/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ #ifndef _HARMONICNUMBERS_INTERNAL_HPP_ #define _HARMONICNUMBERS_INTERNAL_HPP_ #include "HarmonicNumbers.hpp" #include namespace datasketches { template double HarmonicNumbers::getBitMapEstimate(const int bitVectorLength, const int numBitsSet) { return (bitVectorLength * (harmonicNumber(bitVectorLength) - harmonicNumber(bitVectorLength - numBitsSet))); } static const int NUM_EXACT_HARMONIC_NUMBERS = 25; static double tableOfExactHarmonicNumbers[] = { 0.0, // 0 1.0, // 1 1.5, // 2 11.0 / 6.0, // 3 25.0 / 12.0, // 4 137.0 / 60.0, // 5 49.0 / 20.0, // 6 363.0 / 140.0, // 7 761.0 / 280.0, // 8 7129.0 / 2520.0, // 9 7381.0 / 2520.0, // 10 83711.0 / 27720.0, // 11 86021.0 / 27720.0, // 12 1145993.0 / 360360.0, // 13 1171733.0 / 360360.0, // 14 1195757.0 / 360360.0, // 15 2436559.0 / 720720.0, // 16 42142223.0 / 12252240.0, // 17 14274301.0 / 4084080.0, // 18 275295799.0 / 77597520.0, // 19 55835135.0 / 15519504.0, // 20 18858053.0 / 5173168.0, // 21 19093197.0 / 5173168.0, // 22 444316699.0 / 118982864.0, // 23 1347822955.0 / 356948592.0 // 24 }; static const double EULER_MASCHERONI_CONSTANT = 0.577215664901532860606512090082; template double HarmonicNumbers::harmonicNumber(const uint64_t x_i) { if (x_i < NUM_EXACT_HARMONIC_NUMBERS) { return tableOfExactHarmonicNumbers[x_i]; } else { double x = static_cast(x_i); double invSq = 1.0 / (x * x); double sum = log(x) + EULER_MASCHERONI_CONSTANT + (1.0 / (2.0 * x)); /* note: the number of terms included from this series expansion is appropriate for the size of the exact table (25) and the precision of doubles */ double pow = invSq; // now n^-2 sum -= pow * (1.0 / 12.0); pow *= invSq; // now n^-4 sum += pow * (1.0 / 120.0); pow *= invSq; /* now n^-6 */ sum -= pow * (1.0 / 252.0); pow *= invSq; /* now n^-8 */ sum += pow * (1.0 / 240.0); return sum; } } } #endif // _HARMONICNUMBERS_INTERNAL_HPP_