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Abstract
Many of the most popular scalable data-processing

frameworks are fundamentally limited in the generality
of computations they can express and efficiently exe-
cute. These limitations result in a surprising absence of
algorithms from domains where the scales of data call
for them most. In this paper we present the design and
implementation of a data-processing framework that is
general, scalable, and responsive. Our evaluation indi-
cates that our system’s performance is comparable to
(and can even exceed) specialized systems across mul-
tiple domains, while at the same time significantly gen-
eralizing their capabilities.

1 Introduction
The landscape of systems for computing on “big data” is
fractured into many specialized systems, each with their
own capabilities and limitations. Batch processors [9,
14, 27] support general computations, but are expen-
sive for random access to mutable state. Stream proces-
sors [6, 16, 23] support high rates of changes, but only for
the equivalent of straight-line programs: directed acyclic
graphs. Graph processors [8, 11, 28] support iterative
computation, but for static or infrequently updated in-
put data. New specialized systems emerge regularly, re-
cently to handle mutually recursive tasks in Datalog eval-
uation [22] and program analysis [25], because existing
systems are not sufficient for increasingly sophisticated
computations.

Our goal in this paper is to develop a broadly capable
data processing system. We are motivated by the number
of specialized systems that emerge for new tasks, each
introducing some novel but narrow functionality, that
nonetheless re-use common principles. We have been en-
couraged by interactions with non-systems builders who
have needs that hybrize those of current offerings, but
which are not fundamentally intractable. We have taken
these experiences and distilled them into a system that
covers a large class of computations, including all those
mentioned above and more, built from just a small num-
ber of re-usable components.

Our system is based on differential dataflow [17], a
data-parallel processing paradigm in which users express
their computation using high-level operations on collec-
tions of records, and which then responds to arbitrary

input changes with the corresponding output changes.
These operations include relational, data-parallel, and it-
erative constructs, sufficient for SQL-based relational an-
alytics, MapReduce dataflows, iterative graph computa-
tion, and mutually recursive Datalog evaluation. Its ex-
ecution as a dataflow of data-parallel operators can be
effectively distributed across multiple workers, and its
incremental semantics support low-latency and high-rate
updates. Although differential dataflow has a reference
implementation, as part of the Naiad [18] project, several
aspects of this implementation (common to most data
processors) limit its generality and performance.

This paper describes K-Pg, a complete re-
implementation of differential dataflow, based on a
fundamentally re-designed dataflow processor. Whereas
traditional big data processors create and manage
dataflows of independent operators, K-Pg exposes and
shares indexed state between operators. Such sharing
is common in database systems, but largely absent
from scalable systems like Hadoop, Spark, Flink, and
indeed Naiad. Such sharing not only reduces commu-
nication, computation, and memory use, but also leads
to higher-throughput operator implementations and
more responsive deployment of new dataflows. K-Pg’s
adherence to a specific data and computational model
brings structure and meaning to its shared state, and its
system architecture makes such sharing effecient.

Several changes are required to a conventional
dataflow processor to realize the performance benefits of
shared indexed state. We introduce a new dataflow opera-
tor arrange that maintains a worker-local shared index
with high throughput, low latency, and a compact rep-
resentation, using minimal coordination; we detail this
design in Section 3. Readers of shared indices must take
care to restrict how they interpret the index, and to indi-
cate historical detail they no longer require so that the in-
dex may be compacted; we detail the arrangements inter-
face in Section 3. Finally, several dataflow operators can
be re-written to operate more efficiently on pre-indexed
input batches; we describe these implementations in Sec-
tion 4. These changes represent the bulk of K-Pg by
volume, which otherwise runs on an unmodified timely
dataflow runtime [1].

We implemented K-Pg in Rust, and experimentally
evaluate it on a range of computations with different per-



formance requirements. We evaluate K-Pg on benchmark
tasks in relational analytics, graph processing, and Dat-
alog evaluation, where we confirm that its performance
is comparable to and in some cases better than other
systems in their target domains. We also evaluate K-Pg
on tasks supported by relatively fewer and more spe-
cialized systems, including interactive graph navigation,
program analysis, and goal-driven evaluation, where we
find that framing queries as differential dataflow compu-
tations can gives us lower latency and higher throughput.
Despite the variety of tasks and requirements, these are
each implemented as idioms in one sufficiently expres-
sive and performant system.

Contributions. K-Pg is our attempt to provide a compu-
tational framework that is general, scalable, and respon-
sive. This paper summarizes the design and implemen-
tation of K-Pg, with the specific intended contributions
of:

1. A data-parallel dataflow design with indexed state
shared between operators in multiple dataflows
(§ 2).

2. A multi-versioned shared index design with high
throughput, low read and write latency, and com-
pact memory footprint (§ 3).

3. New operator implementations based on streams of
shared indexed batches (§ 4),

4. An evaluation of K-Pg that indicates it can be as
capable as specialized data processing systems in
their target domains, while supporting a more gen-
eral range of workloads than any, including some
that cannot currently run on data-parallel systems
(§ 5).

We conclude in Section 7 with a summary and thoughts
for future research directions.

2 System design and background
K-Pg is built on an existing timely dataflow execution
layer [1], and inherits its distributed execution design. K-
Pg also borrows Naiad’s differential dataflow design as a
timely dataflow of operators that consume and produce
collection updates, but it makes fundamental modifica-
tions to how this occurs. This section overviews neces-
sary background about timely and differential dataflow,
and then describes K-Pg’s architectural changes.

2.1 Timely dataflow

Timely dataflow is a framework for data-parallel
dataflow execution, introduced by Naiad [18]. It pro-
vides a dataflow abstraction in which nodes house op-
erator logic, and edges transport data from the outputs
of operators to the inputs of other operators. All data
in timely dataflow bear a partially ordered logical times-
tamp, and operators are obliged to maintain (or advance)

these timestamps as they process data. Timely dataflow
graphs may have cycles, but structural requirements pre-
clude cycles along which timestamps do not strictly in-
crease.

