
K-Pg: Shared State in Differential Dataflows
Anonymous Author(s)

Abstract
Many of the most popular scalable data-processing frame-
works are fundamentally limited in the generality of com-
putations they can express and efficiently execute. In
particular, we observe that systems’ abstractions limit
their ability to share and reuse indexed state within and
across computations. These limitations result in an in-
ability to express and efficiently implement algorithms
in domains where the scales of data call for them most.

In this paper, we present the design and implementa-
tion of K-Pg, a data-processing framework that provides
high-throughput, low-latency incremental view mainte-
nance for a general class of iterative data-parallel compu-
tations. This class includes SQL, stratified Datalog with
negation and non-monotonic aggregates, and much of
graph processing. Our evaluation indicates that K-Pg’s
performance is either comparable to, or exceeds, that of
specialized systems in multiple domains, while at the
same time significantly generalizing their capabilities.

ACM Reference Format:
Anonymous Author(s). 2018. K-Pg: Shared State in Differ-
ential Dataflows. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
The landscape of systems for computing on “big data” is
fractured into many specialized systems, each with their
own capabilities and limitations. Batch processors [10,
16, 29] support general computations, but are expen-
sive for random access to mutable state. Stream proces-
sors [7, 18, 25] support fine-grained changes at high rates,
but lack support for iterative subcomputations. Graph pro-
cessors [9, 13, 30] support iterative computation, but for
static or infrequently updated input data. New specialized
systems emerge regularly, recently to handle mutually

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

recursive tasks in Datalog evaluation [24] and program
analysis [27], because existing systems are reportedly
insufficient for increasingly sophisticated computations.

These systems differ mainly in how they express and
exploit the potential for sharing and re-use of both in-
dexed data and computation (Table 1). Relational databases
holistically share maintained indices and views across
potentially unrelated computations, and apply fine-grained
updates to them as the underlying data change. Stream
processors share maintained state temporally across a
sequence of input changes to a fixed computation. Graph
processors share vertex or edge state iteratively across
repeated rounds of the computation, as they propagate
changes or explore the graph.

Sharing holistic temporal iterative
Spark no no no
RDBMS yes no some
Flink no yes some
Naiad no some yes
K-Pg (this work) yes yes yes

Table 1: Representative data processing frameworks.

Each type of sharing avoids a potentially unneccessary
cost for a computation, in the form of repeated work,
and when a system lacks a sharing type it becomes inef-
ficient and ill-suited for a class of computations. Worse,
some computations require multiple forms of sharing—
consider, for example, streaming graph processors or
multi-user Datalog environments. A system that supports
all three sharing types could efficiently support existing
workloads, integrate specialized systems, and remove the
barriers for domains which no system currently supports.

This paper develops a holistic, temporal, and itera-
tive data-parallel dataflow system, K-Pg, capable of effi-
ciently computing and incrementally maintaining a broad
class of iterative data-parallel computations. K-Pg outper-
forms specialized systems in high-throughput incremen-
tal view maintenance, interactive graph queries against
dynamic graph data, and goal-driven Datalog evaluation.
K-Pg remains viable for traditional batch analytics, graph
processing, and Datalog evaluation, though it does not
out-perform the top specialized systems in these domains.
Finally, we have found K-Pg to be excellent for proto-
typing in new domains; a recent system Graspan [27]
for program analysis requires an order of magnitude less
code when re-implemented on K-Pg, and doing so im-
proves its performance by factors ranging from 14x to
550x on their workloads.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1.1 System overview

K-Pg is based on differential dataflow [19], a data-parallel
processing paradigm in which users express computa-
tions by high-level operations on collections of records
and then interactively update the inputs to their compu-
tations, and receive the corresponding changes to the
outputs of their computations. These operations include
relational, data-parallel, and iterative constructs, suffi-
cient for SQL-based relational analytics, MapReduce
dataflows, iterative graph computation, and mutually re-
cursive Datalog evaluation. Differential dataflow’s data-
parallel operators can be effectively distributed across
multiple workers, and its incremental semantics support
low-latency and high-rate updates.

Although differential dataflow has a (now dormant)
prototype implementation, as part of the Naiad [20]
project, several aspects of this implementation limit its
performance for general computations. Specifically, while
the prototype provides iterative sharing, its operator de-
sign did not reveal opportunities for holistic sharing
and details of Naiad’s system interface prevented high-
throughput temporal sharing, and so the prototype imple-
mentation evolved without these constraints. Our work
starts from our attempts to use this prototype in new
problem domains, and details the redesigns we found
necessary to introduce holistic and temporal sharing.

K-Pg is a complete re-implementation of the differ-
ential dataflow model, based on a fundamentally re-
designed dataflow processor. Whereas big data proces-
sors are traditionally “shared nothing”, and create and
manage dataflows of independent operators, K-Pg ex-
poses and shares indexed representations of streamed op-
erator inputs, among operators and even across dataflows.
Importantly, while this sharing may happen across op-
erators and dataflows it does not cross worker (thread)
boundaries, which allows us to retain the scalability of
the shared-nothing worker design.

A conventional shared-nothing dataflow processor re-
quires several changes to realize the performance bene-
fits of shared indexed state. We decompose traditional
operators like join, group, and distinct into the com-
bination of a new general operator arrange and thinner
task-specific shell operators. The arrange operator pro-
duces worker-sharded indexed batches of data, and main-
tains worker-local multiversioned indices aligned to these
batches. It does this with high throughput, low latency,
and a compact representation, all with minimal worker
coordination. Operators are modified to share access to
this local index, and become simpler and more perfor-
mant as a result, but must take care when interpreting the
contents of their shared indices.

We implemented K-Pg in roughly 6,000 lines of Rust [1],
atop an unmodified timely dataflow runtime [2]. We eval-
uate K-Pg on benchmark tasks in relational analytics,
graph processing, and Datalog evaluation, where we con-
firm that its performance is comparable to and in some
cases better than specialized systems in their target do-
mains. We also evaluate K-Pg on tasks supported by
relatively fewer and more specialized systems, including
interactive graph navigation, program analysis, and goal-
driven evaluation, where we find that framing queries as
differential dataflow computations offers lower latency
and higher throughput than other bespoke approaches.
Despite the variety of tasks and requirements, these are
each implemented as idioms in one sufficiently expres-
sive and performant system.

1.2 Limitations and Tradeoffs

K-Pg provides sharing opportunities to computations
that are structured to benefit from them, but the sup-
port for sharing does come with some costs. Holistic
sharing moves us to a multiversion index design, as oper-
ators may make progress at different rates, which can be
more expensive than a single-user index. Temporal and
iterative sharing leads to operator implementations that
consider the histories of records, even for computation
that would completely overwrite values.

K-Pg is intentionally implemented as an optional layer
atop a timely dataflow platform, so that users can pick
and choose dataflow operators that they may benefit from,
without being prevented from selecting or implementing
more efficient dataflow operators when appropriate.

1.3 Contributions

This paper summarizes the design and implementation
of K-Pg, with the specific intended contributions of:

(1) A data-parallel dataflow design with indexed oper-
ator inputs shared across multiple dataflows (§ 3).

(2) A multi-versioned shared index design with high
read and write throughput, low read and write la-
tency, and compact memory footprint (§ 4).

(3) New operator implementations which take advan-
tage of input streams of shared indexed batches as
opposed to input streams of tuples or records (§ 5),

(4) An evaluation of K-Pg that indicates it can be as
capable as many specialized data processing sys-
tems in their target domains, while supporting a
more general range of workloads than any, includ-
ing some that cannot currently run on data-parallel
systems (§ 6).

We discuss the most relevant related work, on which K-
Pg draws, in Section 7 and conclude in Section 8 with a
summary and thoughts for future research directions.

2

2 Motivation

Differential dataflow [19] is a framework in which users
first write a query using relational and data-parallel op-
erators, including fixed-point iteration, and then interac-
tively update the inputs to their query and receive the
corresponding updates to the outputs of the query. If all
inputs are changed once, from their initial empty state,
differential dataflow appears as a batch processor. If the
inputs continue to be changed, differential dataflow ap-
pears as incremental view maintenance for the expressed
computation. Differential dataflow’s incremental seman-
tics allow a system to perform an amount of work pro-
portional only to the volume of changes across internal
collections. This volume can often be surprisingly small,
even for sophisticated recursive queries, which enables
both low latency and high throughput updates.

A fully featured implementation of differential dataflow
enables computational idioms beyond the reach of tradi-
tional batch and stream processing. With iteration one
can faithfully express a class of algorithms outside the
reach of traditional relational and big data frameworks.
Through interactive manipulation of input collections we
can pose queries and direct the execution of such compu-
tations. The re-use of shared indices provide nearly zero
overhead when new computations require random access
to pre-existing collections. In many ways differential
dataflow more closely resembles a declarative program-
ming language than a traditional query language, and it
has the potential to substantially enlarge the volume of
computer science applicable to large-scale data process-
ing.

2.1 A motivating example

Consider the problem of determining for a directed graph
and a collection of query pairs (src, dst), for which of the
queries can one reach from src to dst along directed graph
edges. Figure 1 contains a stylized differential dataflow
program to accomplish this, but its behavior showcases
many subtleties which we now investigate.

The example in Figure 1 starts by transforming the
query pairs into reachability statements (to, from), ini-
tially the sources of the queries. This set is then itera-
tively developed, by repeatedly joining it with the set of
edges to create new reachability statements, folding in
old statements, and maintaining the set of distinct results.
This iterative process produces all nodes reachable from
each source, and we intersect this with the query set to
return only those pairs posed as queries.

