI((u)+DECPMAX-4)==0 \ && UBTOUI((u)+DECPMAX-8)==0 \ && UBTOUI((u)+DECPMAX-12)==0 \ && UBTOUI((u)+DECPMAX-16)==0 \ && UBTOUI((u)+DECPMAX-20)==0 \ && UBTOUI((u)+DECPMAX-24)==0 \ && UBTOUI((u)+DECPMAX-28)==0 \ && UBTOUI((u)+DECPMAX-32)==0 \ && UBTOUS(u)==0) #endif /* Macros and masks for the sign, exponent continuation, and MSD */ /* Get the sign as DECFLOAT_Sign or 0 */ #define GETSIGN(df) (DFWORD(df, 0)&0x80000000) /* Get the exponent continuation from a decFloat *df as an Int */ #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL))) /* Ditto, from the next-wider format */ #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL))) /* Get the biased exponent similarly */ #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df))) /* Get the unbiased exponent similarly */ #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS) /* Get the MSD similarly (as uInt) */ #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26]) /* Compile-time computes of the exponent continuation field masks */ /* full exponent continuation field: */ #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) /* same, not including its first digit (the qNaN/sNaN selector): */ #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) /* Macros to decode the coefficient in a finite decFloat *df into */ /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */ /* In-line sequence to convert least significant 10 bits of uInt */ /* dpd to three BCD8 digits starting at uByte u. Note that an */ /* extra byte is written to the right of the three digits because */ /* four bytes are moved at a time for speed; the alternative */ /* macro moves exactly three bytes (usually slower). */ #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4) #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3) /* Decode the declets. After extracting each one, it is decoded */ /* to BCD8 using a table lookup (also used for variable-length */ /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */ /* length which is not used, here). Fixed-length 4-byte moves */ /* are fast, however, almost everywhere, and so are used except */ /* for the final three bytes (to avoid overrun). The code below */ /* is 36 instructions for Doubles and about 70 for Quads, even */ /* on IA32. */ /* Two macros are defined for each format: */ /* GETCOEFF extracts the coefficient of the current format */ /* GETWCOEFF extracts the coefficient of the next-wider format. */ /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */ #if DECPMAX==7 #define GETCOEFF(df, bcd) { \ uInt sourhi=DFWORD(df, 0); \ *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ dpd2bcd8(bcd+1, sourhi>>10); \ dpd2bcd83(bcd+4, sourhi);} #define GETWCOEFF(df, bcd) { \ uInt sourhi=DFWWORD(df, 0); \ uInt sourlo=DFWWORD(df, 1); \ *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ dpd2bcd8(bcd+1, sourhi>>8); \ dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ dpd2bcd8(bcd+7, sourlo>>20); \ dpd2bcd8(bcd+10, sourlo>>10); \ dpd2bcd83(bcd+13, sourlo);} #elif DECPMAX==16 #define GETCOEFF(df, bcd) { \ uInt sourhi=DFWORD(df, 0); \ uInt sourlo=DFWORD(df, 1); \ *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ dpd2bcd8(bcd+1, sourhi>>8); \ dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ dpd2bcd8(bcd+7, sourlo>>20); \ dpd2bcd8(bcd+10, sourlo>>10); \ dpd2bcd83(bcd+13, sourlo);} #define GETWCOEFF(df, bcd) { \ uInt sourhi=DFWWORD(df, 0); \ uInt sourmh=DFWWORD(df, 1); \ uInt sourml=DFWWORD(df, 2); \ uInt sourlo=DFWWORD(df, 3); \ *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ dpd2bcd8(bcd+1, sourhi>>4); \ dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ dpd2bcd8(bcd+7, sourmh>>16); \ dpd2bcd8(bcd+10, sourmh>>6); \ dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ dpd2bcd8(bcd+16, sourml>>18); \ dpd2bcd8(bcd+19, sourml>>8); \ dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ dpd2bcd8(bcd+25, sourlo>>20); \ dpd2bcd8(bcd+28, sourlo>>10); \ dpd2bcd83(bcd+31, sourlo);} #elif DECPMAX==34 #define GETCOEFF(df, bcd) { \ uInt sourhi=DFWORD(df, 0); \ uInt sourmh=DFWORD(df, 1); \ uInt sourml=DFWORD(df, 2); \ uInt sourlo=DFWORD(df, 3); \ *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ dpd2bcd8(bcd+1, sourhi>>4); \ dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ dpd2bcd8(bcd+7, sourmh>>16); \ dpd2bcd8(bcd+10, sourmh>>6); \ dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ dpd2bcd8(bcd+16, sourml>>18); \ dpd2bcd8(bcd+19, sourml>>8); \ dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ dpd2bcd8(bcd+25, sourlo>>20); \ dpd2bcd8(bcd+28, sourlo>>10); \ dpd2bcd83(bcd+31, sourlo);} #define GETWCOEFF(df, bcd) {??