Timely dataflow schedules work on a static set of
workers, each a single thread of control. All operators
are sharded across all workers, and each worker multi-
plexes its time between each dataflow and dataflow oper-
ator. Workers schedule operator shards in response to the
arrival of data, which are routed among workers accord-
ing to functions the operators specify for each of their
inputs (e.g. a function of a key in the record, to ensure
all records with the same key arrive at the same worker).
Crucially, for our purposes, we can co-locate on the same
worker operator shards that might profitably share the
same indexed inputs.

In addition to scheduling operators and transporting
data, the timely dataflow workers provide operator shards
with bounds on the potential timestamps they may yet
see at each of their inputs. This information comes in
the form of a frontier: a set of logical times such that all
future timestamps must be greater than or equal to some
element of the frontier. We say that a time is in advance
of a frontier if it is greater than or equal to some element
of the frontier. A frontier only ever advances, and informs
operator shards when they have received all records with
certain timestamps, at which point it may be appropriate
to take some action.

A user program alternately interacts with dataflows,
creates new dataflows, and schedules dataflow operators.
Any number of dataflows can be run concurrently, but the
set must be the same on all workers. Dataflows are auto-
matically retired when they their inputs are closed and
they contain no more messages. User code can program-
matically construct dataflows, and nothing prevents the
sharing of state within a worker (even across dataflows),
other than a discipline for doing so.

2.2 Differential dataflow

Differential dataflow computations are initially defined
as functional transformations of time-varying collec-
tions, but are then rendered to timely dataflow compu-
tations that propagate only changes to these collections.
A user interacts with a differential dataflow computation
by supplying timestamped input changes and observing
the correspondingly timestamped output changes. Differ-
ential dataflow’s responsibility is to maintain the func-
tional relationships between the exogenous input collec-
tions and all intermediate and output collections, as those
input collections change arbitrarily.

A differential dataflow collection is parameterized by
three types, Data, Time, and Diff. The Time type must be
a lattice (supporting less than, equals, least upper bound,
and greatest lower bound) and the Diff type must be an
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  // create inputs.
  let nodes = scope.new_input();
  let edges = scope.new_input();

  // define computation.
  let reach = nodes.iterate(|inner|
      edges.semijoin(inner)
           .map(|(src,dst)| dst)
           .concat(nodes)
           .distinct()
  );

  // inspect and monitor output.
  reach.inspect(/* per-record closure */)
       .probe()

Figure 1: Graph reachability written in differential
dataflow, and the resulting dataflow graph.

associative group (with a + operator and a zero element).
A differential dataflow collection should be interpreted
as a map from Data to Diff that can take on arbitrary
values at each element of Time.

A differential dataflow collection is defined either as
an input to the computation or by a functional trans-
formation of other collections. Example transformations
include standard operators like map, filter, join,
and group (equivalent to MapReduce’s reduce). Less
standard, differential dataflow provides an iterate op-
erator that subjects its input collection to a supplied dif-
ferential dataflow fragment an unbounded number of
times. The iterate operator is rendered to a timely
dataflow subgraph, rather than a single dataflow opera-
tor, and extends all timestamps with a new “round of it-
eration” coordinate.

Operationally, a differential dataflow computation is
rendered to a timely dataflow in which operators con-
sume and produce streams of (data, time, diff) update
triples. Each such stream defines a collection at all times
t not in advance of its frontier, from the accumulation of
update triples at times less or equal to t. Each differential
dataflow operator’s output stream should accumulate to
the functional operator logic applied to the correspond-
ingly accumulated input stream, for all times t not in ad-
vance of the input frontier. The essential difference from
other streaming systems is that these times may be only
partially ordered, which can result in more efficient dif-
ferencing for iterative computations.

Figure 1 presents an example graph reachability com-
putation. Two inputs nodes and edges are first de-
fined, and then an iterative computation describes an it-
erative update rule for a set of nodes: joining with edges,
re-introduce nodes, and retain the distinct elements. Both
nodes and edges can then be interactively updated, in-
troducing and perhaps changing a set of edges, and up-
dating the set of source nodes to initiate queries. As the
changes propagate, the inspect operator’s closure will

be called, and the probe reports its input frontier to con-
firm the completion of timestamps. Each worker main-
tains a shard of each operator, and is responsible for a
fraction of the keyspace of each; the workers collectively
exchange data along edges leading in to the join and
distinct operators.

2.3 Design modifications

K-Pg’s stateful operators implementations are broken
in two parts: an arrange operator, which exchanges,
batches, and indexes updates, and thinner shell operators
which apply operator-specific logic using these shared
indices. The arrange operator is new to differential
dataflow (and would likely be new to other streaming
systems), and the shell operators have substantially dif-
ferent (and often much simpler) designs given their in-
put as indexed batches rather than streams of indepen-
dent updates. These two elements require careful design
to support high-throughput updates to shared state. We
discuss the arrange operator in Section 3 and new op-
erator designs in Section 4.

Our proposed architecture for K-Pg results from a set
of design principles; constraints we impose to increase
the likelihood that the computation executes robustly, de-
spite (or perhaps because of) the absence of frustrating
systems knobs. We will invoke these principles in our
design discussions, and in all cases we view violations
of any of these principles as problematic.

Principle 1: Decouple logical and physical batching.
K-Pg computations consume, manipulate, and produce
large volumes of updates at distinct logical times. These
updates should be manipulated in large physical batches,
with no artificial serialization imposed by the logical
times.

Principle 2: Sequential memory traversal. The state
managed by K-Pg represents historical data for large col-
lections that may grow beyond the capacity of our fast
random access memory. Access to operator state should
be at worst one sequential pass (though ideally to a sparse
subset).

Principle 3: Bounded memory footprint. K-Pg can
produce large volumes of updates, but they may be to a
relatively smaller number of distinct records. We should
use memory proportional to the number of distinct (data,
time) pairs in the system.