Importantly, Figure 1 is only a declarative description
of the computation. It provides a differential dataflow
system with requirements, but it also provides flexibility
in how the computation should be effected.

edges

join
map

concat
distinct

+

inspect

probe

 // create inputs.
 let query = scope.new_input();
 let edges = scope.new_input();

 // define computation.
 query.map(|(src, dst)| (src, src))
 .distinct()
 .iterate(|reach|
 edges.join(reach)
 .map(|(_mid,t,f)| (t,f))
 .concat(reach)
 .distinct())
 .intersect(query)
 // inspect and monitor output.
 .inspect(/* per-record closure */)
 .probe();

map

query

distinct

join

Figure 1: A graph reachability example, where in-
puts query and edges each contain (src, dst) pairs,
and whose outputs are those pairs in query that
can be reached along paths in edges. The two in-
puts can be interactively updated, resulting in inter-
active queries that are incrementally maintained as
the graph changes.

Interaction Both the query and edges input collec-
tions can be interactively updated, which yields the out-
put changes required to correctly update the output. When
we add or remove an edge, the output produces additions
for newly reachable query pairs, or subtractions for query
pairs that can no longer reach from one to the other. Alter-
nately, when we add or remove a query, we may initiate a
new reachability computation if the source is previously
unseen; if the source is already present in the query set
the change will be suppressed at the distinct operator,
as the distinct set of sources has not changed; the result
will instead just be read out of the intersect operator.

As far as we know, differential dataflow alone sup-
ports this type of interactive computation. Conventional
graph processors do not support low-latency interactive
updates to computations, and the graph processors that
do (only [17], to our knowledge) do not blend interactive
queries in the same model.

Economy The use of edges in the join operation re-
quires the collection of edges indexed by src, in order to
quickly read out matching dst values. This arrangement
of the edges collection is not uncommon in graph process-
ing, and if the collection is already available in this form
the time to install the computation and begin servicing
changes to query is approximately zero (milliseconds,
in our experiments). Of course, work must take place as
new queries arrive and begin to explore the graph, but this
work is proportional only to the work required (nodes
explored) rather than the size of the perhaps substantially
larger edges collection.

Most non-RBDMS systems do not share indexed data
and would require fresh copies of graph data, and often

3

even require a fresh set of computers for each computa-
tion. Systems like Spark, Flink, and Naiad, for example,
would need to re-ingest, index, and maintain the whole
graph for each use, limiting the number of concurrent
computations they can maintain.

Throughput As the query is specified declaratively,
rather than as the result of a sequence of imperative
tasks, we have the ability to concurrently process updates
at many distinct times. This substantially improves the
effective system throughput, without compromising its
fidelity to the source timestamps. We can service on
the order of millions of distinct changes to the query
and edges collections per second, producing at all times
consistent and correct outputs, even with the query and
graph changes interleaved.

Other than stream processors, typical techniques for
incremental computation (e.g. Incremental View Mainte-
nance) move serially through a sequence of updates. Na-
iad pipelines distinct logical times, but still introduces co-
ordination traffic for each and can only scale its through-
put by coarsening logical times, and removing the dis-
tinctions between changes in the input.

Our declaratively programmed reachability “query” is
now an interactive computation that can both answer
reachability queries between pairs of nodes and install
pairs of nodes to monitor as the underlying graph con-
tinually changes. If the graph is already arranged, the
additional memory overhead is proportional only to the
number of nodes reachable from the query sources cur-
rently maintained. As edges and queries change, we main-
tain a high-throughput view of the correct results without
serializing the system execution. These benefits largely
derive from the declarative description of our interactive
computation, rather than as an imperative sequence of
queries and transactions against common relations.

With light modification, we could additionally track
the distances between the query nodes, or recover the
paths themselves. With further effort one can implement
even smarter algorithms for shortest path queries, namely
bi-directional search, which brings query times for even
new sources down to milliseconds and increases through-
put substantially (as the computation “changes less”).

3 System design and background
K-Pg is built on an existing timely dataflow execution
layer [2], and inherits its distributed execution design. K-
Pg also borrows aspects of Naiad’s differential dataflow
design as a timely dataflow of operators that consume
and produce collection updates, but it makes fundamental
modifications to how this occurs. This section overviews
necessary background about timely and differential data-
flow, and then describes K-Pg’s architectural changes.

3.1 Timely dataflow

Timely dataflow is a framework for data-parallel data-
flow execution, introduced by Naiad [20]. It provides a
dataflow abstraction in which nodes house operator logic,
and edges transport data from the outputs of operators to
the inputs of other operators. All data in timely dataflow
bear a partially ordered logical timestamp, and operators
are obliged to maintain (or advance) these timestamps
as they process data. Timely dataflow graphs may have
cycles, within which one augments timestamps with an
iteration to correctly track progress within the loop.

Timely dataflow schedules work on a static set of work-
ers, each a single thread of control. All operators are
sharded across all workers, and each worker multiplexes
its time between each dataflow and dataflow operator.
Workers schedule operator shards in response to the ar-
rival of data, which are routed among workers according
to functions the operators specify for each of their input
streams (e.g. a function of a key in the record, to ensure
all records with the same key arrive at the same worker).
Crucially, for our purposes, we can co-locate on the same
worker operator shards that might profitably share the
same indexed representation of their input data.

In addition to scheduling operators and transporting
data, the timely dataflow workers provide operator shards
with bounds on the potential timestamps they may yet
see at each of their inputs. This information comes in
the form of a frontier: a set of logical times such that
all future timestamps must be greater than or equal to
some element of the frontier. We say that a time is in
advance of a frontier if it is greater than or equal to some
element of the frontier. In timely dataflow a frontier only
ever advances, and the set of times in advance of the
frontier strictly decreases. This progress information tells
operator shards when they have received all records with
certain timestamps, at which point it may be appropriate
for the operator shard to take some action.

User code can programmatically construct dataflows,
interact with the inputs to these dataflows, and invoke
the worker to schedule dataflow operators. Any number
of dataflows can be run concurrently, but the set must
be the same on all workers. Dataflows are automatically
retired when they their inputs are closed and they contain
no more messages. Timely dataflow does not prevent the
sharing of state between operators and dataflows within a
worker, but it does not itself provide meaning or structure
to this shared state other than the guarantees its frontiers
provide.

3.2 Differential dataflow

Differential dataflow computations are initially defined
as functional transformations of time-varying collections.
A differential dataflow collection is parameterized by

4

 count

arrange +exchange
triples batches

Figure 2: The count operator, decomposed into data
exchange, arrangement, and a shell operator that re-
ports the accumulated count from indexed batches.

three types, Data, Time, and Diff. The Time type must be
a lattice (supporting the operations less than, equals, least
upper bound, and greatest lower bound) and the Diff type
must be a commutative group (with a + operator and a
zero element), often the integers. A differential dataflow
collection can be interpreted as a function from Data to
Diff that can vary arbitrary at each Time.

A differential dataflow collection is defined either as
an input to the computation or by a functional transfor-
mation of other collections. Example transformations
include standard operators like map, filter, concat,
join, and group (equivalent to MapReduce’s reduce).
Less standard, differential dataflow provides an iterate
operator that subjects its input collection to a supplied
differential dataflow fragment an unbounded number of
times. Other operators exist, and the set can be further
expanded as new implementations land, but the set above
is sufficient for all applications we discuss in this paper.

A differential dataflow computation is rendered to a
timely dataflow in which operators consume and pro-
duce streams of (data, time, diff) update triples. Each
such stream defines a collection at all times t not in ad-
vance of its timely dataflow frontier, from the pointwise
accumulation of update triples at times less or equal to t .

Collection@t[data] =
∑

(data, time,diff)
time ≤ t

diff

Each differential dataflow operator’s output stream
must accumulate to the functional operator logic applied
to the correspondingly accumulated input stream, for all
times t not in advance of the input frontier. The essen-
tial difference from other streaming systems is that these
times may be only partially ordered by the ≤ operator,
which can result in more efficient differencing for itera-
tive computations (among others), but with more subtle
state management and operator implementations.

3.3 Design modifications

K-Pg departs from Naiad’s differential dataflow design
by breaking stateful operator implementations (for exam-
ple: join, distinct, count) into two parts: an arrange
operator, which exchanges, batches, and indexes updates,

and thinner shell operators which each apply operator-
specific logic using these shared indices. The decom-
position is depicted in Figure 2 for the count operator,
and is similar for other stateful operators. This departure
may appear superficial, but it fundamentally changes the
implementation and performance characteristics of the
system.

Arrangements act as high-throughput multi-version in-
dices that can safely share read access among operators.
The arrange operator is new to K-Pg, as is the associ-
ated inter-operator and inter-dataflow sharing of indexed
state in a distributed dataflow system. The shell opera-
tors in K-Pg have substantially different implementations
(often much simpler) when given their input as streams
of indexed batches rather than streams of independent
tuples, but some new care must be taken to maintain high
throughput in all cases. We discuss the arrange operator
in Section 4 and new operator designs in Section 5.

A second important departure of K-Pg lies in a set of
design principles we impose to increase the likelihood
that an unanticipated computation executes robustly, de-
spite (or perhaps because of) the absence of frustrating
systems knobs. These principles intend to ensure that
arrangements and operators in K-Pg work “as expected”.
Each take only the minimal time and space required,
up to constants, and transition smoothly between low-
latency and high-throughput operation. We will invoke
these principles in our design discussions, and in all
cases we view violations of these principles as problem-
atic. Naiad’s differential dataflow prototype violates each
of these principles.

Principle 1: Decouple logical and physical batching.
K-Pg computations consume, manipulate, and produce
large volumes of updates at distinct logical times. These
updates should be manipulated in large physical batches,
with no artificial serialization imposed by the logical
times. Systems that impose per-time coordination over-
head must either limit their throughput, or compromise
their fidelity to the source timestamped data.

Principle 2: Sequential memory traversal. The state
managed by K-Pg represents historical data for large
collections that may grow beyond the capacity of our
fast random access memory. Access to indexed opera-
tor state should be at worst one sequential pass for each
batch (though ideally to a sparse subset). Random access
patterns reduce the effectiveness of batching, and eventu-
ally limit a system by its random rather than sequential
throughput to its storage.

