/* * Number-to-string and string-to-number conversions. * * Slow path number-to-string and string-to-number conversion is based on * a Dragon4 variant, with fast paths for small integers. Big integer * arithmetic is needed for guaranteeing that the conversion is correct * and uses a minimum number of digits. The big number arithmetic has a * fixed maximum size and does not require dynamic allocations. * * See: doc/number-conversion.txt. */ #include "duk_internal.h" #define DUK__IEEE_DOUBLE_EXP_BIAS 1023 #define DUK__IEEE_DOUBLE_EXP_MIN (-1022) /* biased exp == 0 -> denormal, exp -1022 */ #define DUK__DIGITCHAR(x) duk_lc_digits[(x)] /* * Tables generated with src/gennumdigits.py. * * duk__str2num_digits_for_radix indicates, for each radix, how many input * digits should be considered significant for string-to-number conversion. * The input is also padded to this many digits to give the Dragon4 * conversion enough (apparent) precision to work with. * * duk__str2num_exp_limits indicates, for each radix, the radix-specific * minimum/maximum exponent values (for a Dragon4 integer mantissa) * below and above which the number is guaranteed to underflow to zero * or overflow to Infinity. This allows parsing to keep bigint values * bounded. */ DUK_LOCAL const duk_uint8_t duk__str2num_digits_for_radix[] = { 69, 44, 35, 30, 27, 25, 23, 22, 20, 20, /* 2 to 11 */ 20, 19, 19, 18, 18, 17, 17, 17, 16, 16, /* 12 to 21 */ 16, 16, 16, 15, 15, 15, 15, 15, 15, 14, /* 22 to 31 */ 14, 14, 14, 14, 14 /* 31 to 36 */ }; typedef struct { duk_int16_t upper; duk_int16_t lower; } duk__exp_limits; DUK_LOCAL const duk__exp_limits duk__str2num_exp_limits[] = { { 957, -1147 }, { 605, -725 }, { 479, -575 }, { 414, -496 }, { 372, -446 }, { 342, -411 }, { 321, -384 }, { 304, -364 }, { 291, -346 }, { 279, -334 }, { 268, -323 }, { 260, -312 }, { 252, -304 }, { 247, -296 }, { 240, -289 }, { 236, -283 }, { 231, -278 }, { 227, -273 }, { 223, -267 }, { 220, -263 }, { 216, -260 }, { 213, -256 }, { 210, -253 }, { 208, -249 }, { 205, -246 }, { 203, -244 }, { 201, -241 }, { 198, -239 }, { 196, -237 }, { 195, -234 }, { 193, -232 }, { 191, -230 }, { 190, -228 }, { 188, -226 }, { 187, -225 }, }; /* * Limited functionality bigint implementation. * * Restricted to non-negative numbers with less than 32 * DUK__BI_MAX_PARTS bits, * with the caller responsible for ensuring this is never exceeded. No memory * allocation (except stack) is needed for bigint computation. Operations * have been tailored for number conversion needs. * * Argument order is "assignment order", i.e. target first, then arguments: * x <- y * z --> duk__bi_mul(x, y, z); */ /* This upper value has been experimentally determined; debug build will check * bigint size with assertions. */ #define DUK__BI_MAX_PARTS 37 /* 37x32 = 1184 bits */ #ifdef DUK_USE_DDDPRINT #define DUK__BI_PRINT(name,x) duk__bi_print((name),(x)) #else #define DUK__BI_PRINT(name,x) #endif /* Current size is about 152 bytes. */ typedef struct { duk_small_int_t n; duk_uint32_t v[DUK__BI_MAX_PARTS]; /* low to high */ } duk__bigint; #ifdef DUK_USE_DDDPRINT DUK_LOCAL void duk__bi_print(const char *name, duk__bigint *x) { /* Overestimate required size; debug code so not critical to be tight. */ char buf[DUK__BI_MAX_PARTS * 9 + 64]; char *p = buf; duk_small_int_t i; /* No NUL term checks in this debug code. */ p += DUK_SPRINTF(p, "%p n=%ld", (void *) x, (long) x->n); if (x->n == 0) { p += DUK_SPRINTF(p, " 0"); } for (i = x->n - 1; i >= 0; i--) { p += DUK_SPRINTF(p, " %08lx", (unsigned long) x->v[i]); } DUK_DDD(DUK_DDDPRINT("%s: %s", (const char *) name, (const char *) buf)); } #endif #ifdef DUK_USE_ASSERTIONS DUK_LOCAL duk_small_int_t duk__bi_is_valid(duk__bigint *x) { return (duk_small_int_t) ( ((x->n >= 0) && (x->n <= DUK__BI_MAX_PARTS)) /* is valid size */ && ((x->n == 0) || (x->v[x->n - 1] != 0)) /* is normalized */ ); } #endif DUK_LOCAL void duk__bi_normalize(duk__bigint *x) { duk_small_int_t i; for (i = x->n - 1; i >= 0; i--) { if (x->v[i] != 0) { break; } } /* Note: if 'x' is zero, x->n becomes 0 here */ x->n = i + 1; DUK_ASSERT(duk__bi_is_valid(x)); } /* x <- y */ DUK_LOCAL void duk__bi_copy(duk__bigint *x, duk__bigint *y) { duk_small_int_t n; n = y->n; x->n = n; if (n == 0) { return; } DUK_MEMCPY((void *) x->v, (void *) y->v, (size_t) (sizeof(duk_uint32_t) * n)); } DUK_LOCAL void duk__bi_set_small(duk__bigint *x, duk_uint32_t v) { if (v == 0U) { x->n = 0; } else { x->n = 1; x->v[0] = v; } DUK_ASSERT(duk__bi_is_valid(x)); } /* Return value: <0 <=> x < y * 0 <=> x == y * >0 <=> x > y */ DUK_LOCAL int duk__bi_compare(duk__bigint *x, duk__bigint *y) { duk_small_int_t i, nx, ny; duk_uint32_t tx, ty; DUK_ASSERT(duk__bi_is_valid(x)); DUK_ASSERT(duk__bi_is_valid(y)); nx = x->n; ny = y->n; if (nx > ny) { goto ret_gt; } if (nx < ny) { goto ret_lt; } for (i = nx - 1; i >= 0; i--) { tx = x->v[i]; ty = y->v[i]; if (tx > ty) { goto ret_gt; } if (tx < ty) { goto ret_lt; } } return 0; ret_gt: return 1; ret_lt: return -1; } /* x <- y + z */ #ifdef DUK_USE_64BIT_OPS DUK_LOCAL void duk__bi_add(duk__bigint *x, duk__bigint *y, duk__bigint *z) { duk_uint64_t tmp; duk_small_int_t i, ny, nz; DUK_ASSERT(duk__bi_is_valid(y)); DUK_ASSERT(duk__bi_is_valid(z)); if (z->n > y->n) { duk__bigint *t; t = y; y = z; z = t; } DUK_ASSERT(y->n >= z->n); ny = y->n; nz = z->n; tmp = 0U; for (i = 0; i < ny; i++) { DUK_ASSERT(i < DUK__BI_MAX_PARTS); tmp += y->v[i]; if (i < nz) { tmp += z->v[i]; } x->v[i] = (duk_uint32_t) (tmp & 0xffffffffUL); tmp = tmp >> 32; } if (tmp != 0U) { DUK_ASSERT(i < DUK__BI_MAX_PARTS); x->v[i++] = (duk_uint32_t) tmp; } x->n = i; DUK_ASSERT(x->n <= DUK__BI_MAX_PARTS); /* no need to normalize */ DUK_ASSERT(duk__bi_is_valid(x)); } #else /* DUK_USE_64BIT_OPS */ DUK_LOCAL void duk__bi_add(duk__bigint *x, duk__bigint *y, duk__bigint *z) { duk_uint32_t carry, tmp1, tmp2; duk_small_int_t i, ny, nz; DUK_ASSERT(duk__bi_is_valid(y)); DUK_ASSERT(duk__bi_is_valid(z)); if (z->n > y->n) { duk__bigint *t; t = y; y = z; z = t; } DUK_ASSERT(y->n >= z->n); ny = y->n; nz = z->n; carry = 0U; for (i = 0; i < ny; i++) { /* Carry is detected based on wrapping which relies on exact 32-bit * types. */ DUK_ASSERT(i < DUK__BI_MAX_PARTS); tmp1 = y->v[i]; tmp2 = tmp1; if (i < nz) { tmp2 += z->v[i]; } /* Careful with carry condition: * - If carry not added: 0x12345678 + 0 + 0xffffffff = 0x12345677 (< 0x12345678) * - If carry added: 0x12345678 + 1 + 0xffffffff = 0x12345678 (== 0x12345678) */ if (carry) { tmp2++; carry = (tmp2 <= tmp1 ? 1U : 0U); } else { carry = (tmp2 < tmp1 ? 1U : 0U); } x->v[i] = tmp2; } if (carry) { DUK_ASSERT(i < DUK__BI_MAX_PARTS); DUK_ASSERT(carry == 1U); x->v[i++] = carry; } x->n = i; DUK_ASSERT(x->n <= DUK__BI_MAX_PARTS); /* no need to normalize */ DUK_ASSERT(duk__bi_is_valid(x)); } #endif /* DUK_USE_64BIT_OPS */ /* x <- y + z */ DUK_LOCAL void duk__bi_add_small(duk__bigint *x, duk__bigint *y, duk_uint32_t z) { duk__bigint tmp; DUK_ASSERT(duk__bi_is_valid(y)); /* XXX: this could be optimized; there is only one call site now though */ duk__bi_set_small(&tmp, z); duk__bi_add(x, y, &tmp); DUK_ASSERT(duk__bi_is_valid(x)); } #if 0 /* unused */ /* x <- x + y, use t as temp */ DUK_LOCAL void duk__bi_add_copy(duk__bigint *x, duk__bigint *y, duk__bigint *t) { duk__bi_add(t, x, y); duk__bi_copy(x, t); } #endif /* x <- y - z, require x >= y => z >= 0, i.e. y >= z */ #ifdef DUK_USE_64BIT_OPS DUK_LOCAL void duk__bi_sub(duk__bigint *x, duk__bigint *y, duk__bigint *z) { duk_small_int_t i, ny, nz; duk_uint32_t ty, tz; duk_int64_t tmp; DUK_ASSERT(duk__bi_is_valid(y)); DUK_ASSERT(duk__bi_is_valid(z)); DUK_ASSERT(duk__bi_compare(y, z) >= 0); DUK_ASSERT(y->n >= z->n); ny = y->n; nz = z->n; tmp = 0; for (i = 0; i < ny; i++) { ty = y->v[i]; if (i < nz) { tz = z->v[i]; } else { tz = 0; } tmp = (duk_int64_t) ty - (duk_int64_t) tz + tmp; x->v[i] = (duk_uint32_t) (tmp & 0xffffffffUL); tmp = tmp >> 32; /* 0 or -1 */ } DUK_ASSERT(tmp == 0); x->n = i; duk__bi_normalize(x); /* need to normalize, may even cancel to 0 */ DUK_ASSERT(duk__bi_is_valid(x)); } #else DUK_LOCAL void duk__bi_sub(duk__bigint *x, duk__bigint *y, duk__bigint *z) { duk_small_int_t i, ny, nz; duk_uint32_t tmp1, tmp2, borrow; DUK_ASSERT(duk__bi_is_valid(y)); DUK_ASSERT(duk__bi_is_valid(z)); DUK_ASSERT(duk__bi_compare(y, z) >= 0); DUK_ASSERT(y->n >= z->n); ny = y->n; nz = z->n; borrow = 0U; for (i = 0; i < ny; i++) { /* Borrow is detected based on wrapping which relies on exact 32-bit * types. */ tmp1 = y->v[i]; tmp2 = tmp1; if (i < nz) { tmp2 -= z->v[i]; } /* Careful with borrow condition: * - If borrow not subtracted: 0x12345678 - 0 - 0xffffffff = 0x12345679 (> 0x12345678) * - If borrow subtracted: 0x12345678 - 1 - 0xffffffff = 0x12345678 (== 0x12345678) */ if (borrow) { tmp2--; borrow = (tmp2 >= tmp1 ? 