Shared Arrangements: practical inter-query sharing
for streaming dataflows

Paper #314

Abstract

Current systems for data-parallel, incremental processing over
high-rate streams isolate the execution of independent queries.
This creates unwanted redundancy and overhead in the pres-
ence of concurrent queries: each query must independently
maintain the same indexed state over the same input streams,
and new queries must build this state from scratch before they
can begin to emit their first results.

This paper introduces shared arrangements: indexed views
of maintained state that allow concurrent queries to reuse the
same in-memory state without compromising data-parallel
performance and scaling. We implement shared arrangements
in a modern stream processor and show dramatic improve-
ments in query response time and resource consumption for
interactive queries against low-latency streams, while also sig-
nificantly improving performance in other domains including
business analytics, graph processing, and program analysis.

1 Introduction

We present shared arrangements, a new technique for sharing
consistent state and computation between the operators of
multiple concurrent data-parallel streaming dataflows. Shared
arrangements improve the efficiency of systems which exe-
cute multiple stream processing computations, for example
to support interactive queries against event streams. They can
also reduce the time required to install new queries, often by
several orders of magnitude.

Centralized relational databases naturally use the same in-
dexes to answer a broad range of different queries, and can

even support sophisticated multi-query optimization (MQO) [12,

13]. In contrast, data-parallel stream processors like Flink [8],
Spark Streaming [32], and Naiad [20] lack such sharing.
While they do support common sub-queries and record streams,
they are unable to share the indexed representations of these
streams that operators require to execute efficiently.

Instead, independent operators re-process these shared
streams, expending communication, computation, and mem-
ory to produce and maintain private indexed representations
of their contents. For example, while multiple queries joining
against an evolving social graph may reuse the same stream
of graph updates, each join operator produces and maintains
an independent indexed representation of the social graph.
For the same reason, a new query must first read and index
the graph before it can start producing results. This setup
work can take orders of magnitude longer than answering the
query from existing maintained indexes, and queries’ separate
indexes introduce costly duplication of data and computation.

Shared arrangements address this inefficiency by making it
possible for dataflow operators, and consequently queries, to
share indexed state. The arrangement abstraction is a main-
tained index shared between a single writer and multiple
readers. Using the shared index, arrangement-aware versions
of familiar dataflow operators can process updates more effi-
ciently than traditional record-at-a-time operators would.

The key challenge for shared arrangements is balancing
sharing against the need for coordination in the dataflow. In
the scenarios we target, logical operator state is spread across
multiple, parallel physical operators; sharing such state be-
tween multiple queries could require global synchronization.
Arrangements solve this challenge by carefully structuring
how they share data: they (i) hard-partition shared state be-
tween workers and move computation to it, and (i) multi-
version shared state to allow operators to interact with it at
different times and rates.

A shared arrangement is a sharded, multiversioned index
of update events, which records the evolution of intermediate
results at some point in a dataflow graph. A new arrange
operator maintains the arrangement as updates arrive, and
ensures high throughput, low latency, and a compact memory
footprint. Other operators read from the shared arrangement
to get consistent views of the state at different logical times.

Shared arrangements can be applied to many modern stream
processors, but we used them to implement Differential Data-
flow [19] in a new streaming engine, SysX, built on an ex-
isting implementation of Timely Dataflow [1]. We show in
§ 7 that shared arrangements dramatically reduce interactive
query latency, by up to three orders of magnitude over ap-
proaches that cannot share indexes between computations.
For a streaming variant of TPC-H and a changing graph,
shared arrangements also reduce update latency by 1.3-3x
and reduce the memory footprint of the computation by 2—4x.

Overall, shared arrangements improve update throughput
of most parallel dataflows, while reducing memory footprint
and allowing additional new streaming queries to be deployed
near-instantaneously in many cases (since the required initial
state already exists). In most cases, the multiversioned index
used by arrangements improves even single-query execution,
suggesting that they are simply a better basis for passing
tuples between dataflow operators.

2 Background and Related Work

We can characterize the design space for inter-query state
sharing in dataflow systems in terms of (1) what is shared
between queries, (2) how this shared state can be updated,

System class | Example

Sharing

Updates Coordination

RDBMS | Postgres

Indexed state

Record-level Fine-grained

Batch processor

Spark | Non-indexed collections

Whole collection | Coarse-grained

Stream processor Flink

None Record-level | Coarse-grained

Shared arrangements (SysX)

Indexed state

Record-level | Coarse-grained

Table 1. Sharing of indexed in-memory state, record-level update granularity, and scalability through coarse-grained coordination
are mutually exclusive in current systems. Shared arrangements make it possible to combine these features in a single system.

and (3) the degree of coordination required to maintain it.
Table 1 contrasts relational databases, batch processors, and
stream processors with shared arrangements.

Relational databases like PostgreSQL [23] excel at an-
swering a wide range of different queries over tables laid out
according to a predefined schema. The use indexes to speed
up access to records in the tables, turning sequential scans
into point lookups. The database updates the index when the
underlying data changes. This model is flexible and natu-
rally shares indexes between different queries but requires
coordination. Scaling this coordination out to many paral-
lel processors or machines has proven difficult, and scalable
systems consequently attempt to restrict coordination.

Classic parallel processing “big data” systems like MapRe-
duce [11], Dryad [18], and Spark [31] rely only on coarse-
grained coordination. For scalability in processing large, un-
structured data sets, they avoid indexes and turn query pro-
cessing into parallel scans of distributed collections. These
collections are immutable: any modification to a distributed
collection (such as a Spark RDD) requires reconstituting that
collection as a new one. This captures a collection’s lineage
and makes all parallelism deterministic, which eases recovery
from failures. Immutability also allows different queries to
share the (static) collection for reading [17]. These tradeoffs
help systems scale out, but are a poor fit for streaming com-
putations, in which fine-grained changes frequently update
the collection data.

Stream-processing systems reintroduce fine-grained mu-
tability, and incrementally maintain intermediate state in a
long-running computation, but lack sharing. Systems like
Flink [8], Naiad [20], and Noria [14] keep long-lived, indexed
operator state in memory to enable efficient incremental pro-
cessing, but associate each piece of state exclusively with a
single operator, since concurrent accesses to this state from
multiple operators would race with state mutations. Conse-
quently, these systems duplicate the state that multiple op-
erators could, in principle, share. This allows independent
queries and operators to execute in isolation, but increases
write processing cost and space footprint.

In contrast with these three classes of system, shared ar-
rangements allow for fine-grained updates to shared indexes,
while preserving the scalability of data-parallel dataflow com-
putation. In particular, shared arrangements rely on primitives
(multiversioned indices and data-parallel sharding) that allow
updates to shared state without the costly concurrency control

mechanisms of classic databases or distributed shared mem-
ory. In exchange, shared arrangements give up some abilities:
unlike relational databases, they do not support fine-grained
transaction processing, and because sharing entangles differ-
ent queries that would otherwise have executed in isolation, it
gives up the performance isolation and fault isolation between
queries that the redundancy in big data systems achieves.

The work most related to shared arrangements is perhaps
STREAM [5], a relational stream processor which main-
tains “synopses” (often indexes) for operators and shares
them between operators. Shared arrangements can be seen
as data-parallel, multiversioned STREAM synopses. Unlike
STREAM, shared arrangements also reveal the synopsis struc-
ture (a log of indexed batches) to operators, which are able to
take advantage of this representation.