Principle 3: Bounded memory footprint. K-Pg can
produce large volumes of updates, but they may be to a
relatively smaller number of distinct records. We should
use memory proportional to the number of distinct (data,

5

arrange
triples

 Trace

 Batch
 Batch
 Batch
 Batch
 Batch

batches

 Trace handle

 Trace handle

count

 Trace handle

exchange

import
batches

distinct

 Trace handle

dataflow 2

dataflow 1

Figure 3: A worker-local overview of arrangement.
Here the arrangement is constructed for the count
operator, but is shared with a distinct operator in
another dataflow.

time) pairs in each collection. Systems that eagerly mate-
rialize data and only later accumulate the results down
(for example, Spark-style batch processors) may spill out
of memory or even overwhelm local temporary storage.

Principle 4: Operator work proportionality. The vol-
ume of data K-Pg operators consume and produce can
vary substantially. Operator invocations should perform
computation proportional to the number of output up-
dates it might produce. Disproportionate computation
limits our ability to scale our system with low latency,
as coordinating workers take time proportional to the
maximum of the participants.

4 Arrangements
Our most substantial design departure from standard data-
flow processors, returning somewhat to the design of
relational databases, is our use and re-use of arranged
streams of indexed data. We introduce a new arrange
operator, which takes as input a stream of update triples
and produces an arrangement: a pair of (i) a stream of
shared indexed batches of updates and (ii) a shared, com-
pactly maintained index of all produced update batches.
Arrangements allow K-Pg to spend the communication,
computation, and memory required to arrange data once.

In this section we work through the design and imple-
mentation of arrangements, and explain how they sup-
port shared indexed data under high update throughputs.
Figure 3 sketches the elements and some uses of an ar-
rangement, which we will further develop in the text.

4.1 Collection traces

Following prior work [19], a collection trace is the set
of update triples (data, time, diff) that define a collection
at any time t by the accumulation of those (data, diff)
for which time ≤ t . A collection trace is initially empty

and is only revealed as a computation proceeds, either
as a dataflow input or as the output of a dataflow opera-
tor whose inputs have advanced. Because times may be
partially ordered, there is not necessarily a fixed order
(e.g. by time) on the triples in a collection trace; instead
a timely dataflow frontier indicates which times may still
be observed.

Our design commits to a collection trace as logically
equivalent to an append-only list of immutable batches of
update triples. Each batch is described by two frontiers
of times, lower and upper, and the batch contains exactly
those updates whose times are in advance of the lower
frontier and not in advance of the upper frontier. The up-
per frontier of each batch should match the lower frontier
of the next batch, and the growing list of batches reports
the developing history of committed updates triples. A
batch may be empty, which indicates that no updates ex-
ist in the indicated range of times. A sequence of batches
with lower and upper frontiers is self-describing, in that
it can be understood without additional runtime support
from the timely dataflow system. An independent timely
dataflow, or other computation, can consume this col-
lection trace representation and correctly understand the
evolving collection history.

To support operators, each batch should be indexed
by data, so that it can provide random access to the
history of each data (the set of its (time, diff) pairs). A
trace will attempt to maintain relatively few batches (by
merging existing batches) so that operators can efficiently
navigate the union of all batches. Each reader of a trace
holds a trace handle, which provides access to a cursor
that can navigate the multiversioned index as of any time
in advance of a frontier the trace handle holds. The set
of trace reader frontiers indirectly reveal which updates
can no longer be distinguished by any readers, and which
updates can be coalesced.

4.2 The arrange operator

The arrange operator receives update triples, and is
tasked with minting new immutable indexed batches of
updates in response to advances in its input frontier and
compactly maintaining the collection trace without vio-
lating its obligations to readers of the trace.

At a high level, the arrange operator buffers incom-
ing update triples until the input frontier advances, at
which point it extracts and indexes all buffered updates
not in advance of the newly advanced input frontier. A
shared reference to this newly minted immutable batch
is both added to the trace and emitted as output from
the operator. As part of adding the batch to the trace, the
operator may need to perform some maintenance to keep
the trace representation compact and easy to navigate.

6

Abstractly these tasks are not hard, but several details are
important if we aim to satisfy our design principles.

Input buffering. Incoming update triples are buffered
in what is effectively a partially evaluated merge sort
of (data, time, diff) triples: a sequence of sorted lists of
geometrically increasing size, which are merged when
two are within a constant multiple in length. This rep-
resentation allows us to coalesce updates with the same
(data, time) fields, and ensures that we maintain a num-
ber of updates at most linear in the number of distinct
(data, time) pairs (the longest list contains only distinct
pairs, and all other lists accumulate to at most a constant
multiple of its length).

Physical batching. Although the input frontier can ad-
vance in large steps, the arrange operator creates only
one update batch and informs the timely dataflow system
about changes in its output frontier only once, indepen-
dent of the number of distinct logical times processed.
This decouples the logical update rate from the physi-
cal batching, and is crucial to support high update rates.
Limitations of Naiad’s notification API prevent it from
supporting physical batching of logical timestamps.

Shared references. Immutable batches are wrapped in
reference-counted shared references, so that the batch
and downstream consumers can reference the same un-
derlying memory. The trace is also shared but it is not im-
mutable, as it supports the appending of batches (and in-
ternally, their compaction). Importantly, while the arrange
operator has a shared reference to the trace it does not
keep the trace alive (it is a “weak” reference) so that
should all readers drop their references to the trace, the
trace (and its references to batches) are also dropped. In
this case, the arrange operator will continue to produce
indexed batches, but it will not (and cannot) merge them
into the now non-existent trace. This optimization sub-
stantially improves performance in cases where a trace
index can be dropped, but the stream of changes is still
live, for example a join against static data which we see
often in the processing of static graphs.

Amortized trace maintenance. The arrange operator
must maintain a compact representation that is easy for
readers to navigate, even as we add batches to a trace. Our
choice is to merge adjacent batches of comparable size,
so that we maintain a number of batches at most logarith-
mic in the number of distinct (data,time) pairs. These
merges happen on the same worker thread, which we do
not want to block when large batches should be merged.
Instead, we initialize but do not complete a merge, and
for each introduced batch we apply an amount of ef-
fort proportional to its size to each in-progress merge.
When a merge completes the new batch is installed and
references to the merged batches are dropped.

A large constant of proportionality performs merges
eagerly and trades latency away for improved throughput,
whereas a small constant provides lower latency but im-
pairs throughput as K-Pg maintains more open batches
for operators to navigate. A charging argument shows
that a constant of two ensures that merges complete be-
fore their results are required for a new merge, and K-Pg
enforces this choice.

Consolidation. A trace can coalesce timestamps that
are indistinguishable to all trace readers and consolidate
updates at now indistinguishable times, analogous to
MVCC “vacuuming”. Each reader’s trace handle main-
tains a frontier of times and restricts its reader to times in
advance of this frontier. When we initiate a merge we cap-
ture the lower bound F of all these times, and we replace
each time t with a representative repF (t) that compares
identically to t for all times in advance of F . Updates
with the same representative timestamp are consolidated.

This compaction logic is borrowed from Naiad’s pro-
totype, but the mathematics of compaction have not been
reported previously. Appendix A presents the definition
of repF (t) and proofs of its optimality and correctness.

Modularity. The arrange operator is defined in terms
of a generic trace type. Our amortized merging trace is
defined in terms of a generic batch type. Our batch im-
plementations are defined for generic data types that are
orderable (for merging) and hashable (for partitioning).
Each of these layers can be replaced without rewriting
the surrounding superstructure. For example, we provide
two distinct batches for data structured as (key, val) and
just key, the latter with a simplified representation and
navigation logic.

4.3 Trace handles

Read access to a collection trace is provided through
a trace handle. A trace handle provides the ability to
import a collection into a new dataflow, and to manually
navigate a collection, but both only “as of” a restricted set
of times. Each trace handle maintains a frontier, and guar-
antees only that accumulated collections will be correct
when accumulated to a times in advance of this frontier.
The trace itself tracks outstanding trace handle frontiers,
which indirectly inform it about times that are indistin-
guishable to all readers (and which can be coalesced).

Many operators (including join and group) only
need access to their accumulated input collections for
times in advance of their input frontiers. As these fron-
tiers advance, the operators are able to advance the fron-
tier on their trace handles and still function correctly.
Some operators are also able to drop their trace handles
entirely, notably the join operator when its opposite

7

input ceases changing. These actions, advancing the fron-
tier and dropping trace handles, provide the trace with
the opportunity to consolidate its representation.

A trace handle has a method import which creates an
arrangement in a new dataflow exactly mirroring that of
the trace. The imported collection immediately produces
consolidated historical batches, and begins to produce
newly minted batches. The historical batches reflect all
updates applied to the collection, either with full his-
torical detail or coalesced to a more recent timestamp,
depending on whether the handle’s frontier has been
downgraded before it was used to import the trace. Full
historical information means that computations do not re-
quire special logic or modes to accommodate attaching to
incomplete in-progress streams; imported traces appear
indistinguishable to the original streams, other than their
surprisingly large batch sizes and recent timestamps.

5 Operator implementations
Many of K-Pg’s operators act on shared indexed batches
of input updates, and this structure and potential vol-
ume of data can lead to very different operator imple-
mentations from record-at-a-time streaming systems. In
this section we explain K-Pg’s operator implementations,
starting with the simplest examples and proceeding to the
more complex join, group, and iterate operators.

5.1 Key-preserving operators

Several stateless operators are “key-preserving”, in that
they do not transform their input data to the point that it
needs to be re-arranged. Example operators are filter,
concat, negate, and the iteration helper methods enter
and leave. These operators can be implemented either
as streaming operators for streams of update triples, or as
wrappers around arrangements. For example, the filter
operator only needs to restrict the data presented in batch
and trace navigation, based on whatever predicate is sup-
plied to the filter operator.

These implementations contain trade-offs. An aggres-
sive filter may reduce the volume of data to the point
that it is relatively cheap to maintain a separate index,
and relatively ineffective to search in a large index only
to discard the majority of results. A user can filter an
arrangement, or first reduce the arrangement to a stream
of updates and then filter it.