1U : 0U); } else { borrow = (tmp2 > tmp1 ? 1U : 0U); } x->v[i] = tmp2; } DUK_ASSERT(borrow == 0U); x->n = i; duk__bi_normalize(x); /* need to normalize, may even cancel to 0 */ DUK_ASSERT(duk__bi_is_valid(x)); } #endif #if 0 /* unused */ /* x <- y - z */ DUK_LOCAL void duk__bi_sub_small(duk__bigint *x, duk__bigint *y, duk_uint32_t z) { duk__bigint tmp; DUK_ASSERT(duk__bi_is_valid(y)); /* XXX: this could be optimized */ duk__bi_set_small(&tmp, z); duk__bi_sub(x, y, &tmp); DUK_ASSERT(duk__bi_is_valid(x)); } #endif /* x <- x - y, use t as temp */ DUK_LOCAL void duk__bi_sub_copy(duk__bigint *x, duk__bigint *y, duk__bigint *t) { duk__bi_sub(t, x, y); duk__bi_copy(x, t); } /* x <- y * z */ DUK_LOCAL void duk__bi_mul(duk__bigint *x, duk__bigint *y, duk__bigint *z) { duk_small_int_t i, j, nx, nz; DUK_ASSERT(duk__bi_is_valid(y)); DUK_ASSERT(duk__bi_is_valid(z)); nx = y->n + z->n; /* max possible */ DUK_ASSERT(nx <= DUK__BI_MAX_PARTS); if (nx == 0) { /* Both inputs are zero; cases where only one is zero can go * through main algorithm. */ x->n = 0; return; } DUK_MEMZERO((void *) x->v, (size_t) (sizeof(duk_uint32_t) * nx)); x->n = nx; nz = z->n; for (i = 0; i < y->n; i++) { #ifdef DUK_USE_64BIT_OPS duk_uint64_t tmp = 0U; for (j = 0; j < nz; j++) { tmp += (duk_uint64_t) y->v[i] * (duk_uint64_t) z->v[j] + x->v[i+j]; x->v[i+j] = (duk_uint32_t) (tmp & 0xffffffffUL); tmp = tmp >> 32; } if (tmp > 0) { DUK_ASSERT(i + j < nx); DUK_ASSERT(i + j < DUK__BI_MAX_PARTS); DUK_ASSERT(x->v[i+j] == 0U); x->v[i+j] = (duk_uint32_t) tmp; } #else /* * Multiply + add + carry for 32-bit components using only 16x16->32 * multiplies and carry detection based on unsigned overflow. * * 1st mult, 32-bit: (A*2^16 + B) * 2nd mult, 32-bit: (C*2^16 + D) * 3rd add, 32-bit: E * 4th add, 32-bit: F * * (AC*2^16 + B) * (C*2^16 + D) + E + F * = AC*2^32 + AD*2^16 + BC*2^16 + BD + E + F * = AC*2^32 + (AD + BC)*2^16 + (BD + E + F) * = AC*2^32 + AD*2^16 + BC*2^16 + (BD + E + F) */ duk_uint32_t a, b, c, d, e, f; duk_uint32_t r, s, t; a = y->v[i]; b = a & 0xffffUL; a = a >> 16; f = 0; for (j = 0; j < nz; j++) { c = z->v[j]; d = c & 0xffffUL; c = c >> 16; e = x->v[i+j]; /* build result as: (r << 32) + s: start with (BD + E + F) */ r = 0; s = b * d; /* add E */ t = s + e; if (t < s) { r++; } /* carry */ s = t; /* add F */ t = s + f; if (t < s) { r++; } /* carry */ s = t; /* add BC*2^16 */ t = b * c; r += (t >> 16); t = s + ((t & 0xffffUL) << 16); if (t < s) { r++; } /* carry */ s = t; /* add AD*2^16 */ t = a * d; r += (t >> 16); t = s + ((t & 0xffffUL) << 16); if (t < s) { r++; } /* carry */ s = t; /* add AC*2^32 */ t = a * c; r += t; DUK_DDD(DUK_DDDPRINT("ab=%08lx cd=%08lx ef=%08lx -> rs=%08lx %08lx", (unsigned long) y->v[i], (unsigned long) z->v[j], (unsigned long) x->v[i+j], (unsigned long) r, (unsigned long) s)); x->v[i+j] = s; f = r; } if (f > 0U) { DUK_ASSERT(i + j < nx); DUK_ASSERT(i + j < DUK__BI_MAX_PARTS); DUK_ASSERT(x->v[i+j] == 0U); x->v[i+j] = (duk_uint32_t) f; } #endif /* DUK_USE_64BIT_OPS */ } duk__bi_normalize(x); DUK_ASSERT(duk__bi_is_valid(x)); } /* x <- y * z */ DUK_LOCAL void duk__bi_mul_small(duk__bigint *x, duk__bigint *y, duk_uint32_t z) { duk__bigint tmp; DUK_ASSERT(duk__bi_is_valid(y)); /* XXX: this could be optimized */ duk__bi_set_small(&tmp, z); duk__bi_mul(x, y, &tmp); DUK_ASSERT(duk__bi_is_valid(x)); } /* x <- x * y, use t as temp */ DUK_LOCAL void duk__bi_mul_copy(duk__bigint *x, duk__bigint *y, duk__bigint *t) { duk__bi_mul(t, x, y); duk__bi_copy(x, t); } /* x <- x * y, use t as temp */ DUK_LOCAL void duk__bi_mul_small_copy(duk__bigint *x, duk_uint32_t y, duk__bigint *t) { duk__bi_mul_small(t, x, y); duk__bi_copy(x, t); } DUK_LOCAL int duk__bi_is_even(duk__bigint *x) { DUK_ASSERT(duk__bi_is_valid(x)); return (x->n == 0) || ((x->v[0] & 0x01) == 0); } DUK_LOCAL int duk__bi_is_zero(duk__bigint *x) { DUK_ASSERT(duk__bi_is_valid(x)); return (x->n == 0); /* this is the case for normalized numbers */ } /* Bigint is 2^52. Used to detect normalized IEEE double mantissa values * which are at the lowest edge (next floating point value downwards has * a different exponent). The lowest mantissa has the form: * * 1000........000 (52 zeroes; only "hidden bit" is set) */ DUK_LOCAL duk_small_int_t duk__bi_is_2to52(duk__bigint *x) { DUK_ASSERT(duk__bi_is_valid(x)); return (duk_small_int_t) (x->n == 2) && (x->v[0] == 0U) && (x->v[1] == (1U << (52-32))); } /* x <- (1< 0); r = y % 32; DUK_MEMZERO((void *) x->v, sizeof(duk_uint32_t) * n); x->n = n; x->v[n - 1] = (((duk_uint32_t) 1) << r); } /* x <- b^y; use t1 and t2 as temps */ DUK_LOCAL void duk__bi_exp_small(duk__bigint *x, duk_small_int_t b, duk_small_int_t y, duk__bigint *t1, duk__bigint *t2) { /* Fast path the binary case */ DUK_ASSERT(x != t1 && x != t2 && t1 != t2); /* distinct bignums, easy mistake to make */ DUK_ASSERT(b >= 0); DUK_ASSERT(y >= 0); if (b == 2) { duk__bi_twoexp(x, y); return; } /* http://en.wikipedia.org/wiki/Exponentiation_by_squaring */ DUK_DDD(DUK_DDDPRINT("exp_small: b=%ld, y=%ld", (long) b, (long) y)); duk__bi_set_small(x, 1); duk__bi_set_small(t1, b); for (;;) { /* Loop structure ensures that we don't compute t1^2 unnecessarily * on the final round, as that might create a bignum exceeding the * current DUK__BI_MAX_PARTS limit. */ if (y & 0x01) { duk__bi_mul_copy(x, t1, t2); } y = y >> 1; if (y == 0) { break; } duk__bi_mul_copy(t1, t1, t2); } DUK__BI_PRINT("exp_small result", x); } /* * A Dragon4 number-to-string variant, based on: * * Guy L. Steele Jr., Jon L. White: "How to Print Floating-Point Numbers * Accurately" * * Robert G. Burger, R. Kent Dybvig: "Printing Floating-Point Numbers * Quickly and Accurately" * * The current algorithm is based on Figure 1 of the Burger-Dybvig paper, * i.e. the base implementation without logarithm estimation speedups * (these would increase code footprint considerably). Fixed-format output * does not follow the suggestions in the paper; instead, we generate an * extra digit and round-with-carry. * * The same algorithm is used for number parsing (with b=10 and B=2) * by generating one extra digit and doing rounding manually. * * See doc/number-conversion.txt for limitations. */ /* Maximum number of digits generated. */ #define DUK__MAX_OUTPUT_DIGITS 1040 /* (Number.MAX_VALUE).toString(2).length == 1024, + spare */ /* Maximum number of characters in formatted value. */ #define DUK__MAX_FORMATTED_LENGTH 1040 /* (-Number.MAX_VALUE).toString(2).length == 1025, + spare */ /* Number and (minimum) size of bigints in the nc_ctx structure. */ #define DUK__NUMCONV_CTX_NUM_BIGINTS 7 #define DUK__NUMCONV_CTX_BIGINTS_SIZE (sizeof(duk__bigint) * DUK__NUMCONV_CTX_NUM_BIGINTS) typedef struct { /* Currently about 7*152 = 1064 bytes. The space for these * duk__bigints is used also as a temporary buffer for generating * the final string. This is a bit awkard; a union would be * more correct. */ duk__bigint f, r, s, mp, mm, t1, t2; duk_small_int_t is_s2n; /* if 1, doing a string-to-number; else doing a number-to-string */ duk_small_int_t is_fixed; /* if 1, doing a fixed format output (not free format) */ duk_small_int_t req_digits; /* requested number of output digits; 0 = free-format */ duk_small_int_t abs_pos; /* digit position is absolute, not relative */ duk_small_int_t e; /* exponent for 'f' */ duk_small_int_t b; /* input radix */ duk_small_int_t B; /* output radix */ duk_small_int_t k; /* see algorithm */ duk_small_int_t low_ok; /* see algorithm */ duk_small_int_t high_ok; /* see algorithm */ duk_small_int_t unequal_gaps; /* m+ != m- (very rarely) */ /* Buffer used for generated digits, values are in the range [0,B-1]. */ duk_uint8_t digits[DUK__MAX_OUTPUT_DIGITS]; duk_small_int_t count; /* digit count */ } duk__numconv_stringify_ctx; /* Note: computes with 'idx' in assertions, so caller beware. * 'idx' is preincremented, i.e. '1' on first call, because it * is more convenient for the caller. */ #define DUK__DRAGON4_OUTPUT_PREINC(nc_ctx,preinc_idx,x) do { \ DUK_ASSERT((preinc_idx) - 1 >= 0); \ DUK_ASSERT((preinc_idx) - 1 < DUK__MAX_OUTPUT_DIGITS); \ ((nc_ctx)->digits[(preinc_idx) - 1]) = (duk_uint8_t) (x); \ } while (0) DUK_LOCAL duk_size_t duk__dragon4_format_uint32(duk_uint8_t *buf, duk_uint32_t x, duk_small_int_t radix) { duk_uint8_t *p; duk_size_t len; duk_small_int_t dig; duk_small_int_t t; DUK_ASSERT(radix >= 2 && radix <= 36); /* A 32-bit unsigned integer formats to at most 32 digits (the * worst case happens with radix == 2). Output the digits backwards, * and use a memmove() to get them in the right place. */ p = buf + 32; for (;;) { t = x / radix; dig = x - t * radix; x = t; DUK_ASSERT(dig >= 0 && dig < 36); *(--p) = DUK__DIGITCHAR(dig); if (x == 0) { break; } } len = (duk_size_t) ((buf + 32) - p); DUK_MEMMOVE((void *) buf, (void *) p, (size_t) len); return len; } DUK_LOCAL void duk__dragon4_prepare(duk__numconv_stringify_ctx *nc_ctx) { duk_small_int_t lowest_mantissa; #if 1 /* Assume IEEE round-to-even, so that shorter encoding can be used * when round-to-even would produce correct result. By removing * this check (and having low_ok == high_ok == 0) the results would * still be accurate but in some cases longer than necessary. */ if (duk__bi_is_even(&nc_ctx->f)) { DUK_DDD(DUK_DDDPRINT("f is even")); nc_ctx->low_ok = 1; nc_ctx->high_ok = 1; } else { DUK_DDD(DUK_DDDPRINT("f is odd")); nc_ctx->low_ok = 0; nc_ctx->high_ok = 0; } #else /* Note: not honoring round-to-even should work but now generates incorrect * results. For instance, 1e23 serializes to "a000...", i.e. the first digit * equals the radix (10). Scaling stops one step too early in this case. * Don't know why this is the case, but since this code path is unused, it * doesn't matter. */ nc_ctx->low_ok = 0; nc_ctx->high_ok = 0; #endif /* For string-to-number, pretend we never have the lowest mantissa as there * is no natural "precision" for inputs. Having lowest_mantissa == 0, we'll * fall into the base cases for both e >= 0 and e < 0. */ if (nc_ctx->is_s2n) { lowest_mantissa = 0; } else { lowest_mantissa = duk__bi_is_2to52(&nc_ctx->f); } nc_ctx->unequal_gaps = 0; if (nc_ctx->e >= 0) { /* exponent non-negative (and thus not minimum exponent) */ if (lowest_mantissa) { /* (>= e 0) AND (= f (expt b (- p 1))) * * be <- (expt b e) == b^e * be1 <- (* be b) == (expt b (+ e 1)) == b^(e+1) * r <- (* f be1 2) == 2 * f * b^(e+1) [if b==2 -> f * b^(e+2)] * s <- (* b 2) [if b==2 -> 4] * m+ <- be1 == b^(e+1) * m- <- be == b^e * k <- 0 * B <- B * low_ok <- round * high_ok <- round */ DUK_DDD(DUK_DDDPRINT("non-negative exponent (not smallest exponent); " "lowest mantissa value for this exponent -> " "unequal gaps")); duk__bi_exp_small(&nc_ctx->mm, nc_ctx->b, nc_ctx->e, &nc_ctx->t1, &nc_ctx->t2); /* mm <- b^e */ duk__bi_mul_small(&nc_ctx->mp, &nc_ctx->mm, nc_ctx->b); /* mp <- b^(e+1) */ duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->f, 2); duk__bi_mul(&nc_ctx->r, &nc_ctx->t1, &nc_ctx->mp); /* r <- (2 * f) * b^(e+1) */ duk__bi_set_small(&nc_ctx->s, nc_ctx->b * 2); /* s <- 2 * b */ nc_ctx->unequal_gaps = 1; } else { /* (>= e 0) AND (not (= f (expt b (- p 1)))) * * be <- (expt b e) == b^e * r <- (* f be 2) == 2 * f * b^e [if b==2 -> f * b^(e+1)] * s <- 2 * m+ <- be == b^e * m- <- be == b^e * k <- 0 * B <- B * low_ok <- round * high_ok <- round */ DUK_DDD(DUK_DDDPRINT("non-negative exponent (not smallest exponent); " "not lowest mantissa for this exponent -> " "equal gaps")); duk__bi_exp_small(&nc_ctx->mm, nc_ctx->b, nc_ctx->e, &nc_ctx->t1, &nc_ctx->t2); /* mm <- b^e */ duk__bi_copy(&nc_ctx->mp, &nc_ctx->mm); /* mp <- b^e */ duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->f, 2); duk__bi_mul(&nc_ctx->r, &nc_ctx->t1, &nc_ctx->mp); /* r <- (2 * f) * b^e */ duk__bi_set_small(&nc_ctx->s, 2); /* s <- 2 */ } } else { /* When doing string-to-number, lowest_mantissa is always 0 so * the exponent check, while incorrect, won't matter. */ if (nc_ctx->e > DUK__IEEE_DOUBLE_EXP_MIN /*not minimum exponent*/ && lowest_mantissa /* lowest mantissa for this exponent*/) { /* r <- (* f b 2) [if b==2 -> (* f 4)] * s <- (* (expt b (- 1 e)) 2) == b^(1-e) * 2 [if b==2 -> b^(2-e)] * m+ <- b == 2 * m- <- 1 * k <- 0 * B <- B * low_ok <- round * high_ok <- round */ DUK_DDD(DUK_DDDPRINT("negative exponent; not minimum exponent and " "lowest mantissa for this exponent -> " "unequal gaps")); duk__bi_mul_small(&nc_ctx->r, &nc_ctx->f, nc_ctx->b * 2); /* r <- (2 * b) * f */ duk__bi_exp_small(&nc_ctx->t1, nc_ctx->b, 1 - nc_ctx->e, &nc_ctx->s, &nc_ctx->t2); /* NB: use 's' as temp on purpose */ duk__bi_mul_small(&nc_ctx->s, &nc_ctx->t1, 2); /* s <- b^(1-e) * 2 */ duk__bi_set_small(&nc_ctx->mp, 2); duk__bi_set_small(&nc_ctx->mm, 1); nc_ctx->unequal_gaps = 1; } else { /* r <- (* f 2) * s <- (* (expt b (- e)) 2) == b^(-e) * 2 [if b==2 -> b^(1-e)] * m+ <- 1 * m- <- 1 * k <- 0 * B <- B * low_ok <- round * high_ok <- round */ DUK_DDD(DUK_DDDPRINT("negative exponent; minimum exponent or not " "lowest mantissa for this exponent -> " "equal gaps")); duk__bi_mul_small(&nc_ctx->r, &nc_ctx->f, 2); /* r <- 2 * f */ duk__bi_exp_small(&nc_ctx->t1, nc_ctx->b, -nc_ctx->e, &nc_ctx->s, &nc_ctx->t2); /* NB: use 's' as temp on purpose */ duk__bi_mul_small(&nc_ctx->s, &nc_ctx->t1, 2); /* s <- b^(-e) * 2 */ duk__bi_set_small(&nc_ctx->mp, 1); duk__bi_set_small(&nc_ctx->mm, 1); } } } DUK_LOCAL void duk__dragon4_scale(duk__numconv_stringify_ctx *nc_ctx) { duk_small_int_t k = 0; /* This is essentially the 'scale' algorithm, with recursion removed. * Note that 'k' is either correct immediately, or will move in one * direction in the loop. There's no need to do the low/high checks * on every round (like the Scheme algorithm does). * * The scheme algorithm finds 'k' and updates 's' simultaneously, * while the logical algorithm finds 'k' with 's' having its initial * value, after which 's' is updated separately (see the Burger-Dybvig * paper, Section 3.1, steps 2 and 3). * * The case where m+ == m- (almost always) is optimized for, because * it reduces the bigint operations considerably and almost always * applies. The scale loop only needs to work with m+, so this works. */ /* XXX: this algorithm could be optimized quite a lot by using e.g. * a logarithm based estimator for 'k' and performing B^n multiplication * using a lookup table or using some bit-representation based exp * algorithm. Currently we just loop, with significant performance * impact for very large and very small numbers. */ DUK_DDD(DUK_DDDPRINT("scale: B=%ld, low_ok=%ld, high_ok=%ld", (long) nc_ctx->B, (long) nc_ctx->low_ok, (long) nc_ctx->high_ok)); DUK__BI_PRINT("r(init)", &nc_ctx->r); DUK__BI_PRINT("s(init)", &nc_ctx->s); DUK__BI_PRINT("mp(init)", &nc_ctx->mp); DUK__BI_PRINT("mm(init)", &nc_ctx->mm); for (;;) { DUK_DDD(DUK_DDDPRINT("scale loop (inc k), k=%ld", (long) k)); DUK__BI_PRINT("r", &nc_ctx->r); DUK__BI_PRINT("s", &nc_ctx->s); DUK__BI_PRINT("m+", &nc_ctx->mp); DUK__BI_PRINT("m-", &nc_ctx->mm); duk__bi_add(&nc_ctx->t1, &nc_ctx->r, &nc_ctx->mp); /* t1 = (+ r m+) */ if (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) >= (nc_ctx->high_ok ? 