/* * Regexp compilation. * * See doc/regexp.txt for a discussion of the compilation approach and * current limitations. * * Regexp bytecode assumes jumps can be expressed with signed 32-bit * integers. Consequently the bytecode size must not exceed 0x7fffffffL. * The implementation casts duk_size_t (buffer size) to duk_(u)int32_t * in many places. Although this could be changed, the bytecode format * limit would still prevent regexps exceeding the signed 32-bit limit * from working. * * XXX: The implementation does not prevent bytecode from exceeding the * maximum supported size. This could be done by limiting the maximum * input string size (assuming an upper bound can be computed for number * of bytecode bytes emitted per input byte) or checking buffer maximum * size when emitting bytecode (slower). */ #include "duk_internal.h" #ifdef DUK_USE_REGEXP_SUPPORT /* * Helper macros */ #ifdef DUK__BUFLEN #undef DUK__BUFLEN #endif #define DUK__BUFLEN(re_ctx) DUK_HBUFFER_GET_SIZE((duk_hbuffer *) re_ctx->buf) /* * Disjunction struct: result of parsing a disjunction */ typedef struct { /* Number of characters that the atom matches (e.g. 3 for 'abc'), * -1 if atom is complex and number of matched characters either * varies or is not known. */ duk_int32_t charlen; #if 0 /* These are not needed to implement quantifier capture handling, * but might be needed at some point. */ /* re_ctx->captures at start and end of atom parsing. * Since 'captures' indicates highest capture number emitted * so far in a DUK_REOP_SAVE, the captures numbers saved by * the atom are: ]start_captures,end_captures]. */ duk_uint32_t start_captures; duk_uint32_t end_captures; #endif } duk__re_disjunction_info; /* * Encoding helpers * * Some of the typing is bytecode based, e.g. slice sizes are unsigned 32-bit * even though the buffer operations will use duk_size_t. */ /* XXX: the insert helpers should ensure that the bytecode result is not * larger than expected (or at least assert for it). Many things in the * bytecode, like skip offsets, won't work correctly if the bytecode is * larger than say 2G. */ DUK_LOCAL duk_uint32_t duk__encode_i32(duk_int32_t x) { if (x < 0) { return ((duk_uint32_t) (-x)) * 2 + 1; } else { return ((duk_uint32_t) x) * 2; } } /* XXX: return type should probably be duk_size_t, or explicit checks are needed for * maximum size. */ DUK_LOCAL duk_uint32_t duk__insert_u32(duk_re_compiler_ctx *re_ctx, duk_uint32_t offset, duk_uint32_t x) { return (duk_uint32_t) duk_hbuffer_insert_xutf8(re_ctx->thr, re_ctx->buf, offset, x); } DUK_LOCAL duk_uint32_t duk__append_u32(duk_re_compiler_ctx *re_ctx, duk_uint32_t x) { return (duk_uint32_t) duk_hbuffer_append_xutf8(re_ctx->thr, re_ctx->buf, x); } DUK_LOCAL duk_uint32_t duk__insert_i32(duk_re_compiler_ctx *re_ctx, duk_uint32_t offset, duk_int32_t x) { return (duk_uint32_t) duk_hbuffer_insert_xutf8(re_ctx->thr, re_ctx->buf, offset, duk__encode_i32(x)); } #if 0 /* unused */ DUK_LOCAL duk_uint32_t duk__append_i32(duk_re_compiler_ctx *re_ctx, duk_int32_t x) { return duk_hbuffer_append_xutf8(re_ctx->thr, re_ctx->buf, duk__encode_i32(x)); } #endif /* special helper for emitting u16 lists (used for character ranges for built-in char classes) */ DUK_LOCAL void duk__append_u16_list(duk_re_compiler_ctx *re_ctx, duk_uint16_t *values, duk_uint32_t count) { /* Call sites don't need the result length so it's not accumulated. */ while (count > 0) { (void) duk__append_u32(re_ctx, (duk_uint32_t) (*values++)); count--; } } DUK_LOCAL void duk__insert_slice(duk_re_compiler_ctx *re_ctx, duk_uint32_t offset, duk_uint32_t data_offset, duk_uint32_t data_length) { duk_hbuffer_insert_slice(re_ctx->thr, re_ctx->buf, offset, data_offset, (duk_size_t) data_length); } DUK_LOCAL void duk__append_slice(duk_re_compiler_ctx *re_ctx, duk_uint32_t data_offset, duk_uint32_t data_length) { duk_hbuffer_append_slice(re_ctx->thr, re_ctx->buf, data_offset, (duk_size_t) data_length); } DUK_LOCAL void duk__remove_slice(duk_re_compiler_ctx *re_ctx, duk_uint32_t offset, duk_uint32_t length) { duk_hbuffer_remove_slice(re_ctx->thr, re_ctx->buf, offset, (duk_size_t) length); } /* * Insert a jump offset at 'offset' to complete an instruction * (the jump offset is always the