Many other relational and big data systems exhibit qual-
itatively different types of sharing. Relational engines like
ClJoin [7] and SharedDB [13] share table scans to more effi-
ciently retire queries over large, unindexed tables in data ware-
housing contexts. Both relational and big data systems can
identify common sub-expressions and either cache their re-
sults or fuse their computation; for example, Nectar [17] does
so for DryadLLINQ [30] computations. Stream processors like
TelegraphCQ [9] share state among continuous queries, but
sequentially process each query without parallelism or shared
indexes. Noria [14] supports parallel dataflow processing, and
shares overlapping prefixes of the dataflow graph between
queries, but still maintains per-operator indexed state. “Up-
queries” from downstream operators within the same dataflow
can read from these indexes to derive missing downstream
state, but the absence of multiversioning imposes complex
restrictions on Noria’s upqueries and often requires duplicate
indexes (e.g., within join chains).

Shared arrangements, by contrast, allow for operators fun-
damentally designed around shared indexes. Their ideas are,
in principle, compatible with many existing stream processors
that provide versioned updates (as e.g., Naiad and Flink do)
and support physical co-location of operator shards (as e.g.,
Naiad and Noria do).

3 Context and Overview

Shared arrangements are designed for use in streaming dataflow
computations. Data-parallel stream processing systems ex-
press such computations as a dataflow graph whose ver-
tices are operators, and whose roots constitute inputs to the

dataflow. An update (e.g., an event in stream) arrives at an
input and flows along the graph’s edges into operators. Each
operator takes the incoming update, processes it, and emits
any resulting derived updates.

In processing the update, a dataflow operator may refer
to its state: long-lived information that the operator main-
tains across invocations. State allows for efficient incremental
processing, such as keeping a running counter. For many com-
mon operators, the state can be indexed by a key contained in
the input update. For example, a count operator over tweets
grouped by the user who posted them will access its state by
user ID. It is these indexes that shared arrangements seek to
share between multiple operators.

Dataflow systems achieve parallel processing by sharding
operators whose state is indexed by key. The system partitions
the key space, and creates operators to independently process
each of these partitions. In the tweet counting example, the
system may partition updates by the user ID, and send each
update to an appropriate operator shard, which maintains an
index for its subset of user IDs. Each operator shard maintains
its own private index, which taken collectively represent the
same index a single operator would maintain. Shared arrange-
ments must share these sharded indexes between multiple
correspondingly sharded operators.

Shared arrangements apply in this general dataflow setting,
but we build on specific prior work for coordination and
incrementally-maintained state, as described in the following.

3.1 Timely Dataflow

Updates flow through a dataflow graph asynchronously. Con-
current updates may race along the multiple paths (and even
cycles) between dataflow operators, and arrive in different
orders than they were produced. For operators to compute
correct results in the face of this asynchrony, some coordi-
nation mechanism is required. Timely Dataflow [1, 20] is a
dataflow model that provides such a coordination mechanism
using logical times.

Timely Dataflow is a model for data-parallel dataflow ex-
ecution, introduced by Naiad [20]. It provides a dataflow
abstraction in which nodes house operator logic, and edges
transport data from the outputs of operators to the inputs
of other operators. All data in Timely Dataflow bear a par-
tially ordered logical timestamp, and operators are obliged
to maintain (or advance) these timestamps as they process
data. Timely Dataflow graphs may have cycles, where times-
tamps are augmented with an iteration count to correctly track
progress within the loop.

Timely Dataflow schedules work on a static set of work-
ers, each a single thread of control. All operators are sharded
across all workers, and each worker multiplexes its time be-
tween each dataflow and dataflow operator. Workers schedule
operator shards in response to the arrival of data, which are
routed among workers according to functions the operators
specify for each of their input streams (e.g. a function of a

key in the record, to ensure all records with the same key
arrive at the same worker). Crucially, for our purposes, we
can co-locate on the same worker those operator shards that
might profitably share the same indexed representation of
their input data.

Timely Dataflows provide coordination information to their
operators in the form of a frontier: a set of logical times such
that all future timestamps must be greater than or equal to
some element of the frontier. In Timely Dataflow, a frontier
only ever advances and the set of times that an operator shard
may yet see strictly decreases. This progress information tells
operator shards when they have received all records with
certain timestamps, at which point it may be appropriate for
the operator shard to take some action. An operator may, for
example, choose to emit an output update for a timestamp ¢
only once its has received all updates for ¢ ensuring that its
result for ¢ no longer changes.

Importantly, frontier changes provide Timely Dataflow op-
erators with coordination information, but they do not require
an immediate reaction from the operator. As frontiers ad-
vance, their changes can be accumulated and supplied to
operators in batches that have coarser granularity than the
frontier changes themselves. Operators can then retire entire
batches of logical times at once, and do not need to have their
execution finely coordinated by the system. This opens the
door to multiversioned shared arrangements, which encode
shared state at multiple different logical times, rather than
requiring coordination among the multiple readers.

3.2 Differential Dataflow

Efficient stream processing requires operators to do incremen-
tal work for each update. Differential Dataflow [19] builds on
the Timely Dataflow model to support efficient incremental
update processing over distributed collections.

Every update in a Differential Dataflow is a triple of the
form (data, time, diff). data is an arbitrary data element, such
as a record, while time is a logical timestamp, and diff is
an incremental value change associated with the update. A
collection trace is the set of update triples (data, time, diff)
that define a collection at any time ¢ by the accumulation of
those (data, diff) for which time < t.

The abstractions of triples and collection traces, in com-
bination with Timely Dataflow’s progress tracking, are suffi-
cient to implement incremental versions of familiar operators
over collections, such as group, map, filter, etc. These
operators can maintain state indexed by key, a field in data.
Shared arrangements seek to extend this model by sharing
collection traces between different operators, which requires
changes to the dataflow model, a new arrange operator, and
updated operator implementations.

3.3 Shared Arrangements Overview

The high-level objective of shared arrangements is to share in-
dexed operator state, both within a single dataflow and across

// Arrange evolving node and graph state.
let (nodes, edges) = timely::dataflow(lscopel {
// evolving (node, name), maintained.
let nodes = kafka::load(“nodes.stream”)
.arrangeQ);
// evolving graph edges, maintained.
let edges = kafka::load(“edges.stream”)
.arrangeQ);

return (nodes.trace, edges.trace);
3
(a) A Timely Dataflow fragment that captures evolving node
state and graph structure. The returned nodes and edges ar-
rangements can be re-used elsewhere in another dataflow.
// Take a collection of (source, query_id) to
// (node, name, query_id) two hops from source.
timely: :dataflow(lscopel {
let nodes_arranged = scope.import(nodes);
let edges_arranged = scope.import(edges);
queries
.join(&edges_arranged) // sharing!
.map(l(src,qid,mid)| (mid,qid))
.join(&edges_arranged) // sharing!
.map(l(mid,qid,dst)| (dst,qid))
.join(&nodes_arranged) // sharing!
.inspect(Ixl println!C“{}”, x));
1
(b) A Timely Dataflow fragment that re-uses the nodes and
edges arrangements to compute and maintain node state within
two edges of query nodes. The join operator matches in-
put records (x,y) and (x,z) with a common x into triples
(x,y,2z). As these relations reuse shared arrangements, the
query produces results at once.

Figure 1. Example code for shared arrangements in our pro-
totype. In this example, nodes contain pairs of user identifier
and the user’s full name, and edges are directed pairs of user
identifiers. The two collections evolve concurrently. A second
dataflow computes the identifiers and names of users within
two edges of a set of source user identifiers (queries), and
correctly maintains the results as the inputs change.

multiple concurrent dataflows. We assume that developers
specify their dataflows using existing interfaces, but that they
(or an optimizing compiler) indicate explicitly which dataflow
state to share among which operators, e.g., as Figure | shows.

A shared arrangement exposes different views of the under-
lying state to different operators and therefore emulates, atop
physically shared state, the separate indexes that operators
would otherwise keep. An explicit, new arrange operator
maintains the state and views, while downstream operators
read from their respective views. The contents of these views
vary according to current logical timestamp frontier at the
different operators: for example, a downstream operator’s
view may not yet contain updates that the upstream arrange
operator has already added into the index.