Principle 4: Operator work proportionality. The vol-
ume of data K-Pg operators consume and produce can
vary substantially. Operator invocations should perform
computation proportional to the number of output up-
dates it might produce.
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Figure 2: A worker-local overview of arrangement.

3 Arrangements
Our most substantial design departure from standard
stream processors, returning somewhat to the design of
relational databases, is our use and re-use of arranged
streams of indexed data. We introduce a new arrange
operator, which takes as input a stream of update triples
and produces an arrangement: a pair of (i) a stream of
shared indexed batches of updates and (ii) a shared, com-
pactly maintained index of all produced updates. Ar-
rangements allow K-Pg to spend the communication,
computation, and memory required to arrange data once,
and eliminate the cost all subsequent uses of the arrange-
ment. This representation also provides a uniform ap-
proach to historical and streaming changes, where the
former are simply presented as surprisingly large and
promptly delivered update batches.

In this section we work through the details of the de-
sign and implementation of arrangements, and explain
how they support shared indexed data under high update
throughputs. Figure 2 sketches the elements and some
uses of an arrangement, which we will further develop in
the text.

3.1 Collection traces

Following prior work [17], a collection trace is the set of
update triples (data, time, diff) that define a collection at
any time t by the accumulation of those (data, diff ) for
which time≤ t.

Our design commits to a collection trace as logically
equivalent to an append-only list of immutable batches of
update triples. Each batch is described by two frontiers of
times, lower and upper, and contains exactly those up-
dates whose times are in advance of the lower frontier
and not in advance of the upper frontier. The upper fron-
tier of each batch should match the lower frontier of the
next batch, and the growing list of batches reports the
developing history of committed updates triples. A batch
may be empty, which indicates that no updates exist in

the indicated range of times.
A sequence of batches with lower and upper frontiers

is self-describing, in that it can be understood without
additional runtime support from the timely dataflow sys-
tem. An independent timely dataflow, or other computa-
tion, can consume this collection trace representation and
correctly understand the collection history.

3.2 The arrange operator

The arrange operator receives update triples, and is
tasked with minting new immutable indexed batches of
updates in response to advances in its input frontier and
compactly maintaining the collection trace in response to
advances in trace handle frontiers.

At a high level, the arrange operator buffers incom-
ing updates until the input frontier advances, at which
point it extracts and indexes all buffered updates not in
advance of the advanced input frontier. A shared refer-
ence to the newly minted immutable batch is both added
to the trace and emitted as output from the operator. As
part of adding the batch to the trace, the operator may
need to perform some maintenance to keep the trace
representation compact and easy to navigate. Abstractly
these tasks are not hard, but there are several details re-
quired to satisfy our design principles.

Input buffering. Incoming update triples are buffered in
what is effectively a partially evaluated merge sort: a se-
quence of sorted lists of geometrically increasing size,
which are merged when two are within a constant mul-
tiple in length. This representation allows us to coalesce
updates with the same (data, time) fields, and ensures
that we maintain a number of updates at most linear in
the number of distinct (data, time) pairs (the longest list
contains only distinct pairs, and all other lists accumulate
to at most a constant multiple of its length).

Physical batching. K-Pg maintains a large collection
of updates and informs the timely dataflow system only
about changes to the lower frontier of update timestamps
held. The input frontier can advance in large steps, and
in response the arrange operator creates one update
batch and involves the timely dataflow system only once,
independent of the number of distinct logical times pro-
cessed. This decouples the logical update rate from the
physical batching, and is crucial to support high update
rates. Limitations of Naiad’s notification API prevent it
from supporting physical batching of logical timestamps.

Shared references. Immutable batches are wrapped in
reference-counted shared references, so that the batch
and downstream consumers can reference the same un-
derlying memory. The trace is also shared but it is not
immutable. Importantly, the arrange operator has only
a weak reference to the trace, so that should all read-
ers drop their references, the trace (and its references to
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batches) are dropped; the arrange operator will con-
tinue to produce indexed batches, but it will not (and
cannot) add them to the now non-existent trace. This op-
timization is important for the performance of the join
operator where one input has ceased changing (and we
may cease maintaining the trace for its still-changing in-
put), as seen often in processing static graph data.

Amortized trace maintenance. The arrange operator
must maintain a compact representation that is easy for
readers to navigate, even as we add batches to a trace.
Our choice is to merge adjacent batches of comparable
size, so that we maintain a number of batches at most
logarithmic in the number of distinct (data,time)
pairs. These merges happen on the same worker thread,
which we do not want to block when large batches
should be merged. Instead, we initialize but do not com-
plete a merge, and for each introduced batch we ap-
ply an amount of effort proportional to its size to each
in-progress merge. A large constant of proportionality
performs merges eagerly and trades latency away for
throughput, whereas a small constant provides lower la-
tency but maintains more open batches for operators to
navigate. A constant of at least one ensures that merges
complete before their results are required for a new
merge. When a merge completes the new batch is in-
stalled and references to the merged batches are dropped.

Consolidation. A trace can coalesce timestamps that are
indistinguishable to all trace readers and consolidate up-
dates at now indistinguishable times, in a process analo-
gous to MVCC “vacuuming”. Each reader’s trace handle
(described soon) maintains a frontier of times the trace
must distinguish. When we initiate a merge we capture
the lower bound F of all these times, and we replace each
time t with a representative repF(t) that compares iden-
tically to t for all times in advance of F . Updates with the
same representative timestamp are consolidated.

Naiad’s reference implementation performs the same
consolidation, but does so in place and only in response
to reading the state for the key. K-Pg performs consol-
idation at merges; regular churn ensures that this hap-
pens for all keys. Without a regular vacuuming mecha-
nism, Naiad effectively leaks memory for cancellations
of records that are not seen again. The mathematics of
compaction do not appear to have been recorded previ-
ously, so we present the formal definition of repF(t) and
proofs of its optimality and correctness in the appendix.