5.2 Key-altering operators

Some stateless operators are “key-altering”, in that the
indexed representation of their output has little in com-
mon with that of their input. The most obvious example
is the map operator, which may perform arbitrary record-
to-record transformations. These operators reduce any
arranged representations to streams of update triples.

5.3 Stateful operators

Differential dataflow’s stateful operators are data-parallel,
meaning that their input data have a (key, val) structure,
and that the computation acts independently on each
group of key data. This independence is what allows K-
Pg and similar systems to distribute operator work across
otherwise independent workers, who can then process
their work without further coordination. At a smaller
scale, this independence means that each worker can
determine the effects of a sequence of updates on a key-
by-key basis, resolving all updates to one key before
moving to the next, even if this violates timestamp order.

5.3.1 The join operator Our join operator takes as
inputs batches of updates from each of its arranged in-
puts. Its job is to produce any changes in outputs that
result from its advancing inputs. Our implementation has
several variations from a traditional streaming hash-join.

Trace capabilities. The join operator is bi-linear, and
only needs each input traces in order to respond to up-
dates from its other input. As such, the operator can
advance the frontiers of each trace handle by the frontier
of the other input, and it can drop each trace handle when
the other input closes out. This is especially helpful when
either input is static, as in static graph processing.

Alternating seeks. Join can receive input batches of sub-
stantial size, especially when importing an already main-
tained arranged collection. Naively implemented, we
might require time linear in the input batch sizes. Instead,
we perform alternating seeks between the cursors for in-
put batches and traces of the other input: when the cursor
keys match we perform work, and the keys do not match
we seek forward for the larger key in the cursor with the
smaller key. This pattern ensures that we perform work at
most linear in the smaller of the two sizes, seeking rather
than scanning through the cursor of the larger trace, even
when it is supplied as an input batch.

Amortized work. The join operator may be called
upon to produce a significant amount of output data that
can be reduced only once it crosses an exchange edge for
a downstream operator. If each input batch is immediately
processed to completion workers may be overwhelmed
with the amount of output data, either buffered for trans-
mission or (as in K-Pg) transmitted to the destination
workers but then buffered at each awaiting reduction. In-
stead, K-Pg responds to new input batches by producing
“futures”, limited batches of computation which can each
be executed until sufficiently many outputs are produced
and are then suspended. These futures make copies of
the shared batch and trace references they require, and
so do not block state maintenance for other operators.

8

5.3.2 The group operator The group operator takes
as input a collection with data of the form (key, val) and
a reduction function from a key and list of values to a list
of output values. At each time the output might change,
we reform the input and apply the reduction function, and
compare the results to the reformed output to determine
if output changes are required.

Perhaps surprisingly, the output may change at times
that do not appear in the input (because the least upper
bound of two times does not need to be one of the times).
Consequently, the group operator tracks a list of pairs
(key, time) of future work that are required even if we see
no input updates for the key at that time. For each such
(key, time) pair, the group operator accumulates the input
and output for key at time, applies the reduction function
to the input, and subtracts the accumulated output to
produce any corrective output updates.

Output arrangements. The group operator uses a col-
lection trace for its output, to efficiently reconstruct what
it has previously produced as output without extensive
re-invocation of the supplied user logic (and to evade
potential non-determinism therein). This provides the
group operator the opportunity to share its output trace,
just as the arrange operator does. It is not uncommon,
especially in graph processing, for the results of a group
to be immediately joined on the same key, and join can
re-use the same indexed representation that group uses
internally for its output.

Specializations. The group operator is much simpler
for totally ordered times, and becomes simpler still when
it only needs to implement count or distinct. We pro-
vide several such specialized operators, with type-level
restrictions to guarantee they are not mis-used. Users
select the operator that best suits their purpose, as long
as the types satisfy the imposed constraints.

5.4 Iteration

The iteration operator is largely unchanged from Na-
iad’s differential dataflow implementation. It creates a
new subgraph with an extended timestamp type, con-
taining an additional integer for “round of iteration” and
which is partially ordered using the product partial order
(two products are ordered if both of their coordinates are
equivalently ordered). The initial collection, the method’s
argument, is introduced as a stream of changes at iter-
ation zero, with the body of the iterative computation
attached. At the tail of the body, the result is merged
with the negation of the initial input collection, and all
changes are returned around the loop to the head with
the iteration index incremented.

We have made two minor modifications. First, arrange-
ments external to the iteration can be introduced (as
can un-arranged collections) with the enter operator,

whose implementation for arrangements only wraps cur-
sors with logic that introduces a zero coordinate to the
timestamp; indices and batches remain shared. Second,
we introduced a Variable type for recursively defined
collections which allows for programmatic construction
of mutual recursion, as well as the ability to return in-
termediate collections other than the result of the loop
body. This second feature is important when we want to
share collections around a loop iteration, as it allows us
to rotate the loop body so that the sharing is within one
iteration while still returning the intended result.

6 Evaluation

We now evaluate our main hypotheses: that through multi-
ple types of sharing, K-Pg can (i) outperform specialized
systems in their own domain, (ii) remain viable in mature
domains, and (iii) enable new solutions in open domains.
We demonstrate this across multiple application areas,
and conclude that specialized systems could be expressed
as layers atop K-Pg.

We evaluate K-Pg on a four-socket NUMA system
equipped with four Intel Xeon E5-4650 v2 CPUs, each
with 10 physical cores and 512 GB of aggregate sys-
tem memory. K-Pg distributes across multiple machines,
but our evaluation here is restricted to multiprocessors,
which have been sufficient to reproduce computation that
require more resources for less expressive frameworks.
Due to the breadth of the evaluation, we have largely
restated recent reported measurements from other sys-
tems on comparable hardware, rather than attempt to
reproduce their results on our own hardware.

We stress that we compare K-Pg to systems of many
different classes, some of which provide significant ad-
ditional functionality that K-Pg does not provide. Most
prominently, K-Pg is not a transaction processor. Rather,
K-Pg accepts changes from a source-of-truth system,
and should be viewed as a high-performance analytics
replacement.

6.1 Relational analytics

TPC-H is a traditional data analytics benchmark: twenty-
two relational queries of varying complexity over re-
lations that describe parts, orders, suppliers, and their
inter-relationships. We manually implemented the same
queries in K-Pg.

Nikolic et al. [22] study the problem of maintaining
the TPC-H queries as they incrementally load the source
data, and the effect of logical batching on throughput
(which has the potentially undesirable effect of chang-
ing the result of the computation). A fair comparison
is complicated by variation in the set of operators with

9

incremental implementations: DBToaster is fast on re-
lational queries, but must occasionally fall back to full
re-evaluation for queries with complex aggregation.

Our experiments show that K-Pg can maintain often
substantially higher throughputs via physical batching
and worker scaling.

Absolute performance. Figure 4a reports absolute through-
puts on the twenty-two queries for a scale factor 10 in-
put for K-Pg in three configurations: single worker with
batch size one, single worker with batch size 1M, and 32
worker with batch size 1M. We also plot the DBToaster
measurements without batching, as a point of reference.
Physical batching allows K-Pg to increase throughput
and distribute work without altering the computation, at
the expense of increased latency.

Physical batching. Figure 4b reports K-Pg’s relative
throughput increases for one worker as we increase the
physical batching from one up to 1,000,000. The in-
creases are substantial at first, and continue but diminish
with larger batch sizes. Latency increases with the batch
sizes, nominally at first and then more significantly.

Worker scaling. Figure 4c reports the relative through-
put increases as we increase the workers from one to
sixteen, holding physical batching at 1M. Many queries
increase their throughput proportionally, with a corre-
sponding reduction in latency, though several queries
which involve global aggregation do not. The temporal
nature of the queries, histories for each aggregate, means
they resist traditional techniques like pre-aggregation,
and instead require techniques like parallel-prefix aggre-
gation to parallelize effectively.

TPC-H highlights several opportunities for further op-
timization. Query 15 contains an argmax, which we im-
plemented hierarchically with a sequence of group oper-
ators using progressively more coarse keys; this transfor-
mation was manual, but gains five orders of magnitude
throughput over full re-evaluation as performed by [22].
Queries Q11 and Q22 would benefit from an inequality
join operator, one that responds to changes in a threshold
by extracting the subset of values between the changes.

In Appendix B we report TPC-H measurements with
increased logical batching. Table 5 reports the processing
rates for logical batches of 100,000 records, along with
the rates of [22]; K-Pg offers a more uniformly high
throughput which scales out to multiple workers, though
for some “easier” queries (q6, q14) K-Pg lags behind
[22]. Table 6 reports elapsed times to process each query
as a single logical batch, compared with evaluations from
recent work [11] for Postgres, Spark, HyPer, and Flare;
for these measurements K-Pg is faster than the first two
systems, and not as fast as the latter two.

6.2 Graph workloads

We next evaluate K-Pg on graph workloads, ranging from
large computations on static graphs, to interactive queries
against evolving graphs. Our experiments show that K-
Pg is much faster than existing general-purpose graph
processors, not as fast as specialized static graph pro-
cessors, and offers substantially higher throughput than
interactive graph databases.

Batch graph computation. In Appendix C we evaluate
K-Pg on standard computations of reachability, breadth-
first distance labeling, and undirected connectivity, on
three standard social networks: LiveJournal, Orkut, and
Twitter, in tables 7, 8, and 9 respectively. Our measure-
ments indicate that K-Pg is consistently faster than sys-
tems like BigDatalog, Myria, SociaLite, and GraphX, but
is substanially less efficient than purpose-written single-
threaded code on pre-processed graph data. We did find
that when we modified the purpose-written code to use
hash maps rather than arrays for vertex state, as might
be required for more general vertex identifiers, K-Pg was
immediately competitive at between two and four cores.
Our conclusion is that K-Pg will (grossly) underperform
specialized graph processors executing on pre-processed
data, but that this gap closes if one must account for edge
and vertex pre-processing, or any form of graph changes.