last component of an instruction). * The 'skip' argument must be computed relative to 'offset', * -without- taking into account the skip field being inserted. * * ... A B C ins X Y Z ... (ins may be a JUMP, SPLIT1/SPLIT2, etc) * => ... A B C ins SKIP X Y Z * * Computing the final (adjusted) skip value, which is relative to the * first byte of the next instruction, is a bit tricky because of the * variable length UTF-8 encoding. See doc/regexp.txt for discussion. */ DUK_LOCAL duk_uint32_t duk__insert_jump_offset(duk_re_compiler_ctx *re_ctx, duk_uint32_t offset, duk_int32_t skip) { duk_small_int_t len; /* XXX: solve into closed form (smaller code) */ if (skip < 0) { /* two encoding attempts suffices */ len = duk_unicode_get_xutf8_length((duk_codepoint_t) duk__encode_i32(skip)); len = duk_unicode_get_xutf8_length((duk_codepoint_t) duk__encode_i32(skip - (duk_int32_t) len)); DUK_ASSERT(duk_unicode_get_xutf8_length(duk__encode_i32(skip - (duk_int32_t) len)) == len); /* no change */ skip -= (duk_int32_t) len; } return duk__insert_i32(re_ctx, offset, skip); } DUK_LOCAL duk_uint32_t duk__append_jump_offset(duk_re_compiler_ctx *re_ctx, duk_int32_t skip) { return (duk_uint32_t) duk__insert_jump_offset(re_ctx, (duk_uint32_t) DUK__BUFLEN(re_ctx), skip); } /* * duk_re_range_callback for generating character class ranges. * * When ignoreCase is false, the range is simply emitted as is. * We don't, for instance, eliminate duplicates or overlapping * ranges in a character class. * * When ignoreCase is true, the range needs to be normalized through * canonicalization. Unfortunately a canonicalized version of a * continuous range is not necessarily continuous (e.g. [x-{] is * continuous but [X-{] is not). The current algorithm creates the * canonicalized range(s) space efficiently at the cost of compile * time execution time (see doc/regexp.txt for discussion). * * Note that the ctx->nranges is a context-wide temporary value * (this is OK because there cannot be multiple character classes * being parsed simultaneously). */ DUK_LOCAL void duk__generate_ranges(void *userdata, duk_codepoint_t r1, duk_codepoint_t r2, duk_bool_t direct) { duk_re_compiler_ctx *re_ctx = (duk_re_compiler_ctx *) userdata; DUK_DD(DUK_DDPRINT("duk__generate_ranges(): re_ctx=%p, range=[%ld,%ld] direct=%ld", (void *) re_ctx, (long) r1, (long) r2, (long) direct)); if (!direct && (re_ctx->re_flags & DUK_RE_FLAG_IGNORE_CASE)) { /* * Canonicalize a range, generating result ranges as necessary. * Needs to exhaustively scan the entire range (at most 65536 * code points). If 'direct' is set, caller (lexer) has ensured * that the range is already canonicalization compatible (this * is used to avoid unnecessary canonicalization of built-in * ranges like \W, which are not affected by canonicalization). * * NOTE: here is one place where we don't want to support chars * outside the BMP, because the exhaustive search would be * massively larger. */ duk_codepoint_t i; duk_codepoint_t t; duk_codepoint_t r_start, r_end; r_start = duk_unicode_re_canonicalize_char(re_ctx->thr, r1); r_end = r_start; for (i = r1 + 1; i <= r2; i++) { t = duk_unicode_re_canonicalize_char(re_ctx->thr, i); if (t == r_end + 1) { r_end = t; } else { DUK_DD(DUK_DDPRINT("canonicalized, emit range: [%ld,%ld]", (long) r_start, (long) r_end)); duk__append_u32(re_ctx, (duk_uint32_t) r_start); duk__append_u32(re_ctx, (duk_uint32_t) r_end); re_ctx->nranges++; r_start = t; r_end = t; } } DUK_DD(DUK_DDPRINT("canonicalized, emit range: [%ld,%ld]", (long) r_start, (long) r_end)); duk__append_u32(re_ctx, (duk_uint32_t) r_start); duk__append_u32(re_ctx, (duk_uint32_t) r_end); re_ctx->nranges++; } else { DUK_DD(DUK_DDPRINT("direct, emit range: [%ld,%ld]", (long) r1, (long) r2)); duk__append_u32(re_ctx, (duk_uint32_t) r1); duk__append_u32(re_ctx, (duk_uint32_t) r2); re_ctx->nranges++; } } /* * Parse regexp Disjunction. Most of regexp compilation happens here. * * Handles Disjunction, Alternative, and Term productions directly without * recursion. The only constructs requiring recursion are positive/negative * lookaheads, capturing parentheses, and non-capturing parentheses. * * The function determines whether the entire disjunction is a 'simple