Downstream operators in the same dataflow, and operators
in other dataflows operating in the same logical time domain,
can share the arrangement as long as they use the same key
as the arrangement index. In particular, sharing can extend
as far as the next exchange operator (which changes the
key), an arrangement-unaware operator (e.g., map, which may
change the key), or an operator that explicitly materializes
a new collection. Sharing a key means that these operators
exist on the same logical dataflow shard, and the system can
exploit this fact to increase efficiency of sharing. Co-locating
the operators for shared processing by the same thread makes
access to shared physical state cheap, as it requires no locks or
network communication. It does come at the cost of a reduced
granularity of parallelism, but this tradeoff in our experience
is nearly always worthwhile.

4 Shared Arrangements

A shared arrangement consists of three key components:
1. a trace of immutable, indexed batches that together
make up the multiversioned index;
2. an arrange operator, which maintains the trace; and
3. arrangement-aware operators that access the shared
index through handles to the trace.

Logically, an arrangement is a pair of (i) a stream of shared
indexed batches of updates and (ii) a shared, compactly main-
tained index of all updates. Physically, an arrangement parti-
tions its input collection among workers, each of which are
responsible for creating batches, maintaining an update index,
and sharing them to operators hosted by the same worker.
Arrangements spend the communication, computation, and
memory required to arrange data once, and then reuse the
arrangement from within multiple operators.

Figure 2 depicts a dataflow which uses an arrangement for
the count operator, which must take a stream of (data, time,
diff) updates and report the changes to accumulated counts
for each data. This operation can be implemented by first
partitioning the stream among workers by data, after which
each worker maintains an index from data to its history, a
list of (time, diff). This same indexed representation is what
is needed by the distinct operator, in a second dataflow,
which can re-use the same partitioned and indexed arrange-
ment rather than re-construct the arrangement itself.

4.1 Collection traces

As in Differential Dataflow (§3.2), a collection trace is the
set of update triples (data, time, diff) that define a collection
at any time ¢ by the accumulation of those (data, diff) for
which fime < t. A collection trace is initially empty and is
only revealed as a computation proceeds, determined either
as a dataflow input or from the output of another dataflow
operator. Although update triples may arrive continually, it is
only when the Timely Dataflow input frontier advances that
the arrange operator learns that the updates for a subset of
times are now fully committed.

triples batches

exchange

| Trace handle j

arrange
i
I

dataflow 1

dataflow 2

batches

Figure 2. A worker-local overview of arrangement. Here the
arrangement is constructed for the count operator, but is
shared with a distinct operator in another dataflow. Each
other worker performs the same collective data exchange, fol-
lowed by local batch creation, trace maintenance, and sharing.

In our design a collection trace is logically equivalent to
an append-only list of immutable batches of update triples.
Each batch is described by two frontiers of times, lower and
upper, and the batch contains exactly those updates whose
times are in advance of the lower frontier and not in advance
of the upper frontier. The upper frontier of each batch should
match the lower frontier of the next batch, and the growing
list of batches reports the developing history of committed
updates triples. A batch may be empty, which indicates that
no updates exist in the indicated range of times.

To support efficient navigation of the collection trace, each
batch is indexed by its data to provide random access to the
history of each data (the set of its (time, diff) pairs). A trace
maintains relatively few (logarithmically many) batches by
continually merging existing batches, ensuring that operators
can efficiently navigate the union of all batches.

Each reader of a trace holds a trace handle, which acts as a
cursor that can navigate the multiversioned index as of any
time in advance of a frontier the trace handle holds. As readers
advance through time, by advancing the frontier of their trace
handle, the arrange operator is able to compact batches by
coalescing updates at indistinguishable times, maintaining a
memory footprint proportional to the size of the collection.

4.2 The arrange operator

The arrange operator receives update triples, and must both
create new immutable indexed batches of updates as its input
frontier advances and compactly maintain the collection trace
without violating its obligations to readers of the trace.

At a high level, the arrange operator buffers incoming
update triples until the input frontier advances, at which point
it extracts and indexes all buffered updates not in advance of
the newly advanced input frontier. A shared reference to this

new immutable batch is both added to the trace and emitted as
output from the arrange operator. When adding the batch to
the trace, the operator may need to perform some maintenance
to keep the trace representation compact and easy to navigate.

Amortized trace maintenance: The maintenance work of
merging batches in a trace is amortized over the introduced
batches, so that no batch causes a spike in computation (and a
resulting spike in latency). Informally, the operator performs
the same ser of merges as would a merge sort applied to the
full sequence of batches, but only as the batches become avail-
able. Additionally, each merge is not immediately completed;
instead, for each new batch we perform an amount of work
proportional to the batch size to each incomplete merge. A
higher constant of proportionality leads to more eager merg-
ing, improving the throughput of the computation, whereas a
lower constant improves the latency of the computation.

Consolidation: As readers of the trace advance through time,
historical times become indistinguishable and updates at such
times to the same data can be coalesced. The logic to deter-
mine which times are indistinguishable is present in Naiad’s
prototype implementation, but the mathematics of compaction
have not been reported previously. In our extended technical
report, we present proofs of optimality and correctness [4].

Shared references: Both immutable batches and traces them-
selves are reference counted. Importantly, the arrange op-
erator holds only a “weak” reference to its trace, and if all
readers of the trace drop their references the operator will
continue to produce batches but cease updating the trace.
This optimization is important for competitive performance
in computations that use both dynamic and static collections.

4.3 Trace handles

Read access to a collection trace is provided through a trace
handle. A trace handle provides the ability to import a col-
lection into a new dataflow, and to manually navigate a col-
lection, but both only “as of” a restricted set of times. Each
trace handle maintains a frontier, and guarantees only that
accumulated collections will be correct when accumulated
to a time in advance of this frontier. The trace itself tracks
outstanding trace handle frontiers, which indirectly inform
it about times that are indistinguishable to all readers (and
which can therefore be coalesced).

Many operators (including join and group) only need
access to their accumulated input collections for times in
advance of their input frontiers. As these frontiers advance,
the operators are able to advance the frontier on their trace
handles and still function correctly. The join operator is even
able to drop the trace handle for an input when its other input
ceases changing. These actions, advancing the frontier and
dropping trace handles, provide the arrange operator with
the opportunity to consolidate the representation of its trace.

A trace handle has a method import which creates an ar-
rangement in a new dataflow exactly mirroring that of the

trace. The imported collection immediately produces any
existing consolidated historical batches, and begins to pro-
duce newly minted batches. The historical batches reflect all
updates applied to the collection, either with full historical
detail or coalesced to a more recent timestamp, depending on
whether the handle’s frontier has been advanced before it was
used to import the trace. Computations do not require spe-
cial logic or modes to accommodate attaching to in-progress
streams; imported existing traces appear indistinguishable to
their original streams, other than their unusually large batch
sizes and recent timestamps.

5 Arrangement-aware operators

Operators act on collections, which can be represented either
as a stream of update triples or as an arrangement. These
two representations lead to different operator implementa-
tions, where the arrangement-based implementations can
be substantially more efficient than traditional record-at-a-
time operator implementations. In this section we explain
arrangement-aware operator designs, starting with the sim-
plest examples and proceeding to the more complex join,
group, and iterate operators.

5.1 Key-preserving stateless operators

Several stateless operators are “key-preserving”: they do not
transform their input data to the point that it needs to be re-
arranged. Example operators are filter, concat, negate,
and the iteration helper methods enter and leave. These
operators are implemented as streaming operators for streams
of update triples, and as wrappers around arrangements that
produce new arrangements. For example, the filter opera-
tor results in an arrangement that applies a supplied predicate
as part of navigating through a wrapped inner arrangement.
This design implies a trade-off. An aggressive filter may
reduce the volume of data to the point that it is cheap to
maintain a separate index, and relatively ineffective to search
in a large index only to discard the majority of results. The
user controls which implementation to use by specifying
the type: they can filter an arrangement, or first reduce the
arrangement to a stream of updates and then filter it.