Interactive graph queries. Pacaci et al [23] evaluate
multiple databases (graph and relational) on four interac-
tive graph queries: point look-ups, 1-hop look-ups, 2-hop
look-ups, and 4-hop shortest path queries (shortest paths
of length at most four). We implement each of these
queries as differential dataflows where the query argu-
ments are independent collections that may be modified
to introduce or remove specific query instances. This
gives K-Pg the benefit of treating the queries as stored
procedures, an advantage over systems that do not do so.

Figure 5 reports latency distributions for the four query
classes on an evolving graph of 10 million nodes and
64 million edges, under an open-loop load of 200,000
changes per second, half graph modifications and half
modifications to the query collections. These latencies
are comparable to those reported in [23] for single queries
against a static graph (reproduced in Table 10, with mea-
surements for K-Pg), except for the shortest path queries
due to the higher worker load. The throughput exceeds
that reported in [23] by two orders of magnitude, primar-
ily because K-Pg compiles the repeated query structure
to dataflow in which logical timestamps pre-resolve read
and write conflicts.

Figure 5b reports the latency distributions for a mix of
the four queries, where the 100,000 queries per second
are evenly distributed between the four query types, both
with and without sharing the graph structure. There is a

10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

2 6 10 14 18 22

th
ro
u
g
h
p
u
t
(t
u
p
le
s
/s
e
c
)

query

w=1, b=1
w=1, b=1M
w=32, b=1M
DBToaster

(a) DBToaster and various K-Pg.

10
1

10
2

10
3

2 6 10 14 18 22

re
la
tiv
e

 t
h
ro
u
g
h
p
u
t

query

b=10
1

b=10
2

b=10
3

b=10
4

b=10
5

b=10
6

(b) Relative increases with batching.

10
1

10
2

2 6 10 14 18 22

re
la
tiv
e

 t
h
ro
u
g
h
p
u
t

query

w=2
w=4

w=8
w=16

w=32

(c) Relative increases with workers.

Figure 4: Absolute and relative query rates for the 22 TPC-H queries. K-Pg can achieve higher throughputs
due to physical batching and scaling out, while producing the same output as single-thread DBToaster.

10
-4

10
-3

10
-2

10
-1

10
0

10
4

10
5

10
6

10
7

10
8

10
9

c
o
m
p
le
m
e
n
ta
ry

 c
d
f

nanoseconds

lookup
1-hop
2-hop
4-hop

(a) Latencies for homogenous queries.

10
-4

10
-3

10
-2

10
-1

10
0

10
4

10
5

10
6

10
7

10
8

10
9

c
o
m
p
le
m
e
n
ta
ry

 c
d
f

nanoseconds

not shared
shared

(b) Latencies for query mix.

1 GB

10 GB

100 GB

1 TB

 0 1000 2000 3000

re
s
id
e
n
t
s
e
t
s
iz
e

elapsed seconds

not shared
shared

(c) Resident set size.

Figure 5: Interactive graph query benchmarks. 32 workers, 10M nodes, 32M edges, 200K updates / second.
Query latencies are low even under 100k queries per-second load. Sharing reduces both latency and memory.

consistent latency penalty due to the increased system
load, which would only increase as more query classes
are maintained.

Figure 5c reports the memory footprint for the query
mix with and without sharing, for an hour-long execution.
The memory footprint stabilizes at 20GB for the shared
implementation, and roughly four times that for the not
shared implementation. There are five uses of the graph
across the four queries, but also per-query state that is
not profitably shared. The absolute numbers are perhaps
higher than they need to be, due in part to our discour-
aging jemalloc from aggressively releasing memory and
to our use of 64 bit graph identifiers, timestamps, and
differences. A user program can modify any of these.

6.3 Datalog workloads

Datalog is a relational language in which the query results
are the fixed point of repeated application of recursively
defined productions. Unlike graph computation, Data-
log queries tend to produce and work with substantially
more records than they are provided as input. Several
shared memory systems for Datalog exist, including Log-
icBlox, DLV, DeALS, and several distributed systems
have recently emerged, including Myria, SociaLite, and

BigDatalog. At the time of writing only LogicBlox sup-
ports decremental updates to Datalog queries, using a
technique called “transaction repair” [26].

Our experiments show that K-Pg is generally faster
than distributed Datalog engines and matches the best
shared memory engine. At the same time, K-Pg natively
supports incremental and decremental updates to Datalog
computations, and interactive top-down queries.

Bottom-up (batch) evaluation. In Appendix D we eval-
uate K-Pg relative to distributed and shared-memory Dat-
alog engines, using their benchmark queries and datasets
(“transitive closure” and “same generation” on trees,
grids, and random graphs). Table 11 reports that K-Pg
generally outperforms the distributed systems, and is
comparable to the best shared-memory engine (DeALS).

K-Pg’s generality brings some benefits to this domain:
single-threaded, DeALS takes 312 seconds to determine
the transitive closure of a random graph, but K-Pg can
determine the strongly connected component structure
of the same graph, summarizing the transitive closure, in
just 274ms. Our strongly connected components imple-
mentation uses doubly nested non-monotonic iteration,
and is not expressible in Datalog.

11

Query statistic tree-11 grid-150 gnp1
tc(x,?) median 2.56ms 346.28ms 18.29ms

maximum 9.05ms 552.79ms 25.40ms
full 0.08s 6.18s 9.45s

tc(?,x) median 15.63ms 320.83ms 15.58ms
maximum 18.01ms 541.76ms 23.84ms

full 0.08s 6.18s 9.45s
sg(x,?) median 68.34ms 1075.11ms 20.08ms

maximum 95.66ms 2285.11ms 26.56ms
full 56.45s 0.60s 19.85s

Table 2: Interactive and full computation of three
queries, on K-Pg with 32 workers. The interactive la-
tencies are medians and maximums of 100 queries.

Top-down (interactive) evaluation. If the user imposes
constraints on a target query, for example tc(“david”, ?),
one can explore the space of facts from the possible goals
back to the facts of the base relations. The “magic set”
transformation [6] rewrites such queries as bottom-up
computations with a new base relation that seeds the
bottom-up derivation with query arguments; the rewrit-
ten rules derive facts only with the participation of some
seed record. In K-Pg (and some interactive Datalog envi-
ronments) this work can be performed against maintained
indices of the non-seed relations, in much less time than
it would take batch processors to re-index these relations.

Table 2 reports median and maximum latencies for 100
random arguments for three interactive queries on three
of the benchmark graphs from above, and the times for
full evaluation of the related query in both cases using 32
workers. In many cases the times reduce from seconds to
milliseconds. In some cases the transformed queries are
slower, most prominently for sg(x,?) on grid-150, which
is a known problem with the automatic transformation.

6.4 Program Analysis

Graspan [27] is a system built to perform static analysis
of large code bases, created in part because existing sys-
tems reportedly could not handle the non-trivial analyses
at the sizes required. Graspan out-performs SociaLite by
orders of magnitude when the latter successfully com-
pletes, which it often does not.

Tables 3 and Table 4 reproduce the running times re-
ported in [27], and reports those of K-Pg for their two
program analyses, dataflow and points-to, respectively.
The dataflow query is propagates null assignments along
program assignment edges. The more complicated points-
to analysis develops a mutually recursive graph of value
flows, and memory and value aliasing. In both cases we
see a substantial improvement (from 14x to 550x), which
we attribute to our re-use of operators from an optimized
system. A complete implementation of Graspan—query
parsing, dataflow construction, input parsing and loading,
dataflow execution—is 179 lines of code on top of K-Pg.

System cores linux psql httpd
SociaLite 4 OOM OOM 4 hrs
Graspan 4 713.8 min 143.8 min 11.3 min
K-Pg 1 76.8s 37.0s 10.9s
K-Pg (med) 1 1.11ms 185ms 22.0ms
K-Pg (max) 1 8.13ms 1.48s 218ms

Table 3: System performance for the three graphs
for the dataflow analysis. The first two lines are re-
produced from [27]. Also, the median and maximum
times to remove each of the first 1,000 null assign-
ments from the complete analysis.

System cores linux psql httpd
SociaLite 4 OOM OOM > 24 hrs
Graspan 4 99.7 min 353.1 min 479.9 min
K-Pg 1 423.1s 362.0s 536.3s
K-Pg (Opt) 1 191.3s 75.9s 77.4s
K-Pg (NoS) 1 401.7s 94.3s 91.9s

Table 4: System performance for the three graphs
for the points-to analysis. The first two lines are re-
produced from [27]. Further K-Pg implementations
correspond to an optimized query (Opt), and the op-
timized query without sharing (NoS).

Disk-based access. Graspan is designed to operate out-
of-core, and explicitly manages its data on disk. We re-
port K-Pg measurements on a laptop with only 16GB
of RAM; only the points-to analysis actually exceeds
this limit (peaking around 30GB), but its sequential ac-
cess makes the operating system’s paging mechanisms
sufficient for out-of-core execution. We verify this by
modifying the computation to use 32bit timestamps and
differences, which brings the memory footprint to within
RAM limits; this optimized version runs only 20% faster.

Optimization. The points-to analysis is dominated by
the determination of a large relation (value aliasing) that
is used only once. This relation can be optimized out
(value aliasing is eventually restricted by dereferences,
and this restriction can be performed before forming all
value aliases), which results in a much more efficient
computation, one that re-uses relations multiple times.
Table 4 reports the optimized running times, with and
without sharing, where we can see the positive effect of
sharing, and the limiting effect of failing to share state.

Top-down evaluation. Both dataflow and points-to can
be transformed to support interactive queries instead of
batch computation. Table 3 reports the median and maxi-
mum latencies to remove the first 1,000 null assignments
from the completed dataflow analysis and correct the set
of reached program locations. While there is some vari-
ability the timescales are largely interactive, and suggest
the potential for a improved developer experience.

12

10
-4

10
-3

10
-2

10
-1

10
0

10
4

10
5

10
6

10
7

10
8

10
9

c
o
m
p
le
m
e
n
ta
ry

 c
d
f

nanoseconds

31250
62500
125000
250000
500000
1000000

(a) Varying offered load with 1 worker.

