#![allow(incomplete_features)] #![feature(generic_const_exprs)] use dntk_matrix::heap::*; use dntk_matrix::matrix::*; fn main() { // A + B in stack let left = Matrix::<2, 3, _, i32>::new([ 1, 2, 3, // 4, 5, 6, ]); let right = Matrix::<2, 3, _, i32>::new([ 1, 2, 3, // 4, 5, 6, ]); assert_eq!( left + right, Matrix::<2, 3, _, i32>::new([ 2, 4, 6, // 8, 10, 12 ]) ); // A + B in heap let left = Matrix::<2, 3, _, _>::new(Heaped::<2, 3, i32>::new(Box::new([ 1, 2, 3, // 4, 5, 6, ]))); let right = Matrix::<2, 3, _, _>::new(Heaped::<2, 3, i32>::new(Box::new([ 1, 2, 3, // 4, 5, 6, ]))); assert_eq!( left + right, Matrix::<2, 3, _, i32>::new([ 2, 4, 6, // 8, 10, 12 ]) ); // A in heap + B in stack let left = Matrix::<2, 3, _, _>::new(Heaped::<2, 3, i32>::new(Box::new([ 1, 2, 3, // 4, 5, 6, ]))); let right = Matrix::<2, 3, _, i32>::new([ 1, 2, 3, // 4, 5, 6, ]); assert_eq!( left + right, Matrix::<2, 3, _, i32>::new([ 2, 4, 6, // 8, 10, 12 ]) ); // A * B let left = Matrix::<2, 3, _, u32>::new([ 3, 7, 2, // 2, 4, 3, ]); let right = Matrix::<3, 3, _, u32>::new([ 2, 1, 4, // 9, 2, 7, // 8, 3, 2, ]); assert_eq!( left * right, Matrix::<2, 3, _, u32>::new([ 85, 23, 65, // 64, 19, 42 ]) ); // LU decomposition let matrix = Matrix::<10, 10, _, f64>::new([ 3.4, 5.3, 2.4, 4.7, 7.89, 3.2, 3.5, 2.1324, 3.0, 3.4, // 1.4, 5.4, 2.4, 4.7, 7.89, 3.2, 4.5, 2.1324, 3.0, 3.4, // 2.4, 5.5, 2.4, 4.7, 7.89, 3.2, 2.5, 2.1324, 3.0, 3.4, // 3.4, 5.6, 2.4, 4.7, 7.89, 3.2, 4.5, 2.1324, 3.0, 3.4, // 3.4, 5.9, 2.4, 4.7, 7.89, 3.2, 5.5, 2.1324, 3.0, 3.4, // 5.4, 4.3, 2.4, 4.7, 7.89, 3.2, 4.5, 2.1324, 3.0, 3.4, // 6.4, 3.3, 2.4, 4.7, 7.89, 3.2, 7.5, 2.1324, 3.0, 3.4, // 7.4, 1.3, 2.4, 4.7, 7.89, 3.2, 9.5, 2.1324, 3.0, 3.4, // 8.4, 2.3, 2.4, 4.7, 7.89, 3.2, 4.5, 2.1324, 3.0, 3.4, // 9.4, 3.3, 2.4, 4.7, 7.89, 3.2, 1.5, 2.1324, 3.0, 3.4, // ]); let (l, u) = matrix.lu_decomposition(); let diff = matrix - l * u; diff.map::<_, _, [(); 10 * 10]>(|e| assert!(e.abs() < 1e-10)); // Solve Ax = b with Gaussian elimination // // 2a + 2b - 4c + 5d = 16 // a + b + c + d = 10 // -a + 2b - 3c - d = -2 // a + 2b + 3c - 4d = -2 // // (a, b, c, d) = (1, 2, 3, 4) let a = Matrix::<4, 4, _, f64>::new([ 2.0, 3.0, -4.0, 5.0, // 1.0, 1.0, 1.0, 1.0, // -1.0, 2.0, -3.0, 1.0, // 1.0, 2.0, 3.0, -4.0, ]); let b = Matrix::<4, 1, _, f64>::new([ 16.0, // 10.0, // -2.0, // -2.0, ]); let x = solve_eqn(a, b); assert!((1.0 - x.0[0]).abs() < 1e-10); assert!((2.0 - x.0[1]).abs() < 1e-10); assert!((3.0 - x.0[2]).abs() < 1e-10); assert!((4.0 - x.0[3]).abs() < 1e-10); }