0 : 1)) { DUK_DDD(DUK_DDDPRINT("k is too low")); /* r <- r * s <- (* s B) * m+ <- m+ * m- <- m- * k <- (+ k 1) */ duk__bi_mul_small_copy(&nc_ctx->s, nc_ctx->B, &nc_ctx->t1); k++; } else { break; } } /* k > 0 -> k was too low, and cannot be too high */ if (k > 0) { goto skip_dec_k; } for (;;) { DUK_DDD(DUK_DDDPRINT("scale loop (dec k), k=%ld", (long) k)); DUK__BI_PRINT("r", &nc_ctx->r); DUK__BI_PRINT("s", &nc_ctx->s); DUK__BI_PRINT("m+", &nc_ctx->mp); DUK__BI_PRINT("m-", &nc_ctx->mm); duk__bi_add(&nc_ctx->t1, &nc_ctx->r, &nc_ctx->mp); /* t1 = (+ r m+) */ duk__bi_mul_small(&nc_ctx->t2, &nc_ctx->t1, nc_ctx->B); /* t2 = (* (+ r m+) B) */ if (duk__bi_compare(&nc_ctx->t2, &nc_ctx->s) <= (nc_ctx->high_ok ? -1 : 0)) { DUK_DDD(DUK_DDDPRINT("k is too high")); /* r <- (* r B) * s <- s * m+ <- (* m+ B) * m- <- (* m- B) * k <- (- k 1) */ duk__bi_mul_small_copy(&nc_ctx->r, nc_ctx->B, &nc_ctx->t1); duk__bi_mul_small_copy(&nc_ctx->mp, nc_ctx->B, &nc_ctx->t1); if (nc_ctx->unequal_gaps) { DUK_DDD(DUK_DDDPRINT("m+ != m- -> need to update m- too")); duk__bi_mul_small_copy(&nc_ctx->mm, nc_ctx->B, &nc_ctx->t1); } k--; } else { break; } } skip_dec_k: if (!nc_ctx->unequal_gaps) { DUK_DDD(DUK_DDDPRINT("equal gaps, copy m- from m+")); duk__bi_copy(&nc_ctx->mm, &nc_ctx->mp); /* mm <- mp */ } nc_ctx->k = k; DUK_DDD(DUK_DDDPRINT("final k: %ld", (long) k)); DUK__BI_PRINT("r(final)", &nc_ctx->r); DUK__BI_PRINT("s(final)", &nc_ctx->s); DUK__BI_PRINT("mp(final)", &nc_ctx->mp); DUK__BI_PRINT("mm(final)", &nc_ctx->mm); } DUK_LOCAL void duk__dragon4_generate(duk__numconv_stringify_ctx *nc_ctx) { duk_small_int_t tc1, tc2; /* terminating conditions */ duk_small_int_t d; /* current digit */ duk_small_int_t count = 0; /* digit count */ /* * Digit generation loop. * * Different termination conditions: * * 1. Free format output. Terminate when shortest accurate * representation found. * * 2. Fixed format output, with specific number of digits. * Ignore termination conditions, terminate when digits * generated. Caller requests an extra digit and rounds. * * 3. Fixed format output, with a specific absolute cut-off * position (e.g. 10 digits after decimal point). Note * that we always generate at least one digit, even if * the digit is below the cut-off point already. */ for (;;) { DUK_DDD(DUK_DDDPRINT("generate loop, count=%ld, k=%ld, B=%ld, low_ok=%ld, high_ok=%ld", (long) count, (long) nc_ctx->k, (long) nc_ctx->B, (long) nc_ctx->low_ok, (long) nc_ctx->high_ok)); DUK__BI_PRINT("r", &nc_ctx->r); DUK__BI_PRINT("s", &nc_ctx->s); DUK__BI_PRINT("m+", &nc_ctx->mp); DUK__BI_PRINT("m-", &nc_ctx->mm); /* (quotient-remainder (* r B) s) using a dummy subtraction loop */ duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->r, nc_ctx->B); /* t1 <- (* r B) */ d = 0; for (;;) { if (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) < 0) { break; } duk__bi_sub_copy(&nc_ctx->t1, &nc_ctx->s, &nc_ctx->t2); /* t1 <- t1 - s */ d++; } duk__bi_copy(&nc_ctx->r, &nc_ctx->t1); /* r <- (remainder (* r B) s) */ /* d <- (quotient (* r B) s) (in range 0...B-1) */ DUK_DDD(DUK_DDDPRINT("-> d(quot)=%ld", (long) d)); DUK__BI_PRINT("r(rem)", &nc_ctx->r); duk__bi_mul_small_copy(&nc_ctx->mp, nc_ctx->B, &nc_ctx->t2); /* m+ <- (* m+ B) */ duk__bi_mul_small_copy(&nc_ctx->mm, nc_ctx->B, &nc_ctx->t2); /* m- <- (* m- B) */ DUK__BI_PRINT("mp(upd)", &nc_ctx->mp); DUK__BI_PRINT("mm(upd)", &nc_ctx->mm); /* Terminating conditions. For fixed width output, we just ignore the * terminating conditions (and pretend that tc1 == tc2 == false). The * the current shortcut for fixed-format output is to generate a few * extra digits and use rounding (with carry) to finish the output. */ if (nc_ctx->is_fixed == 0) { /* free-form */ tc1 = (duk__bi_compare(&nc_ctx->r, &nc_ctx->mm) <= (nc_ctx->low_ok ? 0 : -1)); duk__bi_add(&nc_ctx->t1, &nc_ctx->r, &nc_ctx->mp); /* t1 <- (+ r m+) */ tc2 = (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) >= (&nc_ctx->high_ok ? 0 : 1)); DUK_DDD(DUK_DDDPRINT("tc1=%ld, tc2=%ld", (long) tc1, (long) tc2)); } else { /* fixed-format */ tc1 = 0; tc2 = 0; } /* Count is incremented before DUK__DRAGON4_OUTPUT_PREINC() call * on purpose, which is taken into account by the macro. */ count++; if (tc1) { if (tc2) { /* tc1 = true, tc2 = true */ duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->r, 2); if (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) < 0) { /* (< (* r 2) s) */ DUK_DDD(DUK_DDDPRINT("tc1=true, tc2=true, 2r > s: output d --> %ld (k=%ld)", (long) d, (long) nc_ctx->k)); DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d); } else { DUK_DDD(DUK_DDDPRINT("tc1=true, tc2=true, 2r <= s: output d+1 --> %ld (k=%ld)", (long) (d + 1), (long) nc_ctx->k)); DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d + 1); } break; } else { /* tc1 = true, tc2 = false */ DUK_DDD(DUK_DDDPRINT("tc1=true, tc2=false: output d --> %ld (k=%ld)", (long) d, (long) nc_ctx->k)); DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d); break; } } else { if (tc2) { /* tc1 = false, tc2 = true */ DUK_DDD(DUK_DDDPRINT("tc1=false, tc2=true: output d+1 --> %ld (k=%ld)", (long) (d + 1), (long) nc_ctx->k)); DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d + 1); break; } else { /* tc1 = false, tc2 = false */ DUK_DDD(DUK_DDDPRINT("tc1=false, tc2=false: output d --> %ld (k=%ld)", (long) d, (long) nc_ctx->k)); DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d); /* r <- r (updated above: r <- (remainder (* r B) s) * s <- s * m+ <- m+ (updated above: m+ <- (* m+ B) * m- <- m- (updated above: m- <- (* m- B) * B, low_ok, high_ok are fixed */ /* fall through and continue for-loop */ } } /* fixed-format termination conditions */ if (nc_ctx->is_fixed) { if (nc_ctx->abs_pos) { int pos = nc_ctx->k - count + 1; /* count is already incremented, take into account */ DUK_DDD(DUK_DDDPRINT("fixed format, absolute: abs pos=%ld, k=%ld, count=%ld, req=%ld", (long) pos, (long) nc_ctx->k, (long) count, (long) nc_ctx->req_digits)); if (pos <= nc_ctx->req_digits) { DUK_DDD(DUK_DDDPRINT("digit position reached req_digits, end generate loop")); break; } } else { DUK_DDD(DUK_DDDPRINT("fixed format, relative: k=%ld, count=%ld, req=%ld", (long) nc_ctx->k, (long) count, (long) nc_ctx->req_digits)); if (count >= nc_ctx->req_digits) { DUK_DDD(DUK_DDDPRINT("digit count reached req_digits, end generate loop")); break; } } } } /* for */ nc_ctx->count = count; DUK_DDD(DUK_DDDPRINT("generate finished")); #ifdef DUK_USE_DDDPRINT { duk_uint8_t buf[2048]; duk_small_int_t i, t; DUK_MEMZERO(buf, sizeof(buf)); for (i = 0; i < nc_ctx->count; i++) { t = nc_ctx->digits[i]; if (t < 0 || t > 36) { buf[i] = (duk_uint8_t) '?'; } else { buf[i] = (duk_uint8_t) DUK__DIGITCHAR(t); } } DUK_DDD(DUK_DDDPRINT("-> generated digits; k=%ld, digits='%s'", (long) nc_ctx->k, (const char *) buf)); } #endif } /* Round up digits to a given position. If position is out-of-bounds, * does nothing. If carry propagates over the first digit, a '1' is * prepended to digits and 'k' will be updated. Return value indicates * whether carry propagated over the first digit. * * Note that nc_ctx->count is NOT updated based on the rounding position * (it is updated only if carry overflows over the first digit and an * extra digit is prepended). */ DUK_LOCAL duk_small_int_t duk__dragon4_fixed_format_round(duk__numconv_stringify_ctx *nc_ctx, duk_small_int_t round_idx) { duk_small_int_t t; duk_uint8_t *p; duk_uint8_t roundup_limit; duk_small_int_t ret = 0; /* * round_idx points to the digit which is considered for rounding; the * digit to its left is the final digit of the rounded value. If round_idx * is zero, rounding will be performed; the result will either be an empty * rounded value or if carry happens a '1' digit is generated. */ if (round_idx >= nc_ctx->count) { DUK_DDD(DUK_DDDPRINT("round_idx out of bounds (%ld >= %ld (count)) -> no