# Dendritic Metrics Crate This crate contains metrics for measuring loss, accuracy of general ML models available for dendritic. Metrics contain loss and activiation functions. ## Features - **Activations**: Activation functions for non linear data. - **Loss**: Loss functions for measuring accuracy of classifiers/regressors ## Disclaimer The dendritic project is a toy machine learning library built for learning and research purposes. It is not advised by the maintainer to use this library as a production ready machine learning library. This is a project that is still very much a work in progress. ## Example Usage This is an example of some of the loss and activation functions dendritic has to offer ```rust use dendritic_ndarray::ndarray::NDArray; use dendritic_ndarray::ops::*; use dendritic_metrics::activations::*; use dendritic_metrics::loss::*; fn main() { // Mocked Prediction values let y_pred: NDArray = NDArray::array( vec![10, 1], vec![ 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] ).unwrap(); // Mocked true values let y_true: NDArray = NDArray::array( vec![10, 1], vec![ 0.19, 0.33, 0.47, 0.7, 0.74, 0.81, 0.86, 0.94, 0.97, 0.99 ] ).unwrap(); // Calculate binary cross entropy for predicted and true values let result = binary_cross_entropy(&y_true, &y_pred).unwrap(); println!("{:?}", result); // Input dataset to perform softmax activation let input: NDArray = NDArray::array( vec![3, 1], vec![1.0, 1.0, 1.0] ).unwrap(); let sm_result = softmax_prime(input); println!("{:?}", sm_result.values()); } ```