10
-4

10
-3

10
-2

10
-1

10
0

10
4

10
5

10
6

10
7

10
8

10
9

c
o
m
p
le
m
e
n
ta
ry

 c
d
f

nanoseconds

1
2
4
8
16
32

(b) Varying workers with fixed load.

10
-4

10
-3

10
-2

10
-1

10
0

10
4

10
5

10
6

10
7

10
8

10
9

c
o
m
p
le
m
e
n
ta
ry

 c
d
f

nanoseconds

1
2
4
8
16
32

(c) Varying workers and offered load

0

50M

100M

150M

 1 4 8 16 32

th
ro
u
g
h
p
u
t
(r
e
c
o
rd
s
/s
)

cores

batch formation
trace maintenance
count

(d) Task throughput, varying workers.

10
-4

10
-3

10
-2

10
-1

10
0

10
4

10
5

10
6

10
7

10
8

10
9

c
o
m
p
le
m
e
n
ta
ry

 c
d
f

nanoseconds

1, lazy
1, default
1, eager
32, lazy
32, default
32, eager

(e) Amortized merging levels.

10
-4

10
-3

10
-2

10
-1

10
0

10
4

10
5

10
6

10
7

10
8

10
9

c
o
m
p
le
m
e
n
ta
ry

 c
d
f

nanoseconds

2
0

2
8

2
16

2
17

2
18

2
19

2
20

(f) Join with pre-arranged collection.

Figure 6: Microbenchmarks for arrangement and join execution.

6.5 Microbenchmarks

We perform several microbenchmarks assessing the arrange
operator applied to a continually changing collection of
64bit identifiers (with 64bit timestamp and signed dif-
ference). We are primarily interested in the distribution
of response latencies as configurations change, and we
report all latencies in complementary cdf form (“fraction
of times with latency greater than”) to get high detail in
the tail of the distribution.

Varying load. Figure 6a reports the latency distributions
for a single worker as we vary the number of keys and
offered load in an open-loop harness, from 10M keys and
1M updates per second, downward by factors of two. K-
Pg allows the test harness to automatically trade latency
for throughput until equilibrium is reached.

Strong scaling. Figure 6b reports the latency distribu-
tions for varying numbers of workers under a fixed work-
load of 10M keys and 1M updates per second. As the
number of workers increases the latency-throughput trade-
off swings in favor of latency.

Weak scaling. Figure 6c reports the latency distributions
for varying numbers of workers as we proportionately
increase the number of keys and offered load. While
the latency distributions do increase, as data exchange
becomes more complicated, they do stabilize.

Throughput. Figure 6d breaks down the peak through-
puts of sub-components of arrangement: batch formation,

trace maintenance, and a maintained count operator. To
allow the throughput to vary, this experiment uses re-
peated rounds of batches of 10,000 updates for each
worker rather than the open-loop harness. Scaling is lin-
ear out to 32 workers.

Amortized merging. Figure 6e reports the latency distri-
butions for one and 32 workers each with three different
merge amortization coefficients: eager, default, and lazy.
For a single worker the lazier settings have smaller tail
latencies, but are more often in that tail. For 32 work-
ers, the lazier settings are significantly better as workers
are less likely to stall and block the entire computation.
As with garbage collection in Broom [12], we conclude
that rare but large dataflow interruptions are nonetheless
significant impediments to strong scaling.

Join proportionality. Figure 6f reports the distributions
of latencies to install, execute, and complete new dataflows
joining small collections of varying size against a pre-
arranged collection of 10M keys. K-Pg has nominal over-
heads for installing new dataflows, as low as milliseconds,
and executes joins in time proportionate to the size of the
small collection.

7 Related work
Many of K-Pg’s features have appeared before in iso-
lation, but they have not been brought together in one
system. This section characterizes prior data processors,

13

highlights their limitations, and points out assumptions
made by them that K-Pg leaves behind.

Batch processors. Systems like MapReduce [10], Dryad-
LINQ [28], Spark [29] execute large computations as
directed acyclic graphs (DAGs) of independent, finite-
duration tasks. The independence of tasks allows these
systems to scale, and re-execution allows them to toler-
ate failures [21, 29]. However, independence trades away
efficiency for resilience.

DryadLINQ and Spark re-use datasets (respectively,
Nectar [14] and Resilient Distributed Datasets), but this
re-use avoids only the re-computation of the dataset from
dataflow inputs. The dataset must still be re-scanned
and re-indexed for each use, whereas in K-Pg the data
are maintained in the indexed form that many operators
require, supporting the effectively free deployment of
new instances of such operators.

Stream processors. Systems like Borealis [5],
STREAM [4], and TelegraphCQ [8] maintain continu-
ous queries over streams of data. STREAM in particular
maintains “synopses” (often indices) for operators and
shares them between operators. K-Pg’s shared indices
can be seen as distributed, multi-temporal versions of
STREAM’s synopses. Unlike STREAM, K-Pg reveals
the synopsis structure (a log of indexed batches) to its
operators, which take advantage of this representation.

Modern stream processors like Flink [7] and Mill-
Wheel [3] impose less structure, and more closely resem-
ble continually executing MapReduce dataflows. This
flexibility enables complex, non-relational event process-
ing, but their architectures evolved without the goal of
sharing data between operators and across dataflows. We
believe that modern stream processors operate far below
capacity because of this decision.

Finally, stream processors lack support for iteration.
Unlike batch processors, which can extend their dataflow
DAG arbitrarily, stream processors do not continually
re-structure their dataflows. One exception, Naiad [20],
supports iterative computation through cyclic dataflow
graphs and partially-ordered timestamps. In a sense, Na-
iad shares state across iterative re-invocations of the same
operator, but not otherwise.

Databases. Relational (and other) databases provide
general functionality for managing data, but have not to
date been efficient, scalable solutions for general com-
putation. Databases do however share indices between
queries, and K-Pg explicitly draws inspiration from their
economy of execution on their target functionality. Data-
bases perform a great many tasks beyond computation,
and one should view K-Pg as general, scalable, and re-
sponsive incremental view maintenance, applicable to
the change log of a durable and consistent store.

Our shared state representation is inspired by the de-
sign of Log Structured Merge (LSM) trees. One can
interpret K-Pg as a dataflow system where state is com-
monly maintained in a multi-temporal LSM structure,
and whose dataflow edges transport LSM layers. There is
a healthy amount of recent work on LSM design, and our
experience has been that a write-optimized design has
similar positive implications for high-throughput compu-
tation as it has for storage.

Specialized systems. Relatively few graph processors
attack the problem of computations over continually
evolving graphs. Chronos [15] is a temporal graph en-
gine, in that it supports queries over a fixed sequence of
graphs, rather than a responsive system against live data;
it targets coarsely batched snapshots and is evaluated on
monotonic graph computations. GraphTau [17] targets
continually evolving graph data (and queries against his-
torical data) and uses persistent data structures to share
the representation of multiple snapshots. Sharing graph
data across computations is not discussed, though their
data representation should make this possible.

Datalog has re-emerged as an expressive analytics lan-
guage, capturing some graph computations among other
more general recursive queries. Datalog is by its nature
restricted to monotonic queries (once true, facts remain
true), but variants support non-monotonic queries using
“stratification”, which serializes the execution of parts
of the query. Single-machine Datalog systems support
interactive queries, but the distributed batch processing
models effectively preclude an interactive experience.
Datalog has traditionally resisted efficient updates in the
presence of retractions, with exceptions being differen-
tial dataflow and LogicBlox’s “transaction repair” [26],
a technique specialized to relational equijoins.

8 Conclusions
We presented K-Pg, a system that supports holistic, tem-
poral, and iterative sharing. K-Pg’s design required re-
thinking the traditional dataflow architecture, specifically
to introduce shared state that supports a high rate of logi-
cal updates. This design shift enables new opportunities
for operators, which can more efficiently retire batches
of indexed updates than tuple-at-a-time processors. To-
gether, these changes enable the efficient implementation
of new classes of computation, in which random access
to existing indexed state comes at relatively low cost. We
evaluated K-Pg on a variety of computations, and find
that its performance is comparable with and often better
than existing systems on a variety of tasks.

References
[1] https://www.rust-lang.org.
[2] https://github.com/frankmcsherry/timely-dataflow/.

14

[3] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak,
Josh Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul
Nordstrom, and Sam Whittle. Millwheel: Fault-tolerant stream
processing at internet scale. Proceedings of the VLDB Endowment,
6(11):1033–1044, August 2013.

[4] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz,
Mayur Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava,
and Jennifer Widom. STREAM: The Stanford Data Stream Man-
agement System, pages 317–336. Springer, Berlin/Heidelberg,
Germany, 2016.

[5] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and
Michael Stonebraker. Fault-tolerance in the borealis distributed
stream processing system. In Proceedings of the 2005 ACM SIG-
MOD International Conference on Management of Data, SIG-
MOD ’05, pages 13–24, New York, NY, USA, 2005. ACM.

[6] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D
Ullman. Magic sets and other strange ways to implement logic
programs (extended abstract). In Proceedings of the Fifth ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems,
PODS ’86, pages 1–15, New York, NY, USA, 1986. ACM.

[7] Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos,
Volker Markl, and Kostas Tzoumas. Apache flink: Stream and
batch processing in a single engine. IEEE Data Engineering,
38(4), December 2015.

[8] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande,
Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh
Krishnamurthy, Samuel R. Madden, Fred Reiss, and Mehul A.
Shah. Telegraphcq: Continuous dataflow processing. In Proceed-
ings of the 2003 ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 668–668, 2003.

[9] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Powerlyra:
Differentiated graph computation and partitioning on skewed
graphs. In Proceedings of the Tenth European Conference on
Computer Systems, EuroSys ’15, pages 1:1–1:15, New York, NY,
USA, 2015. ACM.

[10] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Communications of the ACM,
51(1):107–113, January 2008.

[11] Gregory Essertel, Ruby Tahboub, James Decker, Kevin Brown,
Kunle Olukotun, and Tiark Rompf. Flare: Optimizing apache
spark with native compilation for scale-up architectures and
medium-size data. In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI’18.
USENIX Association, 2018.