rounding", (long) round_idx, (long) nc_ctx->count)); return 0; } else if (round_idx < 0) { DUK_DDD(DUK_DDDPRINT("round_idx out of bounds (%ld < 0) -> no rounding", (long) round_idx)); return 0; } /* * Round-up limit. * * For even values, divides evenly, e.g. 10 -> roundup_limit=5. * * For odd values, rounds up, e.g. 3 -> roundup_limit=2. * If radix is 3, 0/3 -> down, 1/3 -> down, 2/3 -> up. */ roundup_limit = (duk_uint8_t) ((nc_ctx->B + 1) / 2); p = &nc_ctx->digits[round_idx]; if (*p >= roundup_limit) { DUK_DDD(DUK_DDDPRINT("fixed-format rounding carry required")); /* carry */ for (;;) { *p = 0; if (p == &nc_ctx->digits[0]) { DUK_DDD(DUK_DDDPRINT("carry propagated to first digit -> special case handling")); DUK_MEMMOVE((void *) (&nc_ctx->digits[1]), (void *) (&nc_ctx->digits[0]), (size_t) (sizeof(char) * nc_ctx->count)); nc_ctx->digits[0] = 1; /* don't increase 'count' */ nc_ctx->k++; /* position of highest digit changed */ nc_ctx->count++; /* number of digits changed */ ret = 1; break; } DUK_DDD(DUK_DDDPRINT("fixed-format rounding carry: B=%ld, roundup_limit=%ld, p=%p, digits=%p", (long) nc_ctx->B, (long) roundup_limit, (void *) p, (void *) nc_ctx->digits)); p--; t = *p; DUK_DDD(DUK_DDDPRINT("digit before carry: %ld", (long) t)); if (++t < nc_ctx->B) { DUK_DDD(DUK_DDDPRINT("rounding carry terminated")); *p = t; break; } DUK_DDD(DUK_DDDPRINT("wraps, carry to next digit")); } } return ret; } #define DUK__NO_EXP (65536) /* arbitrary marker, outside valid exp range */ DUK_LOCAL void duk__dragon4_convert_and_push(duk__numconv_stringify_ctx *nc_ctx, duk_context *ctx, duk_small_int_t radix, duk_small_int_t digits, duk_small_uint_t flags, duk_small_int_t neg) { duk_small_int_t k; duk_small_int_t pos, pos_end; duk_small_int_t expt; duk_small_int_t dig; duk_uint8_t *q; duk_uint8_t *buf; /* * The string conversion here incorporates all the necessary Ecmascript * semantics without attempting to be generic. nc_ctx->digits contains * nc_ctx->count digits (>= 1), with the topmost digit's 'position' * indicated by nc_ctx->k as follows: * * digits="123" count=3 k=0 --> 0.123 * digits="123" count=3 k=1 --> 1.23 * digits="123" count=3 k=5 --> 12300 * digits="123" count=3 k=-1 --> 0.0123 * * Note that the identifier names used for format selection are different * in Burger-Dybvig paper and Ecmascript specification (quite confusingly * so, because e.g. 'k' has a totally different meaning in each). See * documentation for discussion. * * Ecmascript doesn't specify any specific behavior for format selection * (e.g. when to use exponent notation) for non-base-10 numbers. * * The bigint space in the context is reused for string output, as there * is more than enough space for that (>1kB at the moment), and we avoid * allocating even more stack. */ DUK_ASSERT(DUK__NUMCONV_CTX_BIGINTS_SIZE >= DUK__MAX_FORMATTED_LENGTH); DUK_ASSERT(nc_ctx->count >= 1); k = nc_ctx->k; buf = (duk_uint8_t *) &nc_ctx->f; /* XXX: union would be more correct */ q = buf; /* Exponent handling: if exponent format is used, record exponent value and * fake k such that one leading digit is generated (e.g. digits=123 -> "1.23"). * * toFixed() prevents exponent use; otherwise apply a set of criteria to * match the other API calls (toString(), toPrecision, etc). */ expt = DUK__NO_EXP; if (!nc_ctx->abs_pos /* toFixed() */) { if ((flags & DUK_N2S_FLAG_FORCE_EXP) || /* exponential notation forced */ ((flags & DUK_N2S_FLAG_NO_ZERO_PAD) && /* fixed precision and zero padding would be required */ (k - digits >= 1)) || /* (e.g. k=3, digits=2 -> "12X") */ ((k > 21 || k <= -6) && (radix == 10))) { /* toString() conditions */ DUK_DDD(DUK_DDDPRINT("use exponential notation: k=%ld -> expt=%ld", (long) k, (long) (k - 1))); expt = k - 1; /* e.g. 12.3 -> digits="123" k=2 -> 1.23e1 */ k = 1; /* generate mantissa with a single leading whole number digit */ } } if (neg) { *q++ = '-'; } /* Start position (inclusive) and end position (exclusive) */ pos = (k >= 1 ? k : 1); if (nc_ctx->is_fixed) { if (nc_ctx->abs_pos) { /* toFixed() */ pos_end = -digits; } else { pos_end = k - digits; } } else { pos_end = k - nc_ctx->count; } if (pos_end > 0) { pos_end = 0; } DUK_DDD(DUK_DDDPRINT("expt=%ld, k=%ld, count=%ld, pos=%ld, pos_end=%ld, is_fixed=%ld, " "digits=%ld, abs_pos=%ld", (long) expt, (long) k, (long) nc_ctx->count, (long) pos, (long) pos_end, (long) nc_ctx->is_fixed, (long) digits, (long) nc_ctx->abs_pos)); /* Digit generation */ while (pos > pos_end) { DUK_DDD(DUK_DDDPRINT("digit generation: pos=%ld, pos_end=%ld", (long) pos, (long) pos_end)); if (pos == 0) { *q++ = (duk_uint8_t) '.'; } if (pos > k) { *q++ = (duk_uint8_t) '0'; } else if (pos <= k - nc_ctx->count) { *q++ = (duk_uint8_t) '0'; } else { dig = nc_ctx->digits[k - pos]; DUK_ASSERT(dig >= 0 && dig < nc_ctx->B); *q++ = (duk_uint8_t) DUK__DIGITCHAR(dig); } pos--; } DUK_ASSERT(pos <= 1); /* Exponent */ if (expt != DUK__NO_EXP) { /* * Exponent notation for non-base-10 numbers isn't specified in Ecmascript * specification, as it never explicitly turns up: non-decimal numbers can * only be formatted with Number.prototype.toString([radix]) and for that, * behavior is not explicitly specified. * * Logical choices include formatting the exponent as decimal (e.g. binary * 100000 as 1e+5) or in current radix (e.g. binary 100000 as 1e+101). * The Dragon4 algorithm (in the original paper) prints the exponent value * in the target radix B. However, for radix values 15 and above, the * exponent separator 'e' is no longer easily parseable. Consider, for * instance, the number "1.faecee+1c". */ duk_size_t len; char expt_sign; *q++ = 'e'; if (expt >= 0) { expt_sign = '+'; } else { expt_sign = '-'; expt = -expt; } *q++ = (duk_uint8_t) expt_sign; len = duk__dragon4_format_uint32(q, (duk_uint32_t) expt, radix); q += len; } duk_push_lstring(ctx, (const char *) buf, (size_t) (q - buf)); } /* * Conversion helpers */ DUK_LOCAL void duk__dragon4_double_to_ctx(duk__numconv_stringify_ctx *nc_ctx, duk_double_t x) { duk_double_union u; duk_uint32_t tmp; duk_small_int_t expt; /* * seeeeeee eeeeffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff * A B C D E F G H * * s sign bit * eee... exponent field * fff... fraction * * ieee value = 1.ffff... * 2^(e - 1023) (normal) * = 0.ffff... * 2^(-1022) (denormal) * * algorithm v = f * b^e */ DUK_DBLUNION_SET_DOUBLE(&u, x); nc_ctx->f.n = 2; tmp = DUK_DBLUNION_GET_LOW32(&u); nc_ctx->f.v[0] = tmp; tmp = DUK_DBLUNION_GET_HIGH32(&u); nc_ctx->f.v[1] = tmp & 0x000fffffUL; expt = (duk_small_int_t) ((tmp >> 20) & 0x07ffUL); if (expt == 0) { /* denormal */ expt = DUK__IEEE_DOUBLE_EXP_MIN - 52; duk__bi_normalize(&nc_ctx->f); } else { /* normal: implicit leading 1-bit */ nc_ctx->f.v[1] |= 0x00100000UL; expt = expt - DUK__IEEE_DOUBLE_EXP_BIAS - 52; DUK_ASSERT(duk__bi_is_valid(&nc_ctx->f)); /* true, because v[1] has at least one bit set */ } DUK_ASSERT(duk__bi_is_valid(&nc_ctx->f)); nc_ctx->e = expt; } DUK_LOCAL void duk__dragon4_ctx_to_double(duk__numconv_stringify_ctx *nc_ctx, duk_double_t *x) { duk_double_union u; duk_small_int_t expt; duk_small_int_t i; duk_small_int_t bitstart; duk_small_int_t bitround; duk_small_int_t bitidx; duk_small_int_t skip_round; duk_uint32_t t, v; DUK_ASSERT(nc_ctx->count == 53 + 1); /* Sometimes this assert is not true right now; it will be true after * rounding. See: test-bug-numconv-mantissa-assert.js. */ DUK_ASSERT_DISABLE(nc_ctx->digits[0] == 1); /* zero handled by caller */ /* Should not be required because the code below always sets both high * and low parts, but at least gcc-4.4.5 fails to deduce this correctly * (perhaps because the low part is set (seemingly) conditionally in a * loop), so this is here to avoid the bogus warning. */ DUK_MEMZERO((void *) &u, sizeof(u)); /* * Figure out how generated digits match up with the mantissa, * and then perform rounding. If mantissa overflows, need to * recompute the exponent (it is bumped and may overflow to * infinity). * * For normal numbers the leading '1' is hidden and ignored, * and the last bit is used for rounding: * * rounding pt * <--------52------->| * 1 x x x x ... x x x x|y ==> x x x x ... x x x x * * For denormals, the leading '1' is included in the number, * and the rounding point is different: * * rounding pt * <--52 or less--->| * 1 x x x x ... x x|x x y ==> 0 0 ... 