use directed_bijective_connection_graph::graphs::LocallyTwistedCube; use directed_bijective_connection_graph::{Lemma1, Lemma2, NodeToNode, NodeToSet}; fn main() { example_lemma1(); println!("#####################"); example_lemma2(); println!("#####################"); example_node_to_set(); println!("#####################"); example_node_to_node(); } fn example_lemma1() { println!("this is an example of lemma1 on a LTQ."); let n = 8; let s = 0b0000_0001; let graph = LocallyTwistedCube::new(n); let path = graph.lemma1(n, s); println!("{:#?}", path); } fn example_lemma2() { println!("this is an example of lemma2 on a LTQ"); let n = 8; let s = 0b0011_0011; let d = 0b1010_1010; let graph = LocallyTwistedCube::new(n); let path = graph.lemma2(s, d); println!("{:?}", path); } fn example_node_to_set() { println!("This is an example of node to set on a LTQ"); let n = 8; let s = 0b0101_0101; let mut d = vec![]; for i in 0..8 { d.push(1 << i); } let graph = LocallyTwistedCube::new(n); let paths = graph.node_to_set(s, &d); println!("{:#?}", paths); } fn example_node_to_node() { println!("This is an example of node to node on a LTQ"); let n = 8; let s = 0b0101_0101; let d = 0b0000_1111; let graph = LocallyTwistedCube::new(n); let paths = graph.node_to_node(s, d); println!("{:#?}", paths); }