Modularity. The arrange operator is defined in terms
of a generic trace type. Our amortized merging trace is
defined in terms of a generic batch type. Our batch im-
plementations are defined for generic data types that are
orderable (for merging) and hashable (for partitioning).
Each of these layers can be replaced without rewriting
the surrounding superstructure. For example, we provide

two distinct batches for data structured as (key, val) and
just key, the latter with a simplified representation and
navigation logic.

3.3 Trace handles

Read access to a collection trace is provided through
a trace handle. A trace handle provides the ability to
import a collection into a new dataflow, and to man-
ually navigate a collection, but both only “as of” a re-
stricted set of times. Each trace handle has a frontier-
valued capability, and guarantees only that the accumu-
lated collections will be correct when accumulated at
times in advance of this frontier. The trace itself tracks
outstanding trace handle capabilities, which indirectly
inform it about times that are indistinguishable to all
readers (and which can be coalesced).

Many operators (including join and group) only
need access to their accumulated input collections for
times in advance of their input frontiers. As these fron-
tiers advance, the operators are able to downgrade the
frontier capability on their trace handles and still func-
tion correctly. Some operators are also able to drop their
trace handles entirely, notably the join operator when
its opposite input ceases changing. These actions, down-
grading and dropping capabilities, provide the trace with
the opportunity to consolidate the trace representation.

A trace handle has a method import which creates
an arrangement in a new dataflow exactly mirroring that
of the trace. The imported collection immediately pro-
duces consolidated historical batches, and begins to pro-
duce newly minted batches. The historical batches re-
flect all updates applied to the collection, either with
full historical detail or coalesced to a more recent times-
tamp, depending on whether the handle’s frontier has
been downgraded. Full historical information means that
computations do not require special logic or modes to ac-
commodate attaching to incomplete in-progress streams;
imported traces appear indistinguishable to the original
streams, other than their large batch sizes.

4 Operator implementations
Many of K-Pg’s operators act on shared indexed batches
of input updates, and this structure and potential vol-
ume of data can lead to very different operator imple-
mentations from record-at-a-time streaming systems. In
this section we explain K-Pg’s operator implementations,
starting with the simplest examples and proceeding to the
more complex join, group, and iterate operators.

4.1 Key-preserving operators

Several stateless operators are “key-preserving”, in that
they do not transform their input data to the point that it
needs to be re-arranged. Example operators are filter,
concat, negate, and the iteration helper methods
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enter and leave. These operators can be imple-
mented either as streaming operators for streams of up-
date triples, or as wrappers around arrangements. For ex-
ample, the filter operator only needs to restrict the
data presented in batch and trace navigation, based on
whatever predicate is supplied to the filter operator.

These implementations contain trade-offs. An aggres-
sive filter may reduce the volume of data to the point that
it is relatively cheap to maintain a separate index, and
relatively ineffective to search in a large index only to
discard the majority of results. A user can filter an ar-
rangement, or first reduce the arrangement to a stream of
updates and then filter it.

4.2 Key-altering operators

Some stateless operators are “key-altering”, in that the
indexed representation of their output has little in com-
mon with that of their input. The most obvious example
is the map operator, which may perform arbitrary record-
to-record transformations. These operators reduce any
arranged representations to streams of update triples.

4.3 Stateful operators

Differential dataflow’s stateful operators are data-
parallel, meaning that their input data have a (key, val)
structure, and that the computation acts independently on
each group of key data. This independence is what allows
K-Pg and similar systems to distribute operator work
across otherwise independent workers, who can then pro-
cess their work without further coordination. At a smaller
scale, this independence means that each worker can de-
termine the effects of a sequence of updates on a key-by-
key basis, resolving all updates to a key before moving
to the next key, even if this violates the timestamp order.

History replay. Our operators rely, for reasons of the
operator work proportionality principle, on a common
mechanism that for each key takes historical tuples (val,
time, diff) and allows the operator to advance their ac-
cumulation (under the partial order) forward through a
compatible total order on times. As we move forward
through times we maintain the set of distinguishable up-
dates, using the same logic as a trace does for consolida-
tion, but in a private per-key copy that we can mutate and
eventually discard. By consolidating as we go, each step
forward takes time proportional to the number of distin-
guishable updates. Without this layer it is easy for opera-
tors to unintentionally “go quadratic” where each update
re-scans the full history to re-form its accumulated view,
which causes large physical batching to go into a tailspin.

4.3.1 The join operator

Our join operator takes as inputs batches of updates
from each of its arranged inputs. Its job is to produce any
changes in outputs that result from its advancing inputs.

Our implementation has several variations from a tradi-
tional streaming hash-join.

Trace capabilities. When join retires a batch of input
changes, the resulting outputs all have timestamps in ad-
vance of those in the input batch. This means that times
in the opposing trace do not need to be distinguished at
times not an advance of the first input frontier. The join
operator downgrades each of its trace handle capabilities
to be the input frontier of the opposing input, and drops a
handle when the opposing input frontier becomes empty.

Alternating seeks. Join can receive input batches of sub-
stantial size, especially from a maintained arranged col-
lection. To respect operator work proportionality, we per-
form alternating seeks in the input cursors: when the cur-
sor keys match we perform work, and the keys do not
match we seek forward for the larger key in the cursor
with the smaller key. This pattern ensures that we per-
form work at most linear in the smaller of the two sizes,
seeking rather than scanning through the cursor of the
larger trace, even when it is supplied as an input.

Amortized work. Especially in graph computation, the
join operator may be called upon to produce a signifi-
cant amount of output data that can be reduced only once
is crosses an exchange edge for a downstream operator. If
each input batch is immediately processed to completion
workers may be overwhelmed with the amount of out-
put data, either buffered for transmission or (as in K-Pg)
transmitted to the destination workers but then buffered
at each awaiting reduction. Instead, K-Pg responds to
new input batches by producing futures, which can each
be executed until sufficiently many outputs are produced
and are then suspended. These futures make copies of the
shared batch and trace references they require, and so do
not block state maintenance for other operators.

