//! M2 fast tip-tilt controller null test //! //! Run the mount, M1 force loop, M2 positioner, M2 piezostack and M2 fast tip-tilt feedback loop controllers with the FEM model //! and with the set points of all the controllers set to 0 //! The optical model uses the Linear Optical Model from the `gmt-lom` crate, //! the LOM environment variable must be set to the location of the optical //! sensitivity matrices data file `optical_sensitivities.rs.bin`. //! The FEM model repository is read from the `FEM_REPO` environment variable //! The LOM sensitivity matrices are located in the directory given by the `LOM` environment variable use dos_actors::{ clients::{ arrow_client::Arrow, fsm::*, m1::*, mount::{Mount, MountEncoders, MountSetPoint, MountTorques}, }, prelude::*, }; use fem::{ dos::{DiscreteModalSolver, ExponentialMatrix}, fem_io::*, FEM, }; use lom::{OpticalMetrics, LOM}; use std::time::Instant; mod config; use config::Config; #[tokio::test] async fn setpoint_mount_m1_m2_tt_lom() -> anyhow::Result<()> { let config = Config::load()?; println!("{:?}", config); let sim_sampling_frequency = config.sampling; let sim_duration = 4_usize; let n_step = sim_sampling_frequency * sim_duration; let state_space = { let fem = FEM::from_env()?.static_from_env()?; let n_io = (fem.n_inputs(), fem.n_outputs()); DiscreteModalSolver::::from_fem(fem) .sampling(sim_sampling_frequency as f64) .proportional_damping(config.damping) .ins::() .ins::() .ins::() .ins::() .ins::() .ins::() .ins::() .ins::() .ins::() .ins::() .ins::() .ins::() .ins::() .outs::() .outs::() .outs::() .outs::() .outs::() .outs::() .outs::() .outs::() .use_static_gain_compensation(n_io) .build()? }; // FEM let mut fem: Actor<_> = state_space.into(); // MOUNT let mut mount: Actor<_> = Mount::at_zenith_angle(30)?.into(); const M1_RATE: usize = 10; assert_eq!(sim_sampling_frequency / M1_RATE, 100); // HARDPOINTS let mut m1_hardpoints: Actor<_> = m1_ctrl::hp_dynamics::Controller::new().into(); // LOADCELLS let mut m1_hp_loadcells: Actor<_, 1, M1_RATE> = m1_ctrl::hp_load_cells::Controller::new().into(); // M1 SEGMENTS ACTUATORS let mut m1_segment1: Actor<_, M1_RATE, 1> = m1_ctrl::actuators::segment1::Controller::new().into(); let mut m1_segment2: Actor<_, M1_RATE, 1> = m1_ctrl::actuators::segment2::Controller::new().into(); let mut m1_segment3: Actor<_, M1_RATE, 1> = m1_ctrl::actuators::segment3::Controller::new().into(); let mut m1_segment4: Actor<_, M1_RATE, 1> = m1_ctrl::actuators::segment4::Controller::new().into(); let mut m1_segment5: Actor<_, M1_RATE, 1> = m1_ctrl::actuators::segment5::Controller::new().into(); let mut m1_segment6: Actor<_, M1_RATE, 1> = m1_ctrl::actuators::segment6::Controller::new().into(); let mut m1_segment7: Actor<_, M1_RATE, 1> = m1_ctrl::actuators::segment7::Controller::new().into(); let logging = Arrow::builder(n_step) .filename("setpoint-mount-m1-m2-tt-lom.parquet") .no_save() .build() .into_arcx(); let mut sink = Terminator::<_>::new(logging.clone()); let mut mount_set_point: Initiator<_> = (Signals::new(3, n_step), "Mount_setpoint").into(); mount_set_point .add_output() .build::() .into_input(&mut mount); mount .add_output() .build::() .into_input(&mut fem); let mut m1rbm_set_point: Initiator<_> = (Signals::new(42, n_step), "M1_RBM").into(); m1rbm_set_point .add_output() .build::() .into_input(&mut m1_hardpoints); m1_hardpoints .add_output() .multiplex(2) .build::() .into_input(&mut fem) .into_input(&mut m1_hp_loadcells); m1_hp_loadcells .add_output() .build::() .into_input(&mut m1_segment1); m1_hp_loadcells .add_output() .build::() .into_input(&mut m1_segment2); m1_hp_loadcells .add_output() .build::() .into_input(&mut m1_segment3); m1_hp_loadcells .add_output() .build::() .into_input(&mut m1_segment4); m1_hp_loadcells .add_output() .build::() .into_input(&mut m1_segment5); m1_hp_loadcells .add_output() .build::() .into_input(&mut m1_segment6); m1_hp_loadcells .add_output() .build::() .into_input(&mut m1_segment7); m1_segment1 .add_output() .bootstrap() .build::() .into_input(&mut fem); m1_segment2 .add_output() .bootstrap() .build::() .into_input(&mut fem); m1_segment3 .add_output() .bootstrap() .build::() .into_input(&mut fem); m1_segment4 .add_output() .bootstrap() .build::() .into_input(&mut fem); m1_segment5 .add_output() .bootstrap() .build::() .into_input(&mut fem); m1_segment6 .add_output() .bootstrap() .build::() .into_input(&mut fem); m1_segment7 .add_output() .bootstrap() .build::() .into_input(&mut fem); const FSM_RATE: usize = 5; assert_eq!(sim_sampling_frequency / FSM_RATE, 200); // M2 POSITIONER COMMAND let mut m2_pos_cmd: Initiator<_> = (Signals::new(42, n_step), "M2_pos").into(); // FSM POSITIONNER let mut m2_positionner: Actor<_> = m2_ctrl::positionner::Controller::new().into(); m2_pos_cmd .add_output() .build::() .into_input(&mut m2_positionner); m2_positionner .add_output() .build::() .into_input(&mut fem); // FSM PIEZOSTACK let mut m2_piezostack: Actor<_> = m2_ctrl::piezostack::Controller::new().into(); m2_piezostack .add_output() .build::() .into_input(&mut fem); // FSM TIP-TILT CONTROL let mut tiptilt_set_point: Initiator<_, FSM_RATE> = ( (0..7).fold(Signals::new(14, n_step), |s, i| { (0..2).fold(s, |ss, j| { ss.output_signal( i * 2 + j, Signal::Constant((-1f64).powi((i + j) as i32) * 1e-6), ) }) }), "TipTilt_setpoint", ) .into(); let mut m2_tiptilt: Actor<_, FSM_RATE, 1> = m2_ctrl::tiptilt::Controller::new().into(); tiptilt_set_point .add_output() .build::() .into_input(&mut m2_tiptilt); m2_tiptilt .add_output() .bootstrap() .build::() .into_input(&mut m2_piezostack); // LINEAR OPTICAL MODEL let feedback = Logging::default().into_arcx(); let mut feedback_sink = Terminator::<_, FSM_RATE>::new(feedback.clone()); let mut lom: Actor<_, 1, FSM_RATE> = LOM::builder().build()?.into(); lom.add_output() .multiplex(2) .build::() .into_input(&mut m2_tiptilt) .into_input(&mut feedback_sink); fem.add_output() .bootstrap() .build::() .into_input(&mut mount); fem.add_output() .bootstrap() .build::() .into_input(&mut m1_hp_loadcells); fem.add_output() .multiplex(2) .build::() .into_input(&mut lom) .log(&mut sink) .await; fem.add_output() .multiplex(2) .build::() .into_input(&mut lom) .log(&mut sink) .await; fem.add_output() .bootstrap() .build::() .into_input(&mut m2_positionner); fem.add_output() .bootstrap() .build::() .into_input(&mut m2_piezostack); Model::new(vec![ Box::new(mount_set_point), Box::new(mount), Box::new(m1rbm_set_point), Box::new(m1_hardpoints), Box::new(m1_hp_loadcells), Box::new(m1_segment1), Box::new(m1_segment2), Box::new(m1_segment3), Box::new(m1_segment4), Box::new(m1_segment5), Box::new(m1_segment6), Box::new(m1_segment7), Box::new(m2_pos_cmd), Box::new(m2_positionner), Box::new(m2_piezostack), Box::new(tiptilt_set_point), Box::new(m2_tiptilt), Box::new(lom), Box::new(fem), Box::new(sink), Box::new(feedback_sink), ]) .name("mount-m1-m2-tt-lom") .flowchart() .check()? .run() .wait() .await?; let lom = LOM::builder() .rigid_body_motions_record((*logging.lock().await).record()?)? .build()?; let segment_tiptilt = lom.segment_tiptilt(); let stt: Vec<_> = segment_tiptilt .items() .last() .unwrap() .into_iter() .map(|x| x * 1e6) .collect(); println!("STT (last).: {:.3?}", stt); println!( "STT feedback (last): {:.3?}", (*feedback.lock().await) .chunks() .last() .unwrap() .into_iter() .map(|x| x * 1e6) .collect::>() ); let stt_residuals = stt .chunks(2) .enumerate() .map(|(i, x)| { x.iter() .enumerate() .map(|(j, x)| x - (-1f64).powi((i + j) as i32)) .map(|x| x * x) .sum::() / 2f64 }) .sum::() / 7f64; println!( "Segment X pupil TT set points RSS error: {}", stt_residuals.sqrt() ); assert!(stt_residuals.sqrt() < 1e-3); Ok(()) }