5.2 Key-altering stateless operators

Some stateless operators are “‘key-altering”, in that the in-
dexed representation of their output has little in common
with that of their input. The most obvious example is the
map operator, which may perform arbitrary record-to-record
transformations. These operators always produce outputs rep-
resented as streams of update triples.

5.3 Stateful operators

Differential Dataflow’s stateful operators are data-parallel:
their input data have a (key, val) structure, and that the com-
putation acts independently on each group of key data. This
independence is what allows Naiad and similar systems to dis-
tribute operator work across otherwise independent workers,

which can then process their work without further coordi-
nation. At a finer scale, this independence means that each
worker can determine the effects of a sequence of updates on
a key-by-key basis, resolving all updates to one key before
moving to the next, even if this violates timestamp order.

5.3.1 The join operator

Our join operator takes as inputs batches of updates from
each of its arranged inputs. It produces any changes in outputs
that result from its advancing inputs, but our implementation
has several variations from a traditional streaming hash-join.

Trace capabilities. The join operator is bi-linear, and needs
only each input trace in order to respond to updates from the
other input. As such, the operator can advance the frontiers of
each trace handle by the frontier of the other input, and it can
drop each trace handle when the other input closes out. This
is helpful if one input is static, as in static graph processing.

Alternating seeks. Join can receive input batches of sub-
stantial size, especially when importing an existing shared
arrangement. Naively implemented, we might require time
linear in the input batch sizes. Instead, we perform alternating
seeks between the cursors for input batches and traces of the
other input: when the cursor keys match we perform work,
and if the keys do not match we seek forward for the larger
key in the cursor with the smaller key. This pattern ensures
that we perform work at most linear in the smaller of the two
sizes, seeking rather than scanning through the cursor of the
larger trace, even when it is supplied as an input batch.

Amortized work. The join operator may be called upon
to produce a significant amount of output data that can be
reduced only once it crosses an exchange edge for a down-
stream operator. If each input batch is immediately processed
to completion, workers may be overwhelmed by the amount
of output, either buffered for transmission or (as in our pro-
totype) sent to destination workers but then buffered at each
awaiting reduction. Instead, operators respond to new input
batches by producing “futures”, limited batches of compu-
tation which can each be executed until sufficiently many
outputs are produced and are then suspended. These futures
make copies of the shared batch and trace references they use,
and so do not block state maintenance for other operators.

5.3.2 The group operator

The group operator takes as input an arranged collection with
data of the form (key, val) and a reduction function from a
key and list of values to a list of output values. At each time
the output might change, we reform the input and apply the
reduction function, and compare the results to the reformed
output to determine if output changes are required.

Perhaps surprisingly, the output may change at times that
do not appear in the input (because the least upper bound of
two times does not need to be one of the times). Consequently,
the group operator tracks a list of pairs (key, time) of future

work that are required even if we see no input updates for
the key at that time. For each such (key, time) pair, the group
operator accumulates the input and output for key at time,
applies the reduction function to the input, and subtracts the
accumulated output to produce any corrective output updates.

Output arrangements. The group operator uses a shared
arrangement for its output, to efficiently reconstruct what
it has previously produced as output without extensive re-
invocation of the supplied user logic (and to avoid potential
non-determinism therein). This provides the group operator
the opportunity to share its output trace, just as the arrange
operator does. It is common, especially in graph processing,
for the results of a group to be immediately joined on the
same key, and join can re-use the same indexed representa-
tion that group uses internally for its output.

5.4 Iteration

The iteration operator is essentially unchanged from Naiad’s
Differential Dataflow implementation. We have ensured that
arrangements can be brought in to iterative scopes from outer
scopes using only an arrangement wrapper, which allows
access to shared arrangements in iterative computations.

6 Implementation

We implemented shared arrangements in a new prototype
stream processor, SysX. Our Rust implementation of Differ-
ential Dataflow [19] with shared arrangements consists of a
total of about 11,700 lines of code, and builds on an existing
open-source implementation of timely dataflow [1].

To ease development of dataflows with arrangements, we
make use of Rust types and modularity wherever possible.
For example, streams carrying ordinary update triples and
streams carrying arranged batches are different types, making
it impossible to compile a dataflow that mixes them incor-
rectly. Likewise, converting arranged operator output into a
standalone collection requires calling a as_collection()
method to obtain a stream of the right type for consumption
by operators that are not arrangement-aware.

We also aim to make it easy to add new arrangement-aware
operator implementations. The arrange operator is defined
in terms of a generic trace type, and our amortized merging
trace is defined in terms of a generic batch type. Our batch
implementations are defined for generic data types that are or-
derable (for merging) and hashable (for partitioning). Each of
these layers can be replaced without rewriting the surrounding
superstructure. For example, we provide two batch implemen-
tations that structure the data part of the update triple either
as (key, val) and or just key, the latter with a simplified
representation and navigation logic.

7 Evaluation

We now experimentally evaluate the benefits of shared ar-
rangements in SysX. We first evaluate SysX on real-world
end-to-end workloads to demonstrate the benefits of shared,

indexed state (§ 7.1), where we see that it improves latency,
throughput, and memory utilization. We then use microbench-
marks to characterize the performance of our design and of
the arrangement-aware operator implementations (§ 7.2). Fi-
nally, we demonstrate that SysX’s shared arrangements offer
benefits across several domains, and that SysX maintains
high baseline performance compared to other systems even
without using shared arrangements (§ 7.3).

Setup. We evaluate SysX on a four-socket NUMA system
equipped with four Intel Xeon E5-4650 v2 CPUs, each with
10 physical cores and 512 GB of aggregate system memory.
We compiled SysX with rustc 1.33.0 and the jemalloc [3]
allocator. SysX does distribute across multiple machines and
supports sharding shared arrangements across them, but our
evaluation here is restricted to multiprocessors. When we
compare against other systems, we rely on the best, tuned
measurements reported by their authors, but compare SysX
only if we are executing it on comparable or less powerful
hardware than the other systems had access to.

7.1 End-to-end impact of shared arrangements

We start with a demonstration of the impact of shared arrange-
ments on the end-to-end experience for familiar analytics
tasks. We choose a standard relational analytics task, the
established TPC-H data warehousing benchmark, and a re-
cent interactive graph analytics benchmark. For the relational
queries, we would expect to see shared arrangements reduce
the latency of installing a new query compared to non-shared
setups that reprocess entire collections to add a query. For
the graph tasks, we would hope to see SysX tolerate a higher
update throughput than existing graph processors, as SysX
can parallelize and scale shared indexes.

7.1.1 TPC-H

The TPC-H benchmark schema has eight relations, which
describe order fulfillment events, as well as the orders, parts,
customers, and suppliers they involve, and the nations and
regions in which these entities exist. Of the eight relations,
seven have primary keys, and are immediately suitable for
arrangement (by their primary key). The eighth relation is
lineitem, which contains fulfillment events, and we treat
this collection as a stream and do not arrange it.

TPC-H contains 22 “data warehousing” queries, meant
to be run against large, static datasets. Following work by
Nikolic et al. [21], we consider a modified setup where the
eight relations are progressively loaded, one record at a time,
in a round-robin fashion among the relations (at scale factor
10).! To demonstrate the benefits of maintained arrangements,
we interactively deploy and retire queries while the eight
relations are loaded. Each query has access to the full current
contents of the seven keyed relations that we maintain shared

I'SysX matches or outperforms Nikolic et al.’s DBToaster results [21], even
when running queries in isolation on the entire fulfillment stream and without
shared arrangements. These results are in our extended technical report [4].