1 x x ... x x * * The largest denormals will have a mantissa beginning with * a '1' (the explicit leading bit); smaller denormals will * have leading zero bits. * * If the exponent would become too high, the result becomes * Infinity. If the exponent is so small that the entire * mantissa becomes zero, the result becomes zero. * * Note: the Dragon4 'k' is off-by-one with respect to the IEEE * exponent. For instance, k==0 indicates that the leading '1' * digit is at the first binary fraction position (0.1xxx...); * the corresponding IEEE exponent would be -1. */ skip_round = 0; recheck_exp: expt = nc_ctx->k - 1; /* IEEE exp without bias */ if (expt > 1023) { /* Infinity */ bitstart = -255; /* needed for inf: causes mantissa to become zero, * and rounding to be skipped. */ expt = 2047; } else if (expt >= -1022) { /* normal */ bitstart = 1; /* skip leading digit */ expt += DUK__IEEE_DOUBLE_EXP_BIAS; DUK_ASSERT(expt >= 1 && expt <= 2046); } else { /* denormal or zero */ bitstart = 1023 + expt; /* expt==-1023 -> bitstart=0 (leading 1); * expt==-1024 -> bitstart=-1 (one left of leading 1), etc */ expt = 0; } bitround = bitstart + 52; DUK_DDD(DUK_DDDPRINT("ieee expt=%ld, bitstart=%ld, bitround=%ld", (long) expt, (long) bitstart, (long) bitround)); if (!skip_round) { if (duk__dragon4_fixed_format_round(nc_ctx, bitround)) { /* Corner case: see test-numconv-parse-mant-carry.js. We could * just bump the exponent and update bitstart, but it's more robust * to recompute (but avoid rounding twice). */ DUK_DDD(DUK_DDDPRINT("rounding caused exponent to be bumped, recheck exponent")); skip_round = 1; goto recheck_exp; } } /* * Create mantissa */ t = 0; for (i = 0; i < 52; i++) { bitidx = bitstart + 52 - 1 - i; if (bitidx >= nc_ctx->count) { v = 0; } else if (bitidx < 0) { v = 0; } else { v = nc_ctx->digits[bitidx]; } DUK_ASSERT(v == 0 || v == 1); t += v << (i % 32); if (i == 31) { /* low 32 bits is complete */ DUK_DBLUNION_SET_LOW32(&u, t); t = 0; } } /* t has high mantissa */ DUK_DDD(DUK_DDDPRINT("mantissa is complete: %08lx %08lx", (unsigned long) t, (unsigned long) DUK_DBLUNION_GET_LOW32(&u))); DUK_ASSERT(expt >= 0 && expt <= 0x7ffL); t += expt << 20; #if 0 /* caller handles sign change */ if (negative) { t |= 0x80000000U; } #endif DUK_DBLUNION_SET_HIGH32(&u, t); DUK_DDD(DUK_DDDPRINT("number is complete: %08lx %08lx", (unsigned long) DUK_DBLUNION_GET_HIGH32(&u), (unsigned long) DUK_DBLUNION_GET_LOW32(&u))); *x = DUK_DBLUNION_GET_DOUBLE(&u); } /* * Exposed number-to-string API * * Input: [ number ] * Output: [ string ] */ DUK_INTERNAL void duk_numconv_stringify(duk_context *ctx, duk_small_int_t radix, duk_small_int_t digits, duk_small_uint_t flags) { duk_double_t x; duk_small_int_t c; duk_small_int_t neg; duk_uint32_t uval; duk__numconv_stringify_ctx nc_ctx_alloc; /* large context; around 2kB now */ duk__numconv_stringify_ctx *nc_ctx = &nc_ctx_alloc; x = (duk_double_t) duk_require_number(ctx, -1); duk_pop(ctx); /* * Handle special cases (NaN, infinity, zero). */ c = (duk_small_int_t) DUK_FPCLASSIFY(x); if (DUK_SIGNBIT((double) x)) { x = -x; neg = 1; } else { neg = 0; } /* NaN sign bit is platform specific with unpacked, un-normalized NaNs */ DUK_ASSERT(c == DUK_FP_NAN || DUK_SIGNBIT((double) x) == 0); if (c == DUK_FP_NAN) { duk_push_hstring_stridx(ctx, DUK_STRIDX_NAN); return; } else if (c == DUK_FP_INFINITE) { if (neg) { /* -Infinity */ duk_push_hstring_stridx(ctx, DUK_STRIDX_MINUS_INFINITY); } else { /* Infinity */ duk_push_hstring_stridx(ctx, DUK_STRIDX_INFINITY); } return; } else if (c == DUK_FP_ZERO) { /* We can't shortcut zero here if it goes through special formatting * (such as forced exponential notation). */ ; } /* * Handle integers in 32-bit range (that is, [-(2**32-1),2**32-1]) * specially, as they're very likely for embedded programs. This * is now done for all radix values. We must be careful not to use * the fast path when special formatting (e.g. forced exponential) * is in force. * * XXX: could save space by supporting radix 10 only and using * sprintf "%lu" for the fast path and for exponent formatting. */ uval = (unsigned int) x; if (((double) uval) == x && /* integer number in range */ flags == 0) { /* no special formatting */ /* use bigint area as a temp */ duk_uint8_t *buf = (duk_uint8_t *) (&nc_ctx->f); duk_uint8_t *p = buf; DUK_ASSERT(DUK__NUMCONV_CTX_BIGINTS_SIZE >= 32 + 1); /* max size: radix=2 + sign */ if (neg && uval != 0) { /* no negative sign for zero */ *p++ = (duk_uint8_t) '-'; } p += duk__dragon4_format_uint32(p, uval, radix); duk_push_lstring(ctx, (const char *) buf, (duk_size_t) (p - buf)); return; } /* * Dragon4 setup. * * Convert double from IEEE representation for conversion; * normal finite values have an implicit leading 1-bit. The * slow path algorithm doesn't handle zero, so zero is special * cased here but still creates a valid nc_ctx, and goes * through normal formatting in case special formatting has * been requested (e.g. forced exponential format: 0 -> "0e+0"). */ /* Would be nice to bulk clear the allocation, but the context * is 1-2 kilobytes and nothing should rely on it being zeroed. */ #if 0 DUK_MEMZERO((void *) nc_ctx, sizeof(*nc_ctx)); /* slow init, do only for slow path cases */ #endif nc_ctx->is_s2n = 0; nc_ctx->b = 2; nc_ctx->B = radix; nc_ctx->abs_pos = 0; if (flags & DUK_N2S_FLAG_FIXED_FORMAT) { nc_ctx->is_fixed = 1; if (flags & DUK_N2S_FLAG_FRACTION_DIGITS) { /* absolute req_digits; e.g. digits = 1 -> last digit is 0, * but add an extra digit for rounding. */ nc_ctx->abs_pos = 1; nc_ctx->req_digits = (-digits + 1) - 1; } else { nc_ctx->req_digits = digits + 1; } } else { nc_ctx->is_fixed = 0; nc_ctx->req_digits = 0; } if (c == DUK_FP_ZERO) { /* Zero special case: fake requested number of zero digits; ensure * no sign bit is printed. Relative and absolute fixed format * require separate handling. */ duk_small_int_t count; if (nc_ctx->is_fixed) { if (nc_ctx->abs_pos) { count = digits + 2; /* lead zero + 'digits' fractions + 1 for rounding */ } else { count = digits + 1; /* + 1 for rounding */ } } else { count = 1; } DUK_DDD(DUK_DDDPRINT("count=%ld", (long) count)); DUK_ASSERT(count >= 1); DUK_MEMZERO((void *) nc_ctx->digits, count); nc_ctx->count = count; nc_ctx->k = 1; /* 0.000... */ neg = 0; goto zero_skip; } duk__dragon4_double_to_ctx(nc_ctx, x); /* -> sets 'f' and 'e' */ DUK__BI_PRINT("f", &nc_ctx->f); DUK_DDD(DUK_DDDPRINT("e=%ld", (long) nc_ctx->e)); /* * Dragon4 slow path digit generation. */ duk__dragon4_prepare(nc_ctx); /* setup many variables in nc_ctx */ DUK_DDD(DUK_DDDPRINT("after prepare:")); DUK__BI_PRINT("r", &nc_ctx->r); DUK__BI_PRINT("s", &nc_ctx->s); DUK__BI_PRINT("mp", &nc_ctx->mp); DUK__BI_PRINT("mm", &nc_ctx->mm); duk__dragon4_scale(nc_ctx); DUK_DDD(DUK_DDDPRINT("after scale; k=%ld", (long) nc_ctx->k)); DUK__BI_PRINT("r", &nc_ctx->r); DUK__BI_PRINT("s", &nc_ctx->s); DUK__BI_PRINT("mp", &nc_ctx->mp); DUK__BI_PRINT("mm", &nc_ctx->mm); duk__dragon4_generate(nc_ctx); /* * Convert and push final string. */ zero_skip: if (flags & DUK_N2S_FLAG_FIXED_FORMAT) { /* Perform fixed-format rounding. */ duk_small_int_t roundpos; if (flags & DUK_N2S_FLAG_FRACTION_DIGITS) { /* 'roundpos' is relative to nc_ctx->k and increases to the right * (opposite of how 'k' changes). */ roundpos = -digits; /* absolute position for digit considered for rounding */ roundpos = nc_ctx->k - roundpos; } else { roundpos = digits; } DUK_DDD(DUK_DDDPRINT("rounding: k=%ld, count=%ld, digits=%ld, roundpos=%ld", (long) nc_ctx->k, (long) nc_ctx->count, (long) digits, (long) roundpos)); (void) duk__dragon4_fixed_format_round(nc_ctx, roundpos); /* Note: 