4.3.2 The group operator

The group operator takes as input a collection with data
of the form (key, val) and a reduction function from a
key and list of values to a list of output values. For each
key, we must reconsider each time that is the least up-
per bound of a set of times in updates for that key, which
can include times at which no updates occurred. Conse-
quently, the group operator tracks a list of interesting
pairs (key, time) of future work that is required even if
we see no input updates for the key at that time. To sup-
port this work, the operator also informs timely dataflow
that it retains the ability to send outputs with timestamps
in advance of the lower frontier of interesting times.

For each interesting (key, time) pair, the group op-
erator accumulates the input and output for key at time,
applies the reduction function to the input, and subtracts
the accumulated output. The group operator relies on
the history replay mechanism to amortize the cost of re-

6



processing a key across the multiple times it may need to
reconsider.

Output arrangements. The group operator uses a col-
lection trace for its output, to efficiently reconstruct what
it has previously produced as output without extensive
re-invocation of the supplied user logic (and to evade
potential non-determinism therein). This provides the
group operator the opportunity to share its output, just
as the arrange operator. It is not uncommon, espe-
cially in graph processing, for the results of a group
to be immediately joined with edges to disemminate the
information, and join can re-use the same indexed rep-
resentation that group uses internally for its output.

Specializations. The group operator is much simpler
for totally ordered times, and becomes simpler still when
it only needs to implement count or distinct. We
provide several such specialized operators, with type-
level restrictions to guarantee they are not mis-used.
Users select the operator that best suits their purpose, as
long as the types satisfy the imposed constraints.

4.4 Iteration

The iteration operator is largely unchanged from Na-
iad’s differential dataflow implementation. It creates a
new subgraph with an extended timestamp type, con-
taining an additional integer for “round of iteration” and
which is partially ordered using the product partial or-
der (two products are ordered if both of their coordi-
nates are equivalently ordered). The initial collection, the
method’s argument, is introduced as a stream of changes
at iteration zero, with the body of the iterative computa-
tion attached. At the tail of the body, the result is merged
with the negation of the initial input collection, and all
changes are returned around the loop to the head with
the iteration index incremented.

We have made two minor modifications. First, ar-
rangements external to the iteration can be introduced (as
can un-arranged collections) with the enter operator,
whose implementation for arrangements only wraps cur-
sors with logic that introduces a zero coordinate to the
timestamp; indices and batches remain shared. Second,
we introduced a Variable type for recursively defined
collections which allows for programmatic construction
of mutual recursion, as well as the ability to return in-
termediate collections other than the result of the loop
body. This second feature is important when we want to
share collections around a loop iteration, as it allows us
to rotate the loop body so that the sharing is within one
iteration while still returning the intended result.

5 Evaluation
We now shift to an evaluation of K-Pg, and its imple-
mentation of differential dataflow. To compare with prior

work we are interested in evaluating scalability, respon-
siveness, and generality, but we also want to assess the
benefits of state sharing and high throughput updates.

We run our experiments on 4-socket NUMA systems
equipped with 4 Intel Xeon E5-4650 v2 cpus each with
10 physical cores and 512GB of aggregate system mem-
ory. K-Pg distributes across multiple machines, but our
evaluation here is restricted to multiprocessors, which
have been sufficient to reproduce computation that re-
quire more resources for less expressive frameworks.

We start with microbenchmarks which assess the per-
formance of individual components of our system, pri-
marily the arrangement infrastructure. Our goal is to un-
derstand the robustness of the core state management op-
erator. We are specifically interested in the latency pro-
files at various throughputs, as we vary the characteristics
of the data, the offered load, and the number of workers.

We then move into several analytics tasks, including
relational queries, graph computation, and Datalog eval-
uation. We observe the benefits of decoupling logical
updates from physical batches for high throughput rela-
tional and graph computations, where we exceed update
rates of prior systems. We observe the benefits of state
sharing for graph computation and Datalog evaluation,
where more opportunities for re-use exist and for which
we see substantial reduction in memory footprint and la-
tencies, and an increase in throughput.

Due to the breadth of the evaluation, we have largely
restated recent reported measurements from other sys-
tems on comparable hardware, rather than attempt to re-
produce their results on our own hardware. Our goal is
not to demonstrate that K-Pg outperforms any of these
systems, only that its performance is comparable, while
supporting more general computation than the other sys-
tems. Many of the other systems, notably the databases,
provide significant additional functionality that K-Pg
does not provide.

5.1 Microbenchmarks

We perform several microbenchmarks assessing the
arrange operator applied to a continually changing
collection of 64bit identifiers (with 64bit timestamp and
signed difference). We are most interested in the distribu-
tion of response latencies as configurations change, and
we report all latencies in complementary cdf form (“frac-
tion of times with latency greater than”) to get high detail
in the tail of the distribution.

Varying load. Figure 3a reports the latency distributions
for a single worker as we vary the number of keys and
offered load in an open-loop harness, from 10M keys and
1M updates per second, downward by factors of two. K-
Pg allows the test harness to trade latency for throughput
until equilibrium is reached.
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(a) Varying offered load, 1 worker.
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(b) Strong scaling (fixed load).
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(c) Weak scaling (increasing load).
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(d) Throughput by task.
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(e) Amortized merging levels.
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(f) Join dataflow execution.

Figure 3: Microbenchmarks for arrangement and join execution.

Strong scaling. Figure 3b reports the latency distri-
butions for varying numbers of workers under a fixed
workload of 10M keys and 1M updates per second. As
the number of workers increases the latency-throughput
trade-off swings in favor of latency.

Weak scaling. Figure 3c reports the latency distributions
for varying numbers of workers as we proportionately
increase the offered load. While the shape of the latency
distribution changes, drawing in the tail at the expense of
median latency, the latencies generally remains stable.

Throughput. Figure 3d breaks down the peak through-
puts of sub-components of arrangement: batch forma-
tion, trace maintenance, and a count operator main-
tained for the results. The trace maintenance scaling is in-
terrupted at 32 workers by an unpleasant interaction with
the Linux memory subsystem that can likely be worked
around.