25% e . 1 T
%ngo - = not shared . \
10% S075
5%]
[
10% T T T T g 0.5
B shared K9
5% | I 4 £ L
° g 0.25
o
100us 1ms 10ms 100ms 1s 1ms 10ms
latency
(a) Query latency.

(b) Time to produce results.

o 120GB
= = not share
shared o 90GB
1 g 60GB not shared
ko)
1|l »
S 30GB
o
— § shared
sinnd o 10GB 1 1 1
100ms 1s 1000 3000 5000
latency round

(c) Memory footprint (RSS).

Figure 3. Shared arrangements reduce query (a) query installation latency, (b) update processing latency, and (c) the memory
footprint of concurrent TPC-H queries that randomly arrive and retire. The setup uses 32 workers, runs at TPC-H scale factor 10,
and loads relations round-robin. Note the log,,-scale x-axes in (a) and (b), and the log,,-scale y-axis in (c).

arrangements for. We treat the fulfillment events as a stream,
and each query only observes the fulfillment events from the
point it is deployed until the point it is retired, implementing
a “streaming” rather than a “historic” query.

The 22 TPC-H queries have different characteristics, but
broadly they either derive from the 1ineitem relation and
reflect only current fulfillments, or they do not and reflect the
full accumulated volume of other relations. Without shared
arrangements, either type of query requires building new
indexed state for the seven non-lineitem relations. With
shared indexes, we would expect queries of the first type to
be very fast to deploy, as their outputs are initially empty.
Queries of the second type should take a non-trivial amount
of time to deploy in either case, as their initial output requires
computing over many records.

Query latency. To evaluate query latency, we measure the
time from the start of query deployment until just before the
first record is ready to be returned. Query latency is important
because it determines whether the system delivers an interac-
tive experience to human users, but also because it determines
how quickly applications can derive insights from streams by
programmatically issuing queries against them.

Figure 3a reports the distribution of query latencies, with
and without shared arrangements. With shared arrangements,
most queries (those that derive from 1ineitem) are deployed
and begin updating in milliseconds; the five queries that do
not derive from 1ineitem perform non-trivial computation to
produce their initial correct answer and take between 100ms
and 1s. Without shared arrangements, almost all queries take
1-2 seconds to install as they must create a reindexed copy
of their inputs. Q01 and Q06 are exceptions, as they use no
relations other than lineitem, and thus avoid reindexing
any inputs. Maintained shared arrangements therefore allows
more rapid deployment of new queries, often by multiple
orders of magnitude.

Update latency. Once a query is installed, SysX continu-
ously updates its results as new lineitem records arrive. To

evaluate the update latency achieved, we record the amount of
time required to process each round of input data updates after
query installation. If shared arrangements had high overheads,
or if they slowed down the sharing dataflows, we might see
an increase in latencys; if sharing reduces the aggregate work
required, we should see a reduction.

Figure 3b presents the distribution of these times, with and
without shared arrangements, as a complementary cumula-
tive distribution function (CDF). This visualization—which
we will use repeatedly—shows the “fraction of times with
latency greater than” and highlights the tail latencies towards
the bottom-right side of the plot. We see a modest but con-
sistent reduction in processing time (about 2x) when using
shared arrangements, which eliminate redundant index main-
tenance work. There is a noticeable tail in both cases, owed to
two expensive queries that involve inequality joins (Q11 and
Q22) and which respond slowly to changes in their inputs in-
dependently of whether their arrangements are shared or not.
Shared arrangements therefore offer runtime performance
improvements and potentially increased update throughputs.

Memory footprint. Since shared arrangements eliminate du-
plicate copies of index structures, we would expect them to
reduce the dataflow’s memory footprint. To evaluate the mem-
ory footprint, we record the resident set size (RSS) as the
experiment proceeds.

Figure 3c presents the timelines of the RSS with and with-
out shared arrangements, and shows a substantial reduction
(2-3%) in memory footprint when shared arrangements are
present. Without shared arrangements, the memory footprint
also varies substantially (between 60 and 120 GB) as the sys-
tem creates and destroys indexes for queries that arrive and
depart, while shared arrangements remain below 40 GB.

7.1.2 Interactive graph queries

We further evaluate SysX with an open-loop experiment is-
suing queries against an evolving graph. This experiment
issues the four queries used by Pacaci et al. [22] to compare

100 E T < T T 100 s T T T 3 T T T T
5 \ -~ not shared - not shared]
S 101k \ shared]l .. 10sf o shared 1 S 40GB
& p95 \ Y o ’ f o not shared
= [o S F E [0
5 102 [—poo } s] 21068
@ | g 100ms ¥ 3 8 shared
g 103k | {4 = i @
g 10ms f 4 9
o E | 3

10—4 1 1 s 1 1ms Lo L L A 1GB W 1 1 1

1ms 10ms 100ms 1s 10* 10° 108 0 1000 2000 3000
latency offered load (tuples/sec) elapsed seconds

(a) Latencies for query mix.

(b) goth percentile latency at given offered load.

(c) Resident set size.

Figure 4. Shared arrangements reduce query latency, increase the load handled, and reduce the memory footprint of interactive
graph queries. The setup uses 32 workers, and issues 100k updates/sec and 100k queries/sec against a 10M node/64M edge
graph in (a) and (c), while (b) varies the load. Note the log,,—log,, scales in (a) and (b), and the log,,-scale y-axis in (c).

relational and graph databases: point look-ups, 1-hop look-
ups, 2-hop look-ups, and 4-hop shortest path queries (shortest
paths of length at most four). In the first three cases, the query
argument is a graph node identifier, and in the fourth case it
is a pair of identifiers.

We implement each of these queries as Differential Dataflows
where the query arguments are independent collections that
may be modified to introduce or remove specific query ar-
guments. This query transformation was introduced in Nia-
garaCQ [10] and is common in stream processors, allowing
them to treat queries as a streaming input.

We apply a fixed rate of graph updates (100,000 per sec-
ond) to a graph with 10M nodes and 64M edges, and also
update the query arguments of interest at experiment-specific
rates. Each graph update is the addition or removal of a ran-
dom graph edge, and each query update is the addition or
removal of a random query argument (queries are maintained
while installed, rather than issued only once). All experiments
evenly divide the query updates between the four query types.

Query latency. Initially, we run an experiment with a fixed
rate of 100,000 query updates per second, independently of
how quickly SysX responds to them. We would hope that
SysX responds quickly, and that shared arrangements of the
graph structure should help reduce the latency of query up-
dates, as SysX must apply changes to one shared index rather
than several independent ones.

Figure 4a reports the latency distributions with and without
a shared arrangement of the graph structure, as a complemen-
tary CDF. Sharing the graph structure results in a 2-3x reduc-
tion in overall latency in the 95™ and 99" percentile tail la-
tency (from about 150ms to about 50ms). In both cases, there
is a consistent baseline latency, proportional to the number of
query classes maintained. Shared arrangements yield latency
reductions across all query classes, rather than, e.g., impos-
ing the latency of the slowest query on all sharing dataflows.
This validates that queries can proceed at different rates, an
important property of our shared arrangement design.

System cores | look-up | one-hop | two-hop | four-path
Neo4j 32 | 9.08ms | 12.82ms 368ms 21ms
Postgres 32 | 0.25ms 1.4ms 29ms 2242ms
Virtuoso 32 | 0.35ms 1.23ms | 11.55ms 4.81ms
SysX (batch: 10°) 32 | 0.64ms 0.92ms 1.28ms 1.89ms
SysX (batch: 10') 32 | 0.81ms 1.19ms 1.65ms 2.79ms
SysX (batch: 10%) 32 | 1.26ms 1.79ms 2.92ms 8.01ms
SysX (batch: 10%) 32 | 5.71ms 6.88ms | 10.14ms | 72.20ms

Table 2. On comparable 10M node/64M edge graphs, SysX
is broadly competitive with the average graph query latencies
of three systems evaluated by Pacaci et al. [22], and scales to
higher throughput using batching. The SysX batch size is the
number of concurrent queries per measurement.