[12] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dim-
itrios Vytiniotis, Ganesan Ramalingan, Derek Murray, Steven
Hand, and Michael Isard. Broom: Sweeping out garbage collec-
tion from big data systems. In Proceedings of the 15th USENIX
Conference on Hot Topics in Operating Systems, HOTOS’15,
pages 2–2, Berkeley, CA, USA, 2015. USENIX Association.

[13] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson,
and Carlos Guestrin. PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs. In Proceedings of the 10th

USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 17–30, Hollywood, California, USA,
October 2012.

[14] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A.
Thekkath, Yuan Yu, and Li Zhuang. Nectar: Automatic manage-
ment of data and computation in datacenters. In Proceedings of
the 9th USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 75–88, 2010.

[15] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang,
Lidong Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong

Chen. Chronos: A graph engine for temporal graph analysis. In
Proceedings of the Ninth European Conference on Computer
Systems, EuroSys ’14, pages 1:1–1:14, New York, NY, USA,
2014. ACM.

[16] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed Data-parallel Programs from Sequen-
tial Building Blocks. In Proceedings of the 2nd ACM SIGOPS
European Conference on Computer Systems (EuroSys), pages
59–72, March 2007.

[17] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Sto-
ica. Time-evolving graph processing at scale. In Proceedings of
the Fourth International Workshop on Graph Data Management
Experiences and Systems, GRADES ’16, pages 5:1–5:6, New
York, NY, USA, 2016. ACM.

[18] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-
masamy, and Siddarth Taneja. Twitter heron: Stream processing
at scale. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 239–250,
2015.

[19] Frank McSherry, Derek G. Murray, Rebecca Isaacs, and Michael
Isard. Differential dataflow. In Proceedings of the 6th Biennial
Conference on Innovative Data Systems Research (CIDR), Janu-
ary 2013.

[20] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael
Isard, Paul Barham, and Martín Abadi. Naiad: A Timely Dataflow
System. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), pages 439–455, November 2013.

[21] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy, and Steven Hand. Ciel: A
universal execution engine for distributed data-flow computing.
In Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, pages 113–126,
Berkeley, CA, USA, 2011. USENIX Association.

[22] Milos Nikolic, Mohammad Dashti, and Christoph Koch. How
to win a hot dog eating contest: Distributed incremental view
maintenance with batch updates. In Proceedings of the 2016
ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 511–526, 2016.

[23] Anil Pacaci, Alice Zhou, Jimmy Lin, and M. Tamer Özsu. Do
we need specialized graph databases?: Benchmarking real-time
social networking applications. In Proceedings of the Fifth Inter-
national Workshop on Graph Data-management Experiences &
Systems, GRADES’17, pages 12:1–12:7, New York, NY, USA,
2017. ACM.

[24] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan
Chiu, Tyson Condie, and Carlo Zaniolo. Big data analytics with
datalog queries on spark. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD), pages 1135–
1149, 2016.

[25] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ra-
masamy, Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Kr-
ishna Gade, Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh
Mittal, and Dmitriy Ryaboy. Storm @twitter. In Proceedings of
the 2014 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD), pages 147–156, 2014.

[26] Todd L. Veldhuizen. Transaction repair: Full serializability with-
out locks. CoRR, abs/1403.5645, 2014.

[27] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and
Ardalan Amiri Sani. Graspan: A single-machine disk-based graph
system for interprocedural static analyses of large-scale systems
code. In Proceedings of the Twenty-Second International Confer-
ence on Architectural Support for Programming Languages and

15

Operating Systems, ASPLOS ’17, pages 389–404, New York, NY,
USA, 2017. ACM.

[28] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Er-
lingsson, Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: A
System for General-Purpose Distributed Data-Parallel Computing
Using a High-Level Language. In Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), December 2008.

[29] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of
the 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI), pages 15–28, April 2012.

[30] Yunhao Zhang, Rong Chen, and Haibo Chen. Sub-millisecond
stateful stream querying over fast-evolving linked data. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 614–630, New York, NY, USA, 2017. ACM.

A Compaction Theorems
Let F be an antichain of partially ordered times (a “fron-
tier”). Writing f ≥ F to mean f is greater than some
element of F , we will say that two times t1 and t2 are
“indistinguishable as of F”, written t1 ≡F t2, when

t1 ≡F t2 when ∀f ≥F (t1 ≤ f iff t2 ≤ f)

As performed in the Naiad prototype, we can deter-
mine a representative for a time t relative to a set F
using the least upper bound (∧) and greatest lower bound
(∨) operations of the lattice of times, taking the greatest
lower bound of the set of least upper bounds of ti and
elements of F :

repF (t) := ∨f ∈F (t ∧ f)

The repF function finds a representative that is both cor-
rect (t and repF (t) compare identically to times greater
than F) and optimal (two times comparing identically to
all times greater than F map to the same representative).

The formal properties of repF rely on properties of the
∧ and ∨ operators, that they are respectively upper and
lower bounds of their arguments, and their optimality:

b ≤ a and c ≤ a → (b ∧ c) ≤ a (lub)

a ≤ b and a ≤ c → a ≤ (b ∨ c) (дlb)

In particular, we will repeatedly use that if t1 ≤ (t2 ∨ f)
for all f ∈ F , then t1 ≤ repF (t2).

THEOREM A.1 (CORRECTNESS). For any lattice el-
ement t and set F of lattice elements, t ≡F repF (t).

PROOF. We prove both directions of the implication
in ≡F separately, for all f ≥ F . First assume t ≤ f . By
assumption, f is greater than some element f ′ of F , and
so t ∧ f ′ ≤ f by the (lub) property. As a lower bound,
repF (t) ≤ t ∧ f ′ for each f ′ ∈ F , and by transitivity
repF (t) ≤ f . Second assume repF (t) ≤ f . Because t ≤
(t ∧ f ′) for all f ′ ∈ F , then t ≤ repF (t) by the (дlb)
property and by transitivity t ≤ f . □

query DBToaster K-Pg (w=1) K-Pg (w=32)
TPC-H 01 4,372,480 9,341,713 31,283,993
TPC-H 02 691,260 4,388,761 29,651,632
TPC-H 03 4,580,003 11,049,606 37,263,673
TPC-H 04 9,752,380 9,046,854 30,886,269
TPC-H 05 509,490 5,802,513 27,952,246
TPC-H 06 101,327,791 33,090,863 65,335,474
TPC-H 07 646,018 7,551,628 30,962,626
TPC-H 08 221,020 4,949,412 28,230,062
TPC-H 09 76,296 2,932,421 18,119,469
TPC-H 10 5,964,290 9,708,371 25,037,510
TPC-H 11 591,716 1,720,655 1,749,464
TPC-H 12 7,469,474 11,258,702 33,975,983
TPC-H 13 474,765 1,446,223 16,792,703
TPC-H 14 53,436,252 21,908,762 38,843,085
TPC-H 15 964 5,057,397 23,122,916
TPC-H 16 58,721 4,435,818 23,495,608
TPC-H 17 131,964 5,218,907 25,888,103
TPC-H 18 971,313 5,854,293 29,574,347
TPC-H 19 8,776,165 22,696,357 36,393,109
TPC-H 20 1,871,407 16,089,949 46,456,453
TPC-H 21 407,540 1,968,771 10,928,516
TPC-H 22 815,903 1,843,397 15,233,935

Table 5: Streaming update rates (in tuples per sec-
ond) for the 22 TPC-H queries at scale factor 10, with
logical batching of 100,000 elements at the same time.
Elapsed times for DBToaster are for one thread, and
are reproduced from [22]. For K-Pg we report both
one worker and 32 worker rates.

At the same time, repF is optimal in that two equiva-
lent elements will be mapped to the same representative.

THEOREM A.2 (OPTIMALITY). For any lattice ele-
ments t1 and t2 and set F of lattice elements, if t1 ≡F t2
then repF (t1) = repF (t2).

PROOF. For all f ∈ F we have both that t1 ≤ t1 ∧ f
and f ≤ t1 ∧ f , the latter implying that t1 ∧ f ≥ F . By
our assumption, t2 agrees with t1 on times greater than
F , making t2 ≤ t1 ∧ f for all f ∈ F . By correctness,
repF (t2) agrees with t2 on times greater than F , which
includes t1 ∧ f for f ∈ F and so repF (t2) ≤ t1 ∧ f for
all f ∈ F . Because repF (t2) is less or equal to each term
in the greatest lower bound definition of repF (t1), it is
less or equal to repF (t1) itself. The symmetric argument
proves that repF (t1) ≤ repF (t2), which implies that the
two are equal (by antisymmetry). □

B Relational computations
Table 5 reports throughput in tuples per second for [22]
and K-Pg on the scale factor 10 TPC-H workload with
logical batches of 100,000 elements. K-Pg has a generally
higher and more consistent rate, though is less efficient
on lighter queries (q04, q06, and q14); K-Pg performs
no pre-aggregation, which could improve its rates for
logically batched queries. For 32 workers, almost all
rates are above 10 million updates per second, which
correspond to latencies below 10ms between reports.

16

query Postgres SparkSQL HyPer Flare K-Pg
TPC-H 01 241,404 18,219 603 530 7,789
TPC-H 02 6,649 23,741 59 139 2,426
TPC-H 03 33,721 47,816 1,126 532 5,948
TPC-H 04 7,936 22,630 842 521 8,550
TPC-H 05 30,043 51,731 941 748 14,001
TPC-H 06 23,358 3,383 232 198 1,185
TPC-H 07 32,501 31,770 943 830 12,029
TPC-H 08 29,759 63,823 616 1,525 19,667
TPC-H 09 64,224 88,861 1,984 3,124 27,873
TPC-H 10 33,145 42,216 967 1,436 4,559
TPC-H 11 7,093 3,857 131 56 1,534
TPC-H 12 37,880 17,233 501 656 4,458
TPC-H 13 31,242 28,489 3,625 3,727 3,893
TPC-H 14 22,058 7,403 330 278 1,695
TPC-H 15 23,133 14,542 253 302 1,591
TPC-H 16 13,232 23,371 1,399 620 2,238
TPC-H 17 155,449 70,944 563 2,343 17,750
TPC-H 18 90,949 53,932 3,703 823 9,426
TPC-H 19 29,452 13,085 1,980 909 2,444
TPC-H 20 65,541 31,226 434 870 4,658
TPC-H 21 299,178 128,910 1,626 1,962 29,363
TPC-H 22 11,703 10,030 180 177 2,819

Table 6: Elapsed milliseconds for the 22 TPC-H
queries at scale factor 10, each using a single core.
Elapsed times for the four other systems are repro-
duced from [11]. K-Pg used as a batch processor is
not as fast as the best systems (HyPer and Flare), but
is faster than other popular frameworks.