'count' is currently not adjusted by rounding (i.e. the * digits are not "chopped off". That shouldn't matter because * the digit position (absolute or relative) is passed on to the * convert-and-push function. */ } duk__dragon4_convert_and_push(nc_ctx, ctx, radix, digits, flags, neg); } /* * Exposed string-to-number API * * Input: [ string ] * Output: [ number ] * * If number parsing fails, a NaN is pushed as the result. If number parsing * fails due to an internal error, an InternalError is thrown. */ DUK_INTERNAL void duk_numconv_parse(duk_context *ctx, duk_small_int_t radix, duk_small_uint_t flags) { duk_hthread *thr = (duk_hthread *) ctx; duk__numconv_stringify_ctx nc_ctx_alloc; /* large context; around 2kB now */ duk__numconv_stringify_ctx *nc_ctx = &nc_ctx_alloc; duk_double_t res; duk_hstring *h_str; duk_small_int_t expt; duk_small_int_t expt_neg; duk_small_int_t expt_adj; duk_small_int_t neg; duk_small_int_t dig; duk_small_int_t dig_whole; duk_small_int_t dig_lzero; duk_small_int_t dig_frac; duk_small_int_t dig_expt; duk_small_int_t dig_prec; const duk__exp_limits *explim; const duk_uint8_t *p; duk_small_int_t ch; /* This seems to waste a lot of stack frame entries, but good compilers * will compute these as needed below. Some of these initial flags are * also modified in the code below, so they can't all be removed. */ duk_small_int_t trim_white = (flags & DUK_S2N_FLAG_TRIM_WHITE); duk_small_int_t allow_expt = (flags & DUK_S2N_FLAG_ALLOW_EXP); duk_small_int_t allow_garbage = (flags & DUK_S2N_FLAG_ALLOW_GARBAGE); duk_small_int_t allow_plus = (flags & DUK_S2N_FLAG_ALLOW_PLUS); duk_small_int_t allow_minus = (flags & DUK_S2N_FLAG_ALLOW_MINUS); duk_small_int_t allow_infinity = (flags & DUK_S2N_FLAG_ALLOW_INF); duk_small_int_t allow_frac = (flags & DUK_S2N_FLAG_ALLOW_FRAC); duk_small_int_t allow_naked_frac = (flags & DUK_S2N_FLAG_ALLOW_NAKED_FRAC); duk_small_int_t allow_empty_frac = (flags & DUK_S2N_FLAG_ALLOW_EMPTY_FRAC); duk_small_int_t allow_empty = (flags & DUK_S2N_FLAG_ALLOW_EMPTY_AS_ZERO); duk_small_int_t allow_leading_zero = (flags & DUK_S2N_FLAG_ALLOW_LEADING_ZERO); duk_small_int_t allow_auto_hex_int = (flags & DUK_S2N_FLAG_ALLOW_AUTO_HEX_INT); duk_small_int_t allow_auto_oct_int = (flags & DUK_S2N_FLAG_ALLOW_AUTO_OCT_INT); DUK_DDD(DUK_DDDPRINT("parse number: %!T, radix=%ld, flags=0x%08lx", (duk_tval *) duk_get_tval(ctx, -1), (long) radix, (unsigned long) flags)); DUK_ASSERT(radix >= 2 && radix <= 36); DUK_ASSERT(radix - 2 < (duk_small_int_t) sizeof(duk__str2num_digits_for_radix)); /* * Preliminaries: trim, sign, Infinity check * * We rely on the interned string having a NUL terminator, which will * cause a parse failure wherever it is encountered. As a result, we * don't need separate pointer checks. * * There is no special parsing for 'NaN' in the specification although * 'Infinity' (with an optional sign) is allowed in some contexts. * Some contexts allow plus/minus sign, while others only allow the * minus sign (like JSON.parse()). * * Automatic hex number detection (leading '0x' or '0X') and octal * number detection (leading '0' followed by at least one octal digit) * is done here too. */ if (trim_white) { /* Leading / trailing whitespace is sometimes accepted and * sometimes not. After white space trimming, all valid input * characters are pure ASCII. */ duk_trim(ctx, -1); } h_str = duk_require_hstring(ctx, -1); DUK_ASSERT(h_str != NULL); p = (const duk_uint8_t *) DUK_HSTRING_GET_DATA(h_str); neg = 0; ch = *p; if (ch == (duk_small_int_t) '+') { if (!allow_plus) { DUK_DDD(DUK_DDDPRINT("parse failed: leading plus sign not allowed")); goto parse_fail; } p++; } else if (ch == (duk_small_int_t) '-') { if (!allow_minus) { DUK_DDD(DUK_DDDPRINT("parse failed: leading minus sign not allowed")); goto parse_fail; } p++; neg = 1; } ch = *p; if (allow_infinity && ch == (duk_small_int_t) 'I') { /* Don't check for Infinity unless the context allows it. * 'Infinity' is a valid integer literal in e.g. base-36: * * parseInt('Infinity', 36) * 1461559270678 */ const duk_uint8_t *q; /* borrow literal Infinity from builtin string */ q = (const duk_uint8_t *) DUK_HSTRING_GET_DATA(DUK_HTHREAD_STRING_INFINITY(thr)); if (DUK_STRNCMP((const char *) p, (const char *) q, 8) == 0) { if (!allow_garbage && (p[8] != (duk_uint8_t) 0)) { DUK_DDD(DUK_DDDPRINT("parse failed: trailing garbage after matching 'Infinity' not allowed")); goto parse_fail; } else { res = DUK_DOUBLE_INFINITY; goto negcheck_and_ret; } } } if (ch == (duk_small_int_t) '0') { duk_small_int_t detect_radix = 0; ch = p[1]; if (allow_auto_hex_int && (ch == (duk_small_int_t) 'x' || ch == (duk_small_int_t) 'X')) { DUK_DDD(DUK_DDDPRINT("detected 0x/0X hex prefix, changing radix and preventing fractions and exponent")); detect_radix = 16; allow_empty = 0; /* interpret e.g. '0x' and '0xg' as a NaN (= parse error) */ p += 2; } else if (allow_auto_oct_int && (ch >= (duk_small_int_t) '0' && ch <= (duk_small_int_t) '9')) { DUK_DDD(DUK_DDDPRINT("detected 0n oct prefix, changing radix and preventing fractions and exponent")); detect_radix = 8; allow_empty = 1; /* interpret e.g. '09' as '0', not NaN */ p += 1; } if (detect_radix > 0) { radix = detect_radix; allow_expt = 0; allow_frac = 0; allow_naked_frac = 0; allow_empty_frac = 0; allow_leading_zero = 1; /* allow e.g. '0x0009' and '00077' */ } } /* * Scan number and setup for Dragon4. * * The fast path case is detected during setup: an integer which * can be converted without rounding, no net exponent. The fast * path could be implemented as a separate scan, but may not really * be worth it: the multiplications for building 'f' are not * expensive when 'f' is small. * * The significand ('f') must contain enough bits of (apparent) * accuracy, so that Dragon4 will generate enough binary output digits. * For decimal numbers, this means generating a 20-digit significand, * which should yield enough practical accuracy to parse IEEE doubles. * In fact, the Ecmascript specification explicitly allows an * implementation to treat digits beyond 20 as zeroes (and even * to round the 20th digit upwards). For non-decimal numbers, the * appropriate number of digits has been precomputed for comparable * accuracy. * * Digit counts: * * [ dig_lzero ] * | * .+-..---[ dig_prec ]----. * | || | * 0000123.456789012345678901234567890e+123456 * | | | | | | * `--+--' `------[ dig_frac ]-------' `-+--' * | | * [ dig_whole ] [ dig_expt ] * * dig_frac and dig_expt are -1 if not present * dig_lzero is only computed for whole number part * * Parsing state * * Parsing whole part dig_frac < 0 AND dig_expt < 0 * Parsing fraction part dig_frac >= 0 AND dig_expt < 0 * Parsing exponent part dig_expt >= 0 (dig_frac may be < 0 or >= 0) * * Note: in case we hit an implementation limit (like exponent range), * we should throw an error, NOT return NaN or Infinity. Even with * very large exponent (or significand) values the final result may be * finite, so NaN/Infinity would be incorrect. */ duk__bi_set_small(&nc_ctx->f, 0); dig_prec = 0; dig_lzero = 0; dig_whole = 0; dig_frac = -1; dig_expt = -1; expt = 0; expt_adj = 0; /* essentially tracks digit position of lowest 'f' digit */ expt_neg = 0; for (;;) { ch = *p++; DUK_DDD(DUK_DDDPRINT("parse digits: p=%p, ch='%c' (%ld), expt=%ld, expt_adj=%ld, " "dig_whole=%ld, dig_frac=%ld, dig_expt=%ld, dig_lzero=%ld, dig_prec=%ld", (void *) p, (int) ((ch >= 0x20 && ch <= 0x7e) ? ch : '?'), (long) ch, (long) expt, (long) expt_adj, (long) dig_whole, (long) dig_frac, (long) dig_expt, (long) dig_lzero, (long) dig_prec)); DUK__BI_PRINT("f", &nc_ctx->f); /* Most common cases first. */ if (ch >= (duk_small_int_t) '0' && ch <= (duk_small_int_t) '9') { dig = (int) ch - '0' + 0; } else if (ch == (duk_small_int_t) '.') { /* A leading digit is not required in some cases, e.g. accept ".123". * In other cases (JSON.parse()) a leading digit is required. This * is checked for after the loop. */ if (dig_frac >= 0 || dig_expt >= 0) { if (allow_garbage) { DUK_DDD(DUK_DDDPRINT("garbage termination (invalid period)")); break; } else { DUK_DDD(DUK_DDDPRINT("parse failed: period not allowed")); goto parse_fail; } } if (!allow_frac) { /* Some contexts don't allow fractions at all; this can't be a * post-check because the state ('f' and expt) would be incorrect. */ if (allow_garbage) { DUK_DDD(DUK_DDDPRINT("garbage termination (invalid first period)")); break; } else { DUK_DDD(DUK_DDDPRINT("parse failed: fraction part not allowed")); } } DUK_DDD(DUK_DDDPRINT("start fraction part")); dig_frac = 0; continue; } else if (ch == (duk_small_int_t) 0) { DUK_DDD(DUK_DDDPRINT("NUL termination")); break; } else if (allow_expt && dig_expt < 0 && (ch == (duk_small_int_t) 'e' || ch == (duk_small_int_t) 'E')) { /* Note: we don't parse back exponent notation for anything else * than radix 10, so this is not an ambiguous check (e.g. hex * exponent values may have 'e' either as a significand digit * or as an exponent separator). * * If the exponent separator occurs twice, 'e' will be interpreted * as a digit (= 14) and will be rejected as an invalid decimal * digit. */ DUK_DDD(DUK_DDDPRINT("start exponent part")); /* Exponent without a sign or with a +/- sign is accepted * by all call sites (even JSON.parse()). */ ch = *p; if (ch == (duk_small_int_t) '-') { expt_neg = 1; p++; } else if (ch == (duk_small_int_t) '+') { p++; } dig_expt = 0; continue; } else if (ch >= (duk_small_int_t) 'a' && ch <= (duk_small_int_t) 'z') { dig = (duk_small_int_t) (ch - (duk_small_int_t) 'a' + 0x0a); } else if (ch >= (duk_small_int_t) 'A' && ch <= (duk_small_int_t) 'Z') { dig = (duk_small_int_t) (ch - (duk_small_int_t) 'A' + 0x0a); } else { dig = 255; /* triggers garbage digit check below */ } DUK_ASSERT((dig >= 0 && dig <= 35) || dig == 255); if (dig >= radix) { if (allow_garbage) { DUK_DDD(DUK_DDDPRINT("garbage termination")); break; } else { DUK_DDD(DUK_DDDPRINT("parse failed: trailing garbage or invalid digit")); goto parse_fail; } } if (dig_expt < 0) { /* whole or fraction digit */ if (dig_prec < duk__str2num_digits_for_radix[radix - 2]) { /* significant from precision perspective */ duk_small_int_t f_zero = duk__bi_is_zero(&nc_ctx->f); if (f_zero && dig == 0) { /* Leading zero is not counted towards precision digits; not * in the integer part, nor in the fraction part. */ if (dig_frac < 0) { dig_lzero++; } } else { /* XXX: join these ops (multiply-accumulate), but only if * code footprint decreases. */ duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->f, radix); duk__bi_add_small(&nc_ctx->f, &nc_ctx->t1, dig); dig_prec++; } } else { /* Ignore digits beyond a radix-specific limit, but note them * in expt_adj. */ expt_adj++; } if (dig_frac >= 0) { dig_frac++; expt_adj--; } else { dig_whole++; } } else { /* exponent digit */ expt = expt * radix + dig; if (expt > DUK_S2N_MAX_EXPONENT) { /* impose a reasonable exponent limit, so that exp * doesn't need to get tracked using a bigint. */ DUK_DDD(DUK_DDDPRINT("parse failed: exponent too large")); goto parse_int_error; } dig_expt++; } } /* Leading zero. */ if (dig_lzero > 0 && dig_whole > 1) { if (!allow_leading_zero) { DUK_DDD(DUK_DDDPRINT("parse failed: leading zeroes not allowed in integer part")); goto parse_fail; } } /* Validity checks for various fraction formats ("0.1", ".1", "1.", "."). */ if (dig_whole == 0) { if (dig_frac == 0) { /* "." is not accepted in any format */ DUK_DDD(DUK_DDDPRINT("parse failed: plain period without leading or trailing digits")); goto parse_fail; } else if (dig_frac > 0) { /* ".123" */ if (!allow_naked_frac) { DUK_DDD(DUK_DDDPRINT("parse failed: fraction part not allowed without " "leading integer digit(s)")); goto parse_fail; } } else { /* empty ("") is allowed in some formats (e.g. Number(''), as zero */ if (!allow_empty) { DUK_DDD(DUK_DDDPRINT("parse failed: empty string not allowed (as zero)")); goto parse_fail; } } } else { if (dig_frac == 0) { /* "123." is allowed in some formats */ if (!allow_empty_frac) { DUK_DDD(DUK_DDDPRINT("parse failed: empty fractions")); goto parse_fail; } } else if (dig_frac > 0) { /* "123.456" */ ; } else { /* "123" */ ; } } /* Exponent without digits (e.g. "1e" or "1e+"). If trailing garbage is * allowed, ignore exponent part as garbage (= parse as "1", i.e. exp 0). */ if (dig_expt == 0) { if (!allow_garbage) { DUK_DDD(DUK_DDDPRINT("parse failed: empty exponent")); goto parse_fail; } DUK_ASSERT(expt == 0); } if (expt_neg) { expt = -expt; } DUK_DDD(DUK_DDDPRINT("expt=%ld, expt_adj=%ld, net exponent -> %ld", (long) expt, (long) expt_adj, (long) (expt + expt_adj))); expt += expt_adj; /* Fast path check. */ if (nc_ctx->f.n <= 1 && /* 32-bit value */ expt == 0 /* no net exponent */) { /* Fast path is triggered for no exponent and also for balanced exponent * and fraction parts, e.g. for "1.23e2" == "123". Remember to respect * zero sign. */ /* XXX: could accept numbers larger than 32 bits, e.g. up to 53 bits? */ DUK_DDD(DUK_DDDPRINT("fast path number parse")); if (nc_ctx->f.n == 1) { res = (double) nc_ctx->f.v[0]; } else { res = 0.0; } goto negcheck_and_ret; } /* Significand ('f') padding. */ while (dig_prec < duk__str2num_digits_for_radix[radix - 2]) { /* Pad significand with "virtual" zero digits so that Dragon4 will * have enough (apparent) precision to work with. */ DUK_DDD(DUK_DDDPRINT("dig_prec=%ld, pad significand with zero", (long) dig_prec)); duk__bi_mul_small_copy(&nc_ctx->f, radix, &nc_ctx->t1); DUK__BI_PRINT("f", &nc_ctx->f); expt--; dig_prec++; } DUK_DDD(DUK_DDDPRINT("final exponent: %ld", (long) expt)); /* Detect zero special case. */ if (nc_ctx->f.n == 0) { /* This may happen even after the fast path check, if exponent is * not balanced (e.g. "0e1"). Remember to respect zero sign. */ DUK_DDD(DUK_DDDPRINT("significand is zero")); res = 0.0; goto negcheck_and_ret; } /* Quick reject of too large or too small exponents. This check * would be incorrect for zero (e.g. "0e1000" is zero, not Infinity) * so zero check must be above. */ explim = &duk__str2num_exp_limits[radix - 2]; if (expt > explim->upper) { DUK_DDD(DUK_DDDPRINT("exponent too large -> infinite")); res = (duk_double_t) DUK_DOUBLE_INFINITY; goto negcheck_and_ret; } else if (expt < explim->lower) { DUK_DDD(DUK_DDDPRINT("exponent too small -> zero")); res = (duk_double_t) 0.0; goto negcheck_and_ret; } nc_ctx->is_s2n = 1; nc_ctx->e = expt; nc_ctx->b = radix; nc_ctx->B = 2; nc_ctx->is_fixed = 1; nc_ctx->abs_pos = 0; nc_ctx->req_digits = 53 + 1; DUK__BI_PRINT("f", &nc_ctx->f); DUK_DDD(DUK_DDDPRINT("e=%ld", (long) nc_ctx->e)); /* * Dragon4 slow path (binary) digit generation. * An extra digit is generated for rounding. */ duk__dragon4_prepare(nc_ctx); /* setup many variables in nc_ctx */ DUK_DDD(DUK_DDDPRINT("after prepare:")); DUK__BI_PRINT("r", &nc_ctx->r); DUK__BI_PRINT("s", &nc_ctx->s); DUK__BI_PRINT("mp", &nc_ctx->mp); DUK__BI_PRINT("mm", &nc_ctx->mm); duk__dragon4_scale(nc_ctx); DUK_DDD(DUK_DDDPRINT("after scale; k=%ld", (long) nc_ctx->k)); DUK__BI_PRINT("r", &nc_ctx->r); DUK__BI_PRINT("s", &nc_ctx->s); DUK__BI_PRINT("mp", &nc_ctx->mp); DUK__BI_PRINT("mm", &nc_ctx->mm); duk__dragon4_generate(nc_ctx); DUK_ASSERT(nc_ctx->count == 53 + 1); /* * Convert binary digits into an IEEE double. Need to handle * denormals and rounding correctly. */ duk__dragon4_ctx_to_double(nc_ctx, &res); goto negcheck_and_ret; negcheck_and_ret: if (neg) { res = -res; } duk_pop(ctx); duk_push_number(ctx, (double) res); DUK_DDD(DUK_DDDPRINT("result: %!T", (duk_tval *) duk_get_tval(ctx, -1))); return; parse_fail: DUK_DDD(DUK_DDDPRINT("parse failed")); duk_pop(ctx); duk_push_nan(ctx); return; parse_int_error: DUK_DDD(DUK_DDDPRINT("parse failed, internal error, can't return a value")); DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, "number parse error"); return; }