Update throughput. To test how SysX’s shared arrange-
ments scale with load, we next scale the rates of graph updates
and query changes up to two million changes per second each.
An ideal result would show that sharing the arranged graph
structure consistently reduces the computation required, thus
allowing us to scale to a higher load using fixed resources.

Figure 4b reports the 99" percentile latency with and with-
out a shared graph arrangement, as a function of offered load
and on a log—log scale. The shared configuration results in
reduced latencies at each offered load, and tolerates an in-
creased maximum load at any target latency. At the point of
saturating the server resources, shared arrangements tolerate
33% more load than the unshared setup, although this number
is much larger for specific latencies (e.g., 5 at a 20ms target).
We note that the absolute throughputs achieved in this exper-
iment exceed the best throughput observed by Pacaci et al.
(Postgres, at 2,000 updates per second) by several orders of
magnitude, further illustrating the benefits of parallel dataflow
computation with shared arrangements.

Memory footprint. Finally, we consider the memory foot-
print of the computation. There are five uses of the graph
across the four queries, but also per-query state that is not
profitably shared, so we would expect a reduction in memory
footprint of somewhat below 4x.

Figure 4c reports the memory footprint for the query mix
with and without sharing, for an hour-long execution. The
memory footprint oscillates around 10 GB with shared ar-
rangements, and around 40 GB (4% larger) without shared ar-
rangements. This illustrates that sharing state affords memory
savings proportional to the number of reuses of a collection.

Comparison with other systems. Pacaci et al. [22] evalu-
ated relational and graph databases on the same graph queries.
SysX is a stream processor rather than a database and supports
somewhat different features, but its performance ought to be
comparable to the databases’ for these queries. We stress,
however, that our implementation of the queries as Differ-
ential Dataflows relies on advanced knowledge of the query
classes, a specialization that the other systems do not require.

We ran SysX experiments with a random graph comparable
to the one used in Pacaci et al.’s comparison. Table 2 reports
the average latency to perform and then await a single query
in different systems, as well as the time to perform and await
batches of increasing numbers of concurrent queries for SysX.
While SysX does not provide the lowest latency for point
look-ups, it does provides excellent latencies for other queries
and increases query throughput with batch size.

7.2 Design evaluation

To validate that our shared arrangement design meets satisfies
the objectives we set out to achieve, we perform microbench-
marks of an arrangement’s response to different loads. In
all benchmarks, we apply an arrange operator to a contin-
ually changing collection of 64-bit identifiers (with 64-bit
timestamp and signed difference). The inputs are generated
randomly at the worker, and exchanged (shuffled) by key
prior to entering the arrangement. We are primarily interested
in the distribution of response latencies, as slow edge-case
behavior of an arrangement would affect this statistic most.
We report all latencies as complementary CDFs to get high
resolution in the tail of the distribution.

Varying load. As update load varies, our shared arrangement
design should trade latency for throughput until equilibrium
is reached. Figure 5a reports the latency distributions for a
single worker as we vary the number of keys and offered load
in an open-loop harness, from 10M keys and 1M updates
per second, downward by factors of two. As load decreases,
latencies also drop proportionally.

Strong scaling. More parallel workers should allow faster
maintenance of a shared arrangement, as the work to update
it parallelizes. Figure 5b reports the latency distributions for
an increasing numbers of workers under a fixed load of 10M
keys and 1M updates per second. As the number of workers
increases, latencies decrease, especially in the tail of the dis-
tribution: for example, the 99" percentile latency of 500ms
with one worker drops to 6ms with eight workers.

Weak scaling. Varying the number of workers while pro-
portionately increasing the number of keys and offered load
would ideally result in constant latency. Figure 5S¢ shows that
the latency distributions do exhibit increased tail latency, as
data exchange at the arrangement input becomes more com-
plex. However, the latencies do stabilize at 100—200ms with
larger numbers of workers.

Throughput. An arrangement consists of several subcompo-
nents: batch formation, trace maintenance, and e.g., a main-
tained count operator. Ideally, each of these components
would scale with growing update load, but many possible
implementation mistakes would inhibit their scaling. To vali-
date it, we issue repeated rounds of batches of 10,000 updates
at each worker, rather than from an open-loop harness. Fig-
ure 5d reports the peak throughputs as the number of cores
(and thus, workers and arrangement shards) grows. All com-
ponents scale linearly to 32 workers.

Amortized merging. The amortized merging strategy is cru-
cial for shared arrangements to achieve low update latency,
but its efficacy depends on setting the right amortization co-
efficients. Lazy merging better amortizes expensive changes,
but might increases common-case latency, while eager merg-
ing amortizes less, so expensive changes potentially increase
tail latency. Ideally, SysX’s default would pick a good tradeoff
between common-case and tail latencies at different scales.
Figure Se reports the latency distributions for one and 32
workers, each with three different merge amortization coeffi-
cients: the most eager, SysX’s default, and the most lazy possi-
ble. For a single worker, lazier settings have smaller tail laten-
cies, but are more often in that tail. For 32 workers, the lazier
settings are significantly better, because eager strategies often
cause workers to stall waiting for a long merge at one worker.
This significantly impedes strong scaling, and matches similar
observations about garbage collection at scale [15]. SysX’s
default setting achieves good performance at both scales.

Join proportionality. Our arrangement-aware join operator
design aims to work proportional only to the size of the
smaller of the incoming pre-arranged batch vs. the state joined
against (§ 5.3.1). We validate that this is the case by measuring
the latency distributions to install, execute, and complete new
dataflows that join small collections of varying size against a
pre-existing arrangement of 10M keys.

The varying lines in Figure 5f demonstrate that the join
work is indeed proportional to the small collection’s size,
rather than to the (constant) 10M arranged keys. This is possi-
ble because the join operator receives pre-arranged batches
of input, and SysX advances the cursors such that it does
work proportional to the smaller input—an optimization that
is impossible in a record-at-a-time stream processor.

7.3 Baseline performance on reference tasks

We also evaluate SysX against established prior work to
demonstrate that SysX is competitive with and occasionally

100 g 100 T . . .
ES] E kST W\""-'
o 3 8 \ .
>107F > 107 £ \
£ g workers 1
2 102 | 2 [e 1 i
2102} , g 102 : \
<2 F } o 4 \‘
20t o | Btk e
9 3 1 i Q \
o [==-31250 | H Q - 32 \ H
1 -4 PRPIETITY BREPRTITN [VICUPP: 0 M-PRPIL 1YY BRPRPIRY 1Y IR -4 FEPETTT BPRPRTTIT MRS PP FETTLY EPRTRTTTY B
704 7001/3 Tms 70,778 700’77s7 s 70y 700Us Tms 70’Tls 700"78 s
latency latency
(a) Varying offered load with 1 worker. (b) Varying workers with fixed load.
— 100
© 150M [I—EI— bétch formatlion 5
% —E— trace maintenance o 1
S count >10"
S 100M s
= S o2 [e
é_ GE) 10 === 1, default
50M 2 1, eager
'87 CEL 103 L 32, lazy
§ g 32, default
ES 0 T 1 1 104 --?Zeageﬁ e Pl]
14 8 16 32 T0us 70045 "ms T0mg 700p, s
workers latency

(d) Task throughput, varying workers. (e) Amortized merging levels.