Table 6 reports elapsed times for K-Pg applied to the
scale-factor 10 TPC-H workload. We also reproduce sev-
eral measurements from [11] for other systems. All are
executed with a single thread. K-Pg used as a batch pro-
cessor is not as fast as the best systems (HyPer and Flare),
but is faster than other popular frameworks.

C Graph computations
We now report on the performance of K-Pg used as a
batch graph processor, where the inputs are static collec-
tions of edges defining a directed graph. Following [24]
we use the tasks of single-source reachability (reach),
single-source shortest paths (sssp), and undirected con-
nectivity (wcc). For the first two problems we start the
process from the first graph vertex with any outgoing
edges (each reaches a majority of the graph).

We separately report the times required to form the
forward and reverse edge arrangements, with the former
generally faster than the latter as the graphs are made
available sorted by the source as in the forward index.
The reported times for the three problems are then any
further time required after the index construction, where
the first two problems require a forward index and undi-
rected connectivity requires indices in both directions.

We report times for three graphs: livejournal in
Table 7, orkut in Table 8, and twitter in Table 9.
We also reproduce measurements reported in [24] for
several other systems. We include running times for

System cores index-f reach sssp index-r wcc
Single thread 1 - 0.40s 0.40s - 0.29s

w/hash map 1 - 4.38s 4.38s - 8.90s
BigDatalog 120 - 17s 53s - 27s
Myria 120 - 5s 70s - 39s
SociaLite 120 - 52s 172s - 54s
GraphX 120 - 36s 311s - 59s
K-Pg 1 4.39s 8.50s 13.14s 7.56s 23.97s
K-Pg 2 2.49s 4.33s 6.71s 4.01s 12.95s
K-Pg 4 1.39s 2.31s 3.58s 2.06s 6.29s
K-Pg 8 0.74s 1.20s 1.79s 1.03s 3.41s
K-Pg 16 0.54s 0.62s 0.90s 0.58s 1.71s
K-Pg 32 0.55s 0.51s 0.59s 0.41s 0.90s

Table 7: System performance on various tasks on the
4.8M node, 68M edge livejournal graph.

System cores index-f reach sssp index-r wcc
Single thread 1 - 0.46s 0.46s - 0.52s

w/hash map 1 - 11.56s 11.56s - 19.00s
BigDatalog 120 - 20s 39s - 33s
Myria 120 - 6s 44s - 57s
SociaLite 120 - 67s 106s - 78s
GraphX 120 - 48s 67s - 53s
K-Pg 1 14.02s 20.33s 24.65s 21.27s 47.79s
K-Pg 2 7.92s 10.29s 13.06s 11.49s 25.02s
K-Pg 4 4.25s 5.34s 6.21s 5.73s 12.38s
K-Pg 8 2.37s 2.68s 3.34s 3.03s 6.29s
K-Pg 16 1.43s 1.47s 1.60s 1.69s 3.30s
K-Pg 32 1.22s 1.11s 0.87s 1.05s 1.75s

Table 8: System performance on various tasks on the
3M node, 117M edge orkut graph.

System cores index-f reach sssp index-r wcc
Single thread 1 - 14.89s 14.89s - 33.99s

w/hash map 1 - 192.01s 192.01s - 404.19s
BigDatalog 120 - 125s 260s - 307s
Myria 120 - 102s 1593s - 1051s
SociaLite 120 - 755s OOM - OOM
GraphX 120 - 3677s 6712s - 12041s
K-Pg 1 162.41s 256.77s 310.63s 312.31s 800.05s
K-Pg 2 99.74s 131.50s 159.93s 164.12s 417.20s
K-Pg 4 49.46s 64.31s 77.27s 81.67s 200.28s
K-Pg 8 27.99s 33.68s 40.24s 43.20s 101.42s
K-Pg 16 18.04s 17.40s 20.99s 24.73s 51.83s
K-Pg 32 12.69s 11.36s 10.97s 14.44s 27.48s

Table 9: System performance on various tasks on the
42M node, 1.4B edge twitter graph.

simple single-threaded implementations that are not re-
quired to follow the same algorithms. For example, for
undirected connectivity we use the union-find algorithm
rather than label propagation, which outperforms all of
the measurements reported here. We also include the
same times when the single-threaded implementations re-
place their array-indexed data structures with hash maps,
as they might when the graph identifiers have not be
pre-processed to be in a compact range.

The measurements indicate that K-Pg is at least as
capable as these peer systems at graph processing, often
with just a single core. K-Pg lags well behind graph
processors that can rely on dense integer identifiers and
direct array access, but appears likely to be competetive
with graph processors that cannot rely on dense integer
identifiers.

We next compare to measurements made of several
graph databases, on relatively simpler read queries. Pacaci

17

System cores look-up one-hop two-hop four-path
Neo4j 32 9.08ms 12.82ms 368ms 21ms
Postgres 32 0.25ms 1.4ms 29ms 2242ms
Virtuoso 32 0.35ms 1.23ms 11.55ms 4.81ms
K-Pg (batch: 100) 32 0.64ms 0.92ms 1.28ms 1.89ms
K-Pg (batch: 101) 32 0.81ms 1.19ms 1.65ms 2.79ms
K-Pg (batch: 102) 32 1.26ms 1.79ms 2.92ms 8.01ms
K-Pg (batch: 103) 32 5.71ms 6.88ms 10.14ms 72.20ms

Table 10: Average query latencies on a graph with
10M nodes and 64M undirected edges. Latencies for
the first three systems are reproduced from [23]. K-
Pg measurements are taken on a random graph with
the same numbers of nodes and edges and are the
average of 1,000 measurements. The batch size is the
number of concurrent queries per measurement.

et al [23] evaluated several graph database solutions with
a mix of four queries: look-ups, one hop neighborhood,
two-hop neighborhood, and “shortest path if not longer
than four hops”. We build query dataflows in K-Pg for
these four queries and evaluate the latencies when we
introduce new query seeds to each of the four types. In
this set-up K-Pg treats the queries as stored procedures,
which makes this an unfair comparison for those data-
bases that do not do this.

Table 10 measures the average latency to perform and
then await a single query in several systems, as well as the
time to perform and await batches of increasing numbers
of queries. While not providing the lowest latency for
point look-ups, K-Pg provides excellent latencies for
other queries, and supports increasing batches without
much degradation.

D Datalog computations
Table 11 reports elapsed seconds first for distributed sys-
tems, then for single-machine systems, and then for K-
Pg at varying numbers of workers. The workloads are
“transitive closure” (tc) and “same generation” (sg) on
supplied graphs that are trees (t), grids (g), and random
graphs (r).

K-Pg is generally competitive with the best of the spe-
cialized Datalog systems (here: DeALS), and generally
out-performs the distributed data processors. BigDatalog
competes well on transitive closure due to an optimiza-
tion for linear queries where it broadcasts its input dataset
to all workers; this works well with small inputs, as here,
but is not generally a robust strategy.

System cores tc(t) tc(g) tc(r) sg(t) sg(g) sg(r)
BigDatalog 120 49s 25s 7s 53s 34s 72s
Spark 120 244s OOM 63s OOM 1955s 430s
Myria 120 91s 22s 50s 822s 5s 436s
SociaLite 120 DNF 465s 654s OOM 17s OOM
LogicBlox 64 NR 24420s 913s 58732s 326s 3363s
DLV 1 NR 13127s 9272s OOM 105s 48039s
DeALS 1 NR 148s 321s 1309s 7.6s 2926s
DeALS 64 NR 5s 12s 48s 0.35s 79s
K-Pg 1 98.26s 132.23s 210.25s 1210.78s 4.43s 482.91s
K-Pg 2 53.42s 68.13s 111.98s 652.74s 2.76s 253.80s
K-Pg 4 27.85s 34.42s 57.69s 325.24s 1.63s 125.00s
K-Pg 8 15.37s 17.97s 30.90s 173.96s 1.06s 66.10s
K-Pg 16 9.63s 9.74s 16.66s 93.47s 0.69s 35.44s
K-Pg 32 7.18s 6.18s 9.45s 56.45s 0.60s 19.85s

Table 11: System performance on various Datalog
problems and graphs. Times for the first four sys-
tems are reproduced from [24]. NR indicates the
measurements were not reported, DNF indicates a
run that lasted more than 24 hours, and OOM indi-
cates the system terminated due to lack of memory.

18

	Abstract
	1 Introduction
	1.1 System overview
	1.2 Limitations and Tradeoffs
	1.3 Contributions

	2 Motivation
	2.1 A motivating example

	3 System design and background
	3.1 Timely dataflow
	3.2 Differential dataflow
	3.3 Design modifications

	4 Arrangements
	4.1 Collection traces
	4.2 The arrange operator
	4.3 Trace handles

	5 Operator implementations
	5.1 Key-preserving operators
	5.2 Key-altering operators
	5.3 Stateful operators
	5.4 Iteration

	6 Evaluation
	6.1 Relational analytics
	6.2 Graph workloads
	6.3 Datalog workloads
	6.4 Program Analysis
	6.5 Microbenchmarks

	7 Related work
	8 Conclusions
	References
	A Compaction Theorems
	B Relational computations
	C Graph computations
	D Datalog computations