Amortized merging. Figure 3e reports the latency dis-
tributions for one and 32 workers each with three differ-
ent settings for merge amortization: eager, default, and
lazy. We see that for a single worker the lazier settings
have smaller tail latencies, but are more often in the tail.
For 32 workers, the lazier settings are significantly bet-
ter as workers are less likely to stall and block the entire
computation. As with garbage collection in Broom [10],
we conclude that large but rare dataflow interruptions are
nonetheless significant impediments to strong scaling.

Join proportionality. Figure 3f reports the distribu-
tions of latencies to install, execute, and complete
new dataflows joining small collections of varying size
against a pre-arranged collection of 10M keys. K-Pg has
nominal overheads for installing new dataflows, as low
as milliseconds, and executes joins in time proportionate
to the size of the small collection.

5.2 Analytics workloads

TPC-H is a traditional data analytics benchmark: twenty-
two relational queries of varying complexity over re-
lations that describe parts, orders, suppliers, and their
inter-relationships. Nikolic et al. [20] study the problem
of maintaining the TPC-H queries as they incrementally
load the source data, varying logical batching but with-
out decoupling it from physical batching. We implement
the same queries in K-Pg, but planned manually.

Absolute performance. Figure 4a reports absolute
throughputs on the twenty-two queries for a scale factor
10 input for DBToaster and K-Pg in three configurations:
single worker with batch size one, single worker with
batch size 1M, and 32 worker with batch size 1M. Physi-
cal batching allows K-Pg to increase throughput and dis-
tribute work without altering the computation.

Physical batching. Figure 4b reports the relative
throughput increases for one worker as we increase the
physical batching from one up to 1,000,000. The in-
creases are substantial at first, and continue but diminish
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Figure 4: Absolute and relative query rates for the 22 TPC-H queries.

with larger batch sizes.

Worker scaling. Figure 4c reports the relative through-
put increases as we increase the workers from one to six-
teen, holding physical batching at 1M. Many queries in-
crease their throughput proportionally, and correspond-
ingly reduce their latencies, though several which involve
global aggregation do not. The temporal nature of the
queries, producing histories for each aggregate, means
these computations resist traditional techniques like pre-
aggregation, and instead require techniques like parallel-
prefix aggregation to parallelize effectively.

TPC-H contains several opportunities for optimiza-
tion. Query 15 contains an argmax, which we imple-
mented hierarchically with a sequence of group oper-
ators using progressively more coarse keys; this trans-
formation was manual, but gains five orders of magni-
tude throughput over full re-evaluation as in Nikolic et al.
Queries Q11 and Q22 would benefit from an inequality
join operator, one that responds to changes in a threshold
by extracting the subset of values between the changes.

Several queries could be made more interactive. For
example, Query 21 asks for suppliers that kept orders
waiting, restricted to suppliers in Saudi Arabia (the na-
tion is a “substitution parameter” and could have other
values). This restriction is hard-wired into the query in
most systems, but our implementation maintains results
for all countries and joins the results with a query nation
at the end; it would be natural to have this be an input and
to allow users to ask about other countries interactively.

We could arrange each of the eight base relations
and maintain them as they change. This would provide
scalable incremental view maintenance over queries that
share these underlying indices. Unfortunately most of the
TPC-H queries first aggressively filter their inputs, and
do not provide opportunities to demonstrate these bene-
fits. A more sophisticated benchmark with broader uses
would potentially better highlight the potential of shar-
ing.

5.3 Graph workloads

We next evaluate K-Pg on graph workloads, ranging
from large computations on static graphs, to interactive
queries against evolving graphs.

Batch computation. We evaluated K-Pg on standard
computations of reachability, breadth-first distance la-
beling, and undirected connectivity, on a standard Twit-
ter social network. We compare against single-threaded
code, and several general systems applicable to graph
processing. There are any number of specialized graph
processors, and one should imagine them as perfectly
scaling versions of the single-threaded code. Importantly,
neither K-Pg nor the general systems require any graph
preprocessing, whereas the single-threaded and special-
ized graph processors do require varying amounts.

Our measurements indicate that K-Pg is consistently
faster than systems like BigDatalog, Myria, SociaLite,
and GraphX, and substanially slower (roughly 30x)
than purpose-written single-threaded code against pre-
processed graph data. We did find that when we modified
the purpose-written code to use hash maps for node state
instead of arrays, to accommodate non-preprocessed
node identifiers, K-Pg was immediately competitive at
twice the core count. We implemented an optimized
single-threaded computation to maintain BFS labels over
1 million graph updates, and K-Pg matched the perfor-
mance using between two and four cores (depending on
the graph properties).

Interactive queries. Pacaci et al [21] evaluate multiple
databases (graph and relational) on four interactive graph
queries: point look-ups, 1-hop look-ups, 2-hop look-ups,
and 4-hop shortest path queries (shortest paths of length
at most four). We implement each of these queries in dif-
ferential dataflow, each query as a dataflow where the
query arguments are independent collections that may be
modified to introduce or remove specific query instances.

Figure 5 reports latency distributions for the four
query classes on an evolving graph of 10 million nodes
and 64 million edges, under a load of 200,000 changes
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Figure 5: Graph query benchmarks. 32 workers, 10M nodes, 32M edges, 200K updates / second.

per second, half graph modifications and half query mod-
ifications. The reported latencies are comparable to those
reported in [21] for single queries against a static graph
(of the same size, but generated differently), except for
the shortest path queries that load the workers more. The
throughput greatly exceeds that observed in [21], primar-
ily because we are able to compile the repeated query
structure to dataflow, and the logical timestamps pre-
resolve read and write conflicts.