100
G
o
>10" |
8
c
o 102 L
210
2
g 103k
o
(&)]
70uS 7001/3 7’Tls 70’77s 700,7787 s
latency
(c¢) Varying workers and offered load
100 T T T T T
G
=101 | :
g s o5 —3
S o[e 8 1
Q@ 217 3% il]
S 3 [218 iYL i
EN0F __ o0 IR
o —— 220 Hh 1]
10-4 FETTITY ERFIETIIT H WYY ¥ EEPERTITT RPN R
70uS 700113 7’77s 70,,78 700,7787 s
latency

(f) Join with pre-arranged collection.

Figure 5. Microbenchmarks of our shared arrangement design suggest that our design scales well with growing parallelism
((b)—(d)) and load ((a), (c)—(d)), and that the key ideas of amortized merging ((e)) and proportional work across inputs ((f)) are

crucial to achieving low update latencies. (b) and (e) generate a fixed load of 1M input records per second.

better than peer systems. Some of these benefits derive from
the use of shared arrangements, but others do not, as many
established benchmarks intentionally run in isolation.

7.3.1 Datalog workloads

Datalog is a relational language in which queries are sets of
recursively defined productions, which are iterated from a
base set of records until no new records are produced. Un-
like graph computation, Datalog queries tend to produce and
work with substantially more records than they are provided
as input. Several shared-memory systems for Datalog exist,
including LogicBlox, DLV [2], DeALS [29], and several dis-
tributed systems have recently emerged, including Myria [27],
SociaLite [24], and BigDatalog [25]. At the time of writing,
only LogicBlox supports decremental updates to Datalog
queries, using a technique called “transaction repair” [26].
SysX supports incremental and decremental updates to Data-
log computations, as well as interactive top-down queries.

Top-down (interactive) evaluation. Datalog users commonly
specify certain values in a query, such as reach(“david”,?),
to request nodes reachable from a specified source node.
The “magic set” transformation [6] rewrites such queries as
bottom-up computations with a new base relation that seeds
the bottom-up derivation with query arguments; the rewritten
rules derive facts only with the participation of some seed
record. SysX, like some interactive Datalog environments,
can perform this work against maintained arrangements of

Query statistic | tree-11 grid-150 gnpl
tc(x,?) increm., median | 2.56ms | 346.28ms | 18.29ms
incremental, max | 9.05ms | 552.79ms | 25.40ms

full evaluation 0.08s 6.18s 9.45s

tc(?,x) increm., median | 15.63ms 320.83ms | 15.58ms
incremental, max | 18.01ms 541.76ms | 23.84ms

full evaluation 0.08s 6.18s 9.45s

sg(x,?7) | increm., median | 68.34ms | 1075.11ms | 20.08ms
incremental, max | 95.66ms | 2285.11ms | 26.56ms

full evaluation 56.45s 0.60s 19.85s

Table 3. SysX enables interactive computation of three Dat-
alog queries (32 workers, medians and maximums over 100
queries). Full eval. is required without shared arrangements.

the non-seed relations. We would expect this approach to be
much faster than full evaluation, which batch processors that
re-index the non-seed relations must perform.

Table 3 reports SysX’s median and maximum latencies for
100 random arguments for three interactive queries on three
widely-used benchmark graphs, and the times for full evalua-
tion of the related query, using 32 workers. SysX’s arrange-
ments mostly reduce runtimes from seconds to milliseconds.
The slower transformed query for sg(x,?) on grid-150 is due
to a known problem with the magic set transform.

Bottom-up (batch) evaluation. In our extended technical re-
port [4], we evaluate SysX relative to distributed and shared-
memory Datalog engines, using their benchmark queries and

System cores linux psql httpd
SociaLite 4 OOM OOM 4 hrs
Graspan 4 | 713.8 min | 143.8 min | 11.3 min
SysX 1 76.8s 37.0s 10.9s
(a) dataflow analysis.
System cores linux psql httpd
SociaLite 4 OOM OOM > 24 hrs
Graspan 41 99.7 min | 353.1 min | 479.9 min
SysX 1 423.1s 362.0s 536.3s
SysX (Opt) 1 401.7s 94.3s 91.9s
SysX (Opt+) 1 191.3s 75.9s 77.4s

(b) points-to analysis. SysX (Opt) is an optimized query, and SysX
(Opt+) is the optimized query with shared arrangements.

System ‘ cores ‘ linux ‘ psql ‘ httpd ‘
SysX (med) 1| 1.11ms | 185ms | 22.0ms
SysX (max) 1| 8.13ms 1.48s | 218ms

(c¢) Times to remove each of the first 1,000 null assignments from
the interactive top-down dataflow analysis.

Table 4. SysX performs well for Graspan [28] program analy-
ses on three graphs. SociaLite and Graspan results reproduced
from Wang et al. [28]; OOM = out of memory.

datasets (“transitive closure” and “same generation” on trees,
grids, and random graphs). We find that SysX generally out-
performs the distributed systems, and is comparable to the
best shared-memory engine (DeALS).

7.3.2 Program Analysis

Graspan [28] is a system built for static analysis of large
code base, created in part because existing systems were
unable to handle non-trivial analyses at the sizes required.
Wang et al. benchmarked Graspan for two program analyses,
dataflow and points-to [28]. The dataflow query propagates
null assignments along program assignment edges, while
the more complicated points-to analysis develops a mutually
recursive graph of value flows, and memory and value aliasing.
We developed a complete implementation of Graspan—query
parsing, dataflow construction, input parsing and loading,
dataflow execution—in 179 lines of code on top of SysX, and
benchmark it on these queries.

Graspan is designed to operate out-of-core, and explicitly
manages its data on disk. We therefore report SysX mea-
surements from a laptop with only 16 GB of RAM, a limit
exceeded by the points-to analysis (which peaks around 30
GB). The sequential access in this analysis makes standard
OS swapping mechanisms sufficient for out-of-core execu-
tion, however. To verify this, we modify the computation to
use 32-bit integers, reducing the memory footprint below the
RAM size, and find that this optimized version runs only 20%
faster than the out-of-core execution.

Tables 4a and Table 4b show the running times reported by
Wang et al. compared those SysX achieves. For both queries,
we see a substantial improvement (from 14x to 550%). The

points-to analysis is dominated by the determination of a large
relation (value aliasing) that is used only once. This relation
can be optimized out, as value aliasing is eventually restricted
by dereferences, and this restriction can be performed before
forming all value aliases. This optimization results in a much
more efficient computation, and one that reuses relations
multiple times. Table 4b reports the optimized running times,
with sharing (Opt+) and without (Opt), illustrating that shared
arrangements offer benefits even within a single query.

Top-down evaluation. Both dataflow and points-to can be
transformed to support interactive queries instead of batch
computation. Table 4c reports the median and maximum la-
tencies to remove the first 1,000 null assignments from the
completed dataflow analysis and correct the set of reached pro-
gram locations. While there is some variability, the timescales
are largely interactive and suggest the potential for a improved
developer experience.

7.3.3 Batch graph computation

In our extended technical report [4], we evaluate SysX on
standard batch iterative graph computations of reachability,
breadth-first distance, and undirected connectivity on stan-
dard graphs. Our measurements indicate that SysX is consis-
tently faster than systems like BigDatalog [25], Myria [27],
SociaL.ite [24], and GraphX [16], but is substantially less ef-
ficient than purpose-written single-threaded code applied to
pre-processed graph data. Such pre-processing is common,
as it allows use of efficient static arrays, but it prohibits more
general vertex identifiers or graph updates. When we amend
our purpose-built code to use a hash table instead of an array,
SysX becomes competitive between two and four cores.
These results are independent of shared arrangements, but
indicate that SysX’s arrangement-aware implementation does
not impose any undue cost on computations without sharing.

8 Conclusions

Shared arrangements enable low-latency, interactive queries
against data streams by sharing indexed stated between queries.
In our design, multiple operators in the same or different par-
allel dataflows share read access to continuously updated
shared arrangement. Multiversioning the shared arrangement
is crucial to computing correct results and sharding the ar-
rangement helps achieve parallel speedup.

