/*! \file Copyright (c) 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy) All rights reserved. The source code is distributed under BSD license, see the file License.txt at the top-level directory. */ #include "pdsp_defs.h" #include "util.h" #if ( MACH==CRAY_PVP ) fortran void STRSM(_fcd, _fcd, _fcd, _fcd, int*, int*, double*, double*, int*, double*, int*); fortran void SGEMM(_fcd, _fcd, int*, int*, int*, double*, double*, int*, double*, int*, double*, double*, int*); #endif void dgstrs(trans_t trans, SuperMatrix *L, SuperMatrix *U, int *perm_r, int *perm_c, SuperMatrix *B, Gstat_t *Gstat, int *info) { /* * -- SuperLU MT routine (version 1.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * August 15, 1997 * * Purpose * ======= * * dgstrs() solves a system of linear equations A*X=B or A'*X=B * with A sparse and B dense, using the LU factorization computed by * pdgstrf(). * * Arguments * ========= * * trans (input) Specifies the form of the system of equations: * = NOTRANS: A * X = B (No transpose) * = TRANS: A'* X = B (Transpose) * * L (input) SuperMatrix* * The factor L from the factorization Pr*A*Pc=L*U as computed by * pdgstrf(). Use compressed row subscripts storage for supernodes, * i.e., L has types: Stype = SCP, Dtype = _D, Mtype = TRLU. * * U (input) SuperMatrix* * The factor U from the factorization Pr*A*Pc=L*U as computed by * pdgstrf(). Use column-wise storage scheme, i.e., U has types: * Stype = NCP, Dtype = _D, Mtype = TRU. * * perm_r (input) int* * Row permutation vector of size L->nrow, which defines the * permutation matrix Pr; perm_r[i] = j means row i of A is in * position j in Pr*A. * * perm_c (int*) dimension A->ncol * Column permutation vector, which defines the * permutation matrix Pc; perm_c[i] = j means column i of A is * in position j in A*Pc. * * B (input/output) SuperMatrix* * B has types: Stype = DN, Dtype = _D, Mtype = GE. * On entry, the right hand side matrix. * On exit, the solution matrix if info = 0; * * Gstat (output) Gstat_t* * Record all the statistics about the triangular solves; * See Gstat_t structure defined in util.h. * * info (output) Diagnostics * = 0: successful exit * < 0: if info = -i, the i-th argument had an illegal value * */ #if ( MACH==CRAY_PVP ) _fcd ftcs1, ftcs2, ftcs3, ftcs4; #endif #ifdef USE_VENDOR_BLAS int incx = 1, incy = 1; double alpha = 1.0, beta = 1.0; #endif register int j, k, jcol, iptr, luptr, ksupno, istart, irow, bptr; register int fsupc, nsuper; int i, n, nsupc, nsupr, nrow, nrhs, ldb; int *supno; DNformat *Bstore; SCPformat *Lstore; NCPformat *Ustore; double *Lval, *Uval, *Bmat; double *work, *work_col, *rhs_work, *soln; flops_t solve_ops; void dprint_soln(); /* Test input parameters ... */ *info = 0; Bstore = B->Store; ldb = Bstore->lda; nrhs = B->ncol; if ( trans != NOTRANS && trans != TRANS ) *info = -1; else if ( L->nrow != L->ncol || L->nrow < 0 ) *info = -3; else if ( U->nrow != U->ncol || U->nrow < 0 ) *info = -4; else if ( ldb < MAX(0, L->nrow) ) *info = -6; if ( *info ) { i = -(*info); xerbla_("dgstrs", &i); return; } n = L->nrow; work = doubleCalloc(n * nrhs); if ( !work ) ABORT("Malloc fails for local work[]."); soln = doubleMalloc(n); if ( !soln ) ABORT("Malloc fails for local soln[]."); Bmat = Bstore->nzval; Lstore = L->Store; Lval = Lstore->nzval; Ustore = U->Store; Uval = Ustore->nzval; supno = Lstore->col_to_sup; nsuper = Lstore->nsuper; solve_ops = 0; if ( trans == NOTRANS ) { /* Permute right hand sides to form Pr*B */ for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) { rhs_work = &Bmat[bptr]; for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k]; for (k = 0; k < n; k++) rhs_work[k] = soln[k]; } /* Forward solve PLy=Pb. */ /*>> for (k = 0; k < n; k += nsupc) { ksupno = supno[k]; */ for (ksupno = 0; ksupno <= nsuper; ++ksupno) { fsupc = L_FST_SUPC(ksupno); istart = L_SUB_START(fsupc); nsupr = L_SUB_END(fsupc) - istart; nsupc = L_LAST_SUPC(ksupno) - fsupc; nrow = nsupr - nsupc; solve_ops += nsupc * (nsupc - 1) * nrhs; solve_ops += 2 * nrow * nsupc * nrhs; if ( nsupc == 1 ) { for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) { rhs_work = &Bmat[bptr]; luptr = L_NZ_START(fsupc); for (iptr=istart+1; iptr < L_SUB_END(fsupc); iptr++){ irow = L_SUB(iptr); ++luptr; rhs_work[irow] -= rhs_work[fsupc] * Lval[luptr]; } } } else { luptr = L_NZ_START(fsupc); #ifdef USE_VENDOR_BLAS #if ( MACH==CRAY_PVP ) ftcs1 = _cptofcd("L", strlen("L")); ftcs2 = _cptofcd("N", strlen("N")); ftcs3 = _cptofcd("U", strlen("U")); STRSM(ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); SGEMM(ftcs2, ftcs2, &nrow, &nrhs, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, &beta, &work[0], &n ); #else dtrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); dgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha, &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, &beta, &work[0], &n ); #endif for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) { rhs_work = &Bmat[bptr]; work_col = &work[j*n]; iptr = istart + nsupc; for (i = 0; i < nrow; i++) { irow = L_SUB(iptr); rhs_work[irow] -= work_col[i]; /* Scatter */ work_col[i] = 0.0; iptr++; } } #else for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) { rhs_work = &Bmat[bptr]; dlsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]); dmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc], &rhs_work[fsupc], &work[0] ); iptr = istart + nsupc; for (i = 0; i < nrow; i++) { irow = L_SUB(iptr); rhs_work[irow] -= work[i]; work[i] = 0.0; iptr++; } } #endif } /* if-else: nsupc == 1 ... */ } /* for L-solve */ #if ( DEBUGlevel>=2 ) printf("After L-solve: y=\n"); dprint_soln(n, nrhs, Bmat); #endif /* * Back solve Ux=y. */ /*>> for (k = n-1; k >= 0; k -= nsupc) { ksupno = supno[k]; */ for (ksupno = nsuper; ksupno >= 0; --ksupno) { fsupc = L_FST_SUPC(ksupno); istart = L_SUB_START(fsupc); nsupr = L_SUB_END(fsupc) - istart; nsupc = L_LAST_SUPC(ksupno) - fsupc; luptr = L_NZ_START(fsupc); solve_ops += nsupc * (nsupc + 1) * nrhs; /* dense triangular matrix */ if ( nsupc == 1 ) { rhs_work = &Bmat[0]; for (j = 0; j < nrhs; j++) { rhs_work[fsupc] /= Lval[luptr]; rhs_work += ldb; } } else { #ifdef USE_VENDOR_BLAS #if ( MACH==CRAY_PVP ) ftcs1 = _cptofcd("L", strlen("L")); ftcs2 = _cptofcd("U", strlen("U")); ftcs3 = _cptofcd("N", strlen("N")); STRSM(ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); #else dtrsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb); #endif #else for (j = 0, bptr = fsupc; j < nrhs; j++, bptr += ldb) { dusolve (nsupr, nsupc, &Lval[luptr], &Bmat[bptr]); } #endif } /* matrix-vector update */ for (j = 0, bptr = 0; j < nrhs; ++j, bptr += ldb) { rhs_work = &Bmat[bptr]; for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) { solve_ops += 2*(U_NZ_END(jcol) - U_NZ_START(jcol)); for (i = U_NZ_START(jcol); i < U_NZ_END(jcol); i++ ){ irow = U_SUB(i); rhs_work[irow] -= rhs_work[jcol] * Uval[i]; } } } } /* for U-solve */ #if ( DEBUGlevel>=2 ) printf("After U-solve: x=\n"); dprint_soln(n, nrhs, Bmat); #endif /* Compute the final solution X <= Pc*X. */ for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) { rhs_work = &Bmat[bptr]; for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]]; for (k = 0; k < n; k++) rhs_work[k] = soln[k]; } } else { /* Solve A'*X=B */ /* Permute right hand sides to form Pc'*B. */ for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) { rhs_work = &Bmat[bptr]; for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k]; for (k = 0; k < n; k++) rhs_work[k] = soln[k]; } for (k = 0; k < nrhs; ++k) { /* Multiply by inv(U'). */ sp_dtrsv("U", "T", "N", L, U, &Bmat[k*ldb], info); /* Multiply by inv(L'). */ sp_dtrsv("L", "T", "U", L, U, &Bmat[k*ldb], info); } /* Compute the final solution X <= Pr'*X (=inv(Pr)*X) */ for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) { rhs_work = &Bmat[bptr]; for (k = 0; k < n; k++) soln[k] = rhs_work[perm_r[k]]; for (k = 0; k < n; k++) rhs_work[k] = soln[k]; } } /* if-else trans */ Gstat->ops[TRISOLVE] = solve_ops; SUPERLU_FREE(work); SUPERLU_FREE(soln); } /* * Diagnostic print of the solution vector */ void dprint_soln(int n, int nrhs, double *soln) { int i; for (i = 0; i < n; i++) printf("\t%d: %.10f\n", i, soln[i]); }