Figure 5b reports the latency distributions for a mix of
the four queries, where the 100,000 queries per second
are evenly distributed between the four query types, both
with and without sharing the graph structure. There is a
noticeable latency penalty due to the increased system
load, which would only increase as more query classes
are maintained. While all databases do share such state,
they do not compile query classes to streaming dataflow.
While streaming dataflow systems like Flink and Naiad
could implement these queries, they would not benefit
from the shared state.

Figure 5c reports the memory footprint for the query
mix with and without sharing, for an hour-long execu-
tion. We can see that the memory footprint is stable, vary-
ing between 1GB and 2GB corresponding to 32 bytes per
graph edge update. The variability is due to the geomet-
rically sized merges, which maintains varying numbers
of batch layers, containing at most double the number of
edges. The memory footprint for the unshared implemen-
tations is also stable, but roughly five times higher (as
there are five uses of the graph across the four queries).

5.4 Datalog workloads

Datalog is a relational language in which the query re-
sults are the fixed point of repeated application of recur-
sively defined rules. Datalog queries are more general
than graph computation, and in particular tend to pro-
duce and work with substantially more records than they
are provided as input. Several shared memory systems
for Datalog exist, including LogicBlox, DLV, DeALS,
and several distributed systems have recently emerged,

including Myria, SociaLite, and BigDatalog. At the time
of writing only LogicBlox supports decremental updates
to Datalog queries, using a technique called “transaction
repair” [24].

Bottom-up (batch) evaluation. In the literature, Datalog
systems are often evaluated on two simple queries, “tran-
sitive closure” (tc) and “same generation” (sg), which
exercise many Datalog engines by the volume of tuples
they can produce. We compared K-Pg with the reported
numbers of the shared memory and distributed systems
above on six reference problems, taken from [22], and
found that K-Pg was generally comparable. For four
out of six reference problems K-Pg out-performed all
of the distributed systems, and was comparable to the
best shared memory systems (DeALS) on one core (three
out of five problems) but scaled less well with increasing
cores (one out of five problems on 64 cores).

Many of the query-level optimizations these systems
employ could be translated to K-Pg, but the scaling of
the shared memory systems relies in part on racy code
permitted by the monotonic semantics of Datalog. K-Pg
prevents racy access and imposes synchronization be-
tween rounds of derivation, which can limit performance
but also allows it to efficiently update such computations
when base facts are added or removed.

K-Pg’s generality also has some benefits; one tran-
sitive closure computation takes 312 seconds single-
threaded on DeALS, but K-Pg can determine the strongly
connected component structure, summarizing the transi-
tive closure, in just 274ms.

Top-down evaluation. If the user imposes constraints on
the target query, for example tc(“david”,x), one can ex-
plore the space of facts from the possible goals back to
the facts of the base relations. The “magic set” transfor-
mation [5] rewrites such queries as bottom-up computa-
tions with a new base relation that “seeds” the bottom-up
derivation with query arguments, and the rules are rewrit-
ten so that facts are not derived without the participation
of some seed record. For example, the magic set trans-
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System cores linux psql httpd
SociaLite 4 OOM OOM 4 hrs
Graspan 4 713.8 min 143.8 min 11.3 min
K-Pg 1 76.8s 37.0s 10.9s
K-Pg (med) 1 1.11ms 185ms 22.0ms
K-Pg (max) 1 8.13ms 1.48s 218ms

Table 1: System performance for the three graphs for
the dataflow analysis. Times for the first two systems are
reproduced from [25], and exclude pre-processing. Also,
the median and maximum times to remove each of the
first 1,000 null assignments from the complete analysis.

formation of the tc query produces either a forward or
backward reachability query, seeded with the specified
value. In K-Pg (and some interactive Datalog environ-
ments) this work can be performed against maintained
indices of the non-seed relations, in much less time than
it would take batch processors to re-index these relations.

We evaluated the six reference problems transformed
to top-down queries, and found largely unsurprising re-
sults. When the result sets were small the latencies were
interactive, when they were large the queries took pro-
portionately longer. Two reference problems, “same gen-
eration” on grids and random graphs, re-derive most of
their output as part of the transformed query, and were
not interactive. This appears to be more a limitation of
the query transformation rather than K-Pg. Because the
queries are interactively evaluated, we were able to per-
form expensive queries like “same generation” on graphs
whose scale would prevent complete bottom-up evalua-
tion; however, at this point the batch processors applied
to the transformed query might also be reasonable solu-
tions.

5.5 Program Analysis

Graspan [25] is a system built to perform static analysis
of large code bases, created in part because existing sys-
tems could not handle the non-trivial analyses at the sizes
required. Graspan out-performs SociaLite by orders of
magnitude when the latter successfully completes, which
it often does not.

Tables 1 and Table 2 reproduce the running times
reported in [25], and reports those of K-Pg for
their dataflow and points-to analyses, respectively. The
dataflow query is a relatively simple reachability query,
where null assignments are propagated along program
assignment edges. The more complicated points-to anal-
ysis develops a mutually recursive graph of value flows,
and memory and value aliasing. In both cases we see a
substantial improvement, due in some part to our ability
to re-use operators from an optimized system rather than
implement and optimize an entirely new system.

System cores linux psql httpd
SociaLite 4 OOM OOM > 24 hrs
Graspan 4 99.7 min 353.1 min 479.9 min
K-Pg 1 423.1s 362.0s 536.3s
K-Pg (Opt) 1 191.3s 75.9s 77.4s
K-Pg (NoS) 1 401.7s 94.3s 91.9s

Table 2: System performance for the three graphs for the
points-to analysis. Times for the first two systems are re-
produced from [25], and exclude pre-processing. Further
K-Pg implementations correspond to an optimized query
(Opt), and the optimized query without sharing (NoS).

Disk-based access. Graspan is designed to operate out-
of-core, and explicitly manages its data on disk. We re-
port K-Pg measurements on a laptop with only 16GB
of RAM; only the points-to analysis exceeds this limit
(peaking around 30GB), but its sequential access makes
the operating system’s paging mechanisms sufficient for
out-of-core execution. We verify this by modifying the
computation to only use 32bit timestamps and differ-
ences, which brings the memory footprint to within
RAM limits; this optimized version runs only 20% faster.