Our prototype implementation, SysX, installs new queries
against a stream in milliseconds, reduces the processing and
space cost of multiple dataflows, and achieves high perfor-
mance on a range of different workloads, whether using
shared arrangements or not.

SysX has been released as open-source software, and is in
use by several research groups and companies. Early anec-
dotal reports indicate that shared arrangements have led to
important performance improvements for these users.

References

[1]
[2]
[3]
[4]

—
“

[6

=

[7

—

[8

=

[9

—

[10]

[11

[12]

[13]

[14

[15

[16]

(17]

https://github.com/TimelyDataflow/timely-dataflow/.
DLVSYSTEM. http://www.dlvsystem.com.

Jemalloc memory allocator. http://jemalloc.net.

Anonymous. Shared arrangements: Practical inter-query
sharing for streaming dataflows (extended technical report).
https://github.com/shared-arrangements/tr/raw/master/
anonymous-technical-report.pdf.

Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur
Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer
Widom. STREAM: The Stanford Data Stream Management System,
pages 317-336. Springer, Berlin/Heidelberg, Germany, 2016.
Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ull-
man. Magic sets and other strange ways to implement logic programs
(extended abstract). In Proceedings of the Fifth ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, PODS 86, pages 1-15,
New York, NY, USA, 1986. ACM.

George Candea, Neoklis Polyzotis, and Radek Vingralek. A scalable,
predictable join operator for highly concurrent data warehouses. Pro-
ceedings of the VLDB Endowment, 2(1):277-288, August 2009.

Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos,
Volker Markl, and Kostas Tzoumas. Apache flink: Stream and batch
processing in a single engine. IEEE Data Engineering, 38(4), December
2015.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel R. Madden, Fred Reiss, and Mehul A. Shah. Telegraphcq:
Continuous dataflow processing. In Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of Data (SIGMOD),
pages 668-668, 2003.

Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Nia-
garacq: A scalable continuous query system for internet databases. In
Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, May 16-18, 2000, Dallas, Texas, USA., pages
379-390, 2000.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Communications of the ACM, 51(1):107—
113, January 2008.

Kayhan Dursun, Carsten Binnig, Ugur Cetintemel, and TIm Kraska.
Revisiting reuse in main memory database systems. In Proceedings
of the 2017 ACM International Conference on Management of Data,
pages 1275-1289, 2017.

Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. Shareddb:
Killing one thousand queries with one stone. Proceedings of the VLDB
Endowment, 5(6):526-537, February 2012.

Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbé
Aratijo, Martin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert Mor-
ris. Noria: dynamic, partially-stateful data-flow for high-performance
web applications. In Proceedings of the 13" USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 213-231,
October 2018.

Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios
Vytiniotis, Ganesan Ramalingan, Derek Murray, Steven Hand, and
Michael Isard. Broom: Sweeping out garbage collection from big data
systems. In Proceedings of the 15th USENIX Conference on Hot Topics
in Operating Systems, HOTOS’ 15, pages 2-2, Berkeley, CA, USA,
2015. USENIX Association.

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,
Michael J. Franklin, and Ion Stoica. Graphx: Graph processing in a
distributed dataflow framework. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, pages
599-613, 2014.

Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A.
Thekkath, Yuan Yu, and Li Zhuang. Nectar: Automatic management of

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

data and computation in datacenters. In Proceedings of the 9" USENIX
Conference on Operating Systems Design and Implementation (OSDI),
pages 75-88, 2010.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed Data-parallel Programs from Sequential
Building Blocks. In Proceedings of the 2" ACM SIGOPS European
Conference on Computer Systems (EuroSys), pages 59-72, March 2007.
Frank McSherry, Derek G. Murray, Rebecca Isaacs, and Michael Isard.
Differential dataflow. In Proceedings of the 6" Biennial Conference on
Innovative Data Systems Research (CIDR), January 2013.

Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, and Martin Abadi. Naiad: A Timely Dataflow System.
In Proceedings of the 24" ACM Symposium on Operating Systems
Principles (SOSP), pages 439-455, November 2013.

Milos Nikolic, Mohammad Dashti, and Christoph Koch. How to win a
hot dog eating contest: Distributed incremental view maintenance with
batch updates. In Proceedings of the 2016 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 511-526, 2016.
Anil Pacaci, Alice Zhou, Jimmy Lin, and M. Tamer Ozsu. Do we need
specialized graph databases?: Benchmarking real-time social network-
ing applications. In Proceedings of the Fifth International Workshop on
Graph Data-management Experiences & Systems, GRADES’17, pages
12:1-12:7, New York, NY, USA, 2017. ACM.

PostgreSQL Global Development Group. The PostgreSQL Database
Management System. https://www.postgresql.org/, April 2019.
Jiwon Seo, Stephen Guo, and Monica S. Lam. Socialite: An efficient
graph query language based on datalog. IEEE Trans. Knowl. Data Eng.,
27(7):1824-1837, 2015.

Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu,
Tyson Condie, and Carlo Zaniolo. Big data analytics with datalog
queries on spark. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD), pages 1135-1149, 2016.

Todd L. Veldhuizen. Transaction repair: Full serializability without
locks. CoRR, abs/1403.5645, 2014.

Jingjing Wang, Tobin Baker, Magdalena Balazinska, Daniel Halperin,
Brandon Haynes, Bill Howe, Dylan Hutchison, Shrainik Jain, Ryan
Maas, Parmita Mehta, Dominik Moritz, Brandon Myers, Jennifer Ortiz,
Dan Suciu, Andrew Whitaker, and Shengliang Xu. The myria big
data management and analytics system and cloud services. In CIDR
2017, 8th Biennial Conference on Innovative Data Systems Research,
Chaminade, CA, USA, January 8-11, 2017, Online Proceedings, 2017.
Kai Wang, Aftab Hussain, Zhigiang Zuo, Guoqing Xu, and Ardalan
Amiri Sani. Graspan: A single-machine disk-based graph system for
interprocedural static analyses of large-scale systems code. In Proceed-
ings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’17, pages 389-404, New York, NY, USA, 2017. ACM.

Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. Scaling up the
performance of more powerful datalog systems on multicore machines.
VLDB Journal, 26(2):229-248, 2017.

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: A System for
General-Purpose Distributed Data-Parallel Computing Using a High-
Level Language. In Proceedings of the 8" USENIX Symposium on
Operating Systems Design and Implementation (OSDI), December
2008.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9" USENIX
Conference on Networked Systems Design and Implementation (NSDI),
pages 15-28, April 2012.

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-tolerant streaming

https://github.com/TimelyDataflow/timely-dataflow/
http://www.dlvsystem.com
http://jemalloc.net
https://github.com/shared-arrangements/tr/raw/master/anonymous-technical-report.pdf
https://github.com/shared-arrangements/tr/raw/master/anonymous-technical-report.pdf
https://www.postgresql.org/

computation at scale. In Proceedings of the 24™ ACM Symposium
on Operating Systems Principles (SOSP), pages 423-438, November
2013.

	1 Introduction
	2 Background and Related Work
	3 Context and Overview
	3.1 Timely Dataflow
	3.2 Differential Dataflow
	3.3 Shared Arrangements Overview

	4 Shared Arrangements
	4.1 Collection traces
	4.2 The arrange operator
	4.3 Trace handles

	5 Arrangement-aware operators
	5.1 Key-preserving stateless operators
	5.2 Key-altering stateless operators
	5.3 Stateful operators
	5.4 Iteration

	6 Implementation
	7 Evaluation
	7.1 End-to-end impact of shared arrangements
	7.2 Design evaluation
	7.3 Baseline performance on reference tasks

	8 Conclusions
	References