} /* [should never be used] */ #endif /* Macros to decode the coefficient in a finite decFloat *df into */ /* a base-billion uInt array, with the least-significant */ /* 0-999999999 'digit' at offset 0. */ /* Decode the declets. After extracting each one, it is decoded */ /* to binary using a table lookup. Three tables are used; one */ /* the usual DPD to binary, the other two pre-multiplied by 1000 */ /* and 1000000 to avoid multiplication during decode. These */ /* tables can also be used for multiplying up the MSD as the DPD */ /* code for 0 through 9 is the identity. */ #define DPD2BIN0 DPD2BIN /* for prettier code */ #if DECPMAX==7 #define GETCOEFFBILL(df, buf) { \ uInt sourhi=DFWORD(df, 0); \ (buf)[0]=DPD2BIN0[sourhi&0x3ff] \ +DPD2BINK[(sourhi>>10)&0x3ff] \ +DPD2BINM[DECCOMBMSD[sourhi>>26]];} #elif DECPMAX==16 #define GETCOEFFBILL(df, buf) { \ uInt sourhi, sourlo; \ sourlo=DFWORD(df, 1); \ (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ +DPD2BINK[(sourlo>>10)&0x3ff] \ +DPD2BINM[(sourlo>>20)&0x3ff]; \ sourhi=DFWORD(df, 0); \ (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \ +DPD2BINK[(sourhi>>8)&0x3ff] \ +DPD2BINM[DECCOMBMSD[sourhi>>26]];} #elif DECPMAX==34 #define GETCOEFFBILL(df, buf) { \ uInt sourhi, sourmh, sourml, sourlo; \ sourlo=DFWORD(df, 3); \ (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ +DPD2BINK[(sourlo>>10)&0x3ff] \ +DPD2BINM[(sourlo>>20)&0x3ff]; \ sourml=DFWORD(df, 2); \ (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \ +DPD2BINK[(sourml>>8)&0x3ff] \ +DPD2BINM[(sourml>>18)&0x3ff]; \ sourmh=DFWORD(df, 1); \ (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \ +DPD2BINK[(sourmh>>6)&0x3ff] \ +DPD2BINM[(sourmh>>16)&0x3ff]; \ sourhi=DFWORD(df, 0); \ (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \ +DPD2BINK[(sourhi>>4)&0x3ff] \ +DPD2BINM[DECCOMBMSD[sourhi>>26]];} #endif /* Macros to decode the coefficient in a finite decFloat *df into */ /* a base-thousand uInt array (of size DECLETS+1, to allow for */ /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/ /* Decode the declets. After extracting each one, it is decoded */ /* to binary using a table lookup. */ #if DECPMAX==7 #define GETCOEFFTHOU(df, buf) { \ uInt sourhi=DFWORD(df, 0); \ (buf)[0]=DPD2BIN[sourhi&0x3ff]; \ (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \ (buf)[2]=DECCOMBMSD[sourhi>>26];} #elif DECPMAX==16 #define GETCOEFFTHOU(df, buf) { \ uInt sourhi, sourlo; \ sourlo=DFWORD(df, 1); \ (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ sourhi=DFWORD(df, 0); \ (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \ (buf)[5]=DECCOMBMSD[sourhi>>26];} #elif DECPMAX==34 #define GETCOEFFTHOU(df, buf) { \ uInt sourhi, sourmh, sourml, sourlo; \ sourlo=DFWORD(df, 3); \ (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ sourml=DFWORD(df, 2); \ (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \ (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \ sourmh=DFWORD(df, 1); \ (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \ (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \ sourhi=DFWORD(df, 0); \ (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \ (buf)[11]=DECCOMBMSD[sourhi>>26];} #endif /* Macros to decode the coefficient in a finite decFloat *df and */ /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */ /* After the addition then most significant 'digit' in the array */ /* might have a value larger then 10 (with a maximum of 19). */ #if DECPMAX==7 #define ADDCOEFFTHOU(df, buf) { \ uInt sourhi=DFWORD(df, 0); \ (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \ if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \ if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ (buf)[2]+=DECCOMBMSD[sourhi>>26];} #elif DECPMAX==16 #define ADDCOEFFTHOU(df, buf) { \ uInt sourhi, sourlo; \ sourlo=DFWORD(df, 1); \ (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ sourhi=DFWORD(df, 0); \ (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \ if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ (buf)[5]+=DECCOMBMSD[sourhi>>26];} #elif DECPMAX==34 #define ADDCOEFFTHOU(df, buf) { \ uInt sourhi, sourmh, sourml, sourlo; \ sourlo=DFWORD(df, 3); \ (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ sourml=DFWORD(df, 2); \ (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \ if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \ if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \ sourmh=DFWORD(df, 1); \ (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \ (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \ if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \ (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \ if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \ sourhi=DFWORD(df, 0); \ (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \ (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \ if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \ (buf)[11]+=DECCOMBMSD[sourhi>>26];} #endif /* Set a decFloat to the maximum positive finite number (Nmax) */ #if DECPMAX==7 #define DFSETNMAX(df) \ {DFWORD(df, 0)=0x77f3fcff;} #elif DECPMAX==16 #define DFSETNMAX(df) \ {DFWORD(df, 0)=0x77fcff3f; \ DFWORD(df, 1)=0xcff3fcff;} #elif DECPMAX==34 #define DFSETNMAX(df) \ {DFWORD(df, 0)=0x77ffcff3; \ DFWORD(df, 1)=0xfcff3fcf; \ DFWORD(df, 2)=0xf3fcff3f; \ DFWORD(df, 3)=0xcff3fcff;} #endif /* [end of format-dependent macros and constants] */ #endif #else #error decNumberLocal included more than once #endif