Optimization. The dataflow analysis is a simple reach-
ability computation, which performs well and has lit-
tle room for optimization. The points-to analysis is a
more complicated mutually recursive computation; in the
formulation of [25] it is dominated by the determina-
tion of a large relation (value aliasing) that is used only
once. However, this relation can be optimized out (value
aliasing is eventually restricted by dereferences, and this
restriction can be performed before forming all value
aliases). The result is a much more efficient computation,
and one that re-uses each relation multiple times. Table 2
reports the optimized running times, with and without
sharing, where we can see the positive effect of sharing,
and the limiting effect of failing to share state.

Top-down evaluation. Both dataflow and points-to can
be transformed to support interactive queries instead of
batch computation. Figure 1 reports the median and max-
imum latencies to remove the first 1,000 null assignments
from the completed dataflow analysis and correct the set
of reached program locations. While there is some vari-
ability, the timescales can be interactive.

6 Related work
Many of K-Pg’s features have appeared before in iso-
lation, but they have not been brought together in one
system. This section characterizes prior data processors,
highlights their limitations, and points out assumptions
made by them that K-Pg leaves behind.
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Batch processors. Systems like MapReduce [9],
DryadLINQ [26], Spark [27] execute large computations
as directed acyclic graphs (DAGs) of independent, finite-
duration tasks. The independence of tasks allows these
systems to scale, and task re-execution allows them to
tolerate failures [19, 27]. However, the independence of
these tasks trade efficiency for resilience.

DryadLINQ and Spark have re-usable datasets
(respectively, Nectar [12] and Resilient Distributed
Datasets), but this re-use avoids only the re-computation
of the dataset from dataflow inputs. The dataset must still
be re-scanned and re-indexed for each use, whereas in K-
Pg the data are maintained in the indexed form that many
operators require, supporting the effectively free deploy-
ment of new instances of such operators.

Stream processors. Systems like Borealis [4],
STREAM [3], and TelegraphCQ [7] maintain continu-
ous queries over streams of data. STREAM in particular
maintains “synopses” (often indices) for operators and
shares them between operators. K-Pg’s shared indices
can be seen as distributed, multi-temporal versions of
STREAM’s synopses. Unlike STREAM, K-Pg reveals
the synopsis structure (a log of indexed batches) to its
operators, which take advantage of this representation.

Modern stream processors like Flink [6] and Mill-
Wheel [2] impose less structure, and more closely resem-
ble continually executing MapReduce dataflows. This
flexibility enables complex, non-relational event process-
ing, but their architectures evolved without the goal of
supporting shared data. We believe this is a design flaw,
and that modern stream processors operate far below ca-
pacity because of this decision.

Finally, stream processors lack support for iteration.
Unlike batch processors, which can extend their dataflow
DAG arbitrarily, stream processors do not continually
re-structure their dataflows. One exception, Naiad [18],
supports iterative computation through cyclic dataflow
graphs and partially-ordered timestamps. In a sense, Na-
iad shares state across re-invocations of the same opera-
tor, but not otherwise.

Databases. Relational (and other) databases provide
general functionality for managing data, but have not
to date been efficient, scalable solutions for general
computation. Databases do however share indices be-
tween queries, and K-Pg explicitly draws inspiration
from their economy of execution on their target function-
ality. Databases perform a great many tasks beyond com-
putation, and one should view K-Pg as general, scalable,
and responsive incremental view maintenance, applica-
ble to the change log of a durable and consistent store.

Our shared state representation is inspired by the de-
sign of Log Structured Merge (LSM) trees. One can in-
terpret K-Pg as a dataflow system where state is com-

monly maintained in a multi-temporal LSM structure,
and whose dataflow edges transport LSM layers. There is
a healthy amount of recent work on LSM design, and our
experience has been that a write-optimized design has
similar positive implications for high-throughput compu-
tation as it has for storage.

K-Pg is most analogous to a temporal database, in
which records have timelines of changes they undergo,
and taken together describe the history of an evolving
collection of records. Queries describe transformations
of these collections, without windowing requirements,
and themselves produce as output an evolving collec-
tion of results. Our system resembles a streaming tempo-
ral database, with the expressivity of its query language
raised to that of differential dataflow.

Specialized systems. Relatively few graph processors
attack the problem of computations over continually
evolving graphs. Chronos [13] is a temporal graph en-
gine, in that it supports queries over a fixed sequence of
graphs, rather than a responsive system against live data;
it targets coarsely batched snapshots and is evaluated on
monotonic graph computations. GraphTau [15] targets
continually evolving graph data (and queries against his-
torical data) and uses persistent data structures to share
the representation of multiple snapshots. Sharing graph
data across computations is not discussed, though their
data representation should make this possible.

Datalog has re-emerged as an expressive analytics lan-
guage, capturing some graph computations among other
more general recursive queries. Datalog is by its nature
restricted to monotonic queries (once true, facts remain
true), but variants support non-monotonic queries using
“stratification”, which serializes the execution of parts of
the query. Single-machine Datalog systems support inter-
active queries, but the distributed batch processing mod-
els effectively preclude an interactive experience. Data-
log has traditionally resisted efficient updates in the pres-
ence of retractions, with exceptions being differential
dataflow and LogicBlox’s “transaction repair” [24].

7 Conclusions
We presented K-Pg, a general, scalable, and responsive
data processor. K-Pg’s design required re-thinking the
traditional dataflow architecture, specifically to introduce
shared state that supports a high rate of logical updates.
This design shift enables new opportunities for oper-
ators, which can more efficiently retire batches of in-
dexed updates than tuple-at-a-time processors. Together,
these changes enable the efficient implementation of new
classes of computation, in which random access to exist-
ing indexed state comes at relatively low cost. We evalu-
ated K-Pg on a variety of computations, and find that its
performance is comparable with and occasionally better
than existing systems on a variety of tasks.
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