atom' * (see doc/regexp.txt discussion on 'simple quantifiers') and if so, * returns the atom character length which is needed by the caller to keep * track of its own atom character length. A disjunction with more than one * alternative is never considered a simple atom (although in some cases * that might be the case). * * Return value: simple atom character length or < 0 if not a simple atom. * Appends the bytecode for the disjunction matcher to the end of the temp * buffer. * * Regexp top level structure is: * * Disjunction = Term* * | Term* | Disjunction * * Term = Assertion * | Atom * | Atom Quantifier * * An empty Term sequence is a valid disjunction alternative (e.g. /|||c||/). * * Notes: * * * Tracking of the 'simple-ness' of the current atom vs. the entire * disjunction are separate matters. For instance, the disjunction * may be complex, but individual atoms may be simple. Furthermore, * simple quantifiers are used whenever possible, even if the * disjunction as a whole is complex. * * * The estimate of whether an atom is simple is conservative now, * and it would be possible to expand it. For instance, captures * cause the disjunction to be marked complex, even though captures * -can- be handled by simple quantifiers with some minor modifications. * * * Disjunction 'tainting' as 'complex' is handled at the end of the * main for loop collectively for atoms. Assertions, quantifiers, * and '|' tokens need to taint the result manually if necessary. * Assertions cannot add to result char length, only atoms (and * quantifiers) can; currently quantifiers will taint the result * as complex though. */ DUK_LOCAL void duk__parse_disjunction(duk_re_compiler_ctx *re_ctx, duk_bool_t expect_eof, duk__re_disjunction_info *out_atom_info) { duk_int32_t atom_start_offset = -1; /* negative -> no atom matched on previous round */ duk_int32_t atom_char_length = 0; /* negative -> complex atom */ duk_uint32_t atom_start_captures = re_ctx->captures; /* value of re_ctx->captures at start of atom */ duk_int32_t unpatched_disjunction_split = -1; duk_int32_t unpatched_disjunction_jump = -1; duk_uint32_t entry_offset = (duk_uint32_t) DUK__BUFLEN(re_ctx); duk_int32_t res_charlen = 0; /* -1 if disjunction is complex, char length if simple */ duk__re_disjunction_info tmp_disj; DUK_ASSERT(out_atom_info != NULL); if (re_ctx->recursion_depth >= re_ctx->recursion_limit) { DUK_ERROR(re_ctx->thr, DUK_ERR_RANGE_ERROR, DUK_STR_REGEXP_COMPILER_RECURSION_LIMIT); } re_ctx->recursion_depth++; #if 0 out_atom_info->start_captures = re_ctx->captures; #endif for (;;) { /* atom_char_length, atom_start_offset, atom_start_offset reflect the * atom matched on the previous loop. If a quantifier is encountered * on this loop, these are needed to handle the quantifier correctly. * new_atom_char_length etc are for the atom parsed on this round; * they're written to atom_char_length etc at the end of the round. */ duk_int32_t new_atom_char_length; /* char length of the atom parsed in this loop */ duk_int32_t new_atom_start_offset; /* bytecode start offset of the atom parsed in this loop * (allows quantifiers to copy the atom bytecode) */ duk_uint32_t new_atom_start_captures; /* re_ctx->captures at the start of the atom parsed in this loop */ duk_lexer_parse_re_token(&re_ctx->lex, &re_ctx->curr_token); DUK_DD(DUK_DDPRINT("re token: %ld (num=%ld, char=%c)", (long) re_ctx->curr_token.t, (long) re_ctx->curr_token.num, (re_ctx->curr_token.num >= 0x20 && re_ctx->curr_token.num <= 0x7e) ? (int) re_ctx->curr_token.num : (int) '?')); /* set by atom case clauses */ new_atom_start_offset = -1; new_atom_char_length = -1; new_atom_start_captures = re_ctx->captures; switch (re_ctx->curr_token.t) { case DUK_RETOK_DISJUNCTION: { /* * The handling here is a bit tricky. If a previous '|' has been processed, * we have a pending split1 and a pending jump (for a previous match). These * need to be back-patched carefully. See docs for a detailed example. */ /* patch pending jump and split */ if (unpatched_disjunction_jump >= 0) { duk_uint32_t offset; DUK_ASSERT(unpatched_disjunction_split >= 0); offset = unpatched_disjunction_jump; offset += duk__insert_jump_offset(re_ctx, offset, (duk_int32_t) (DUK__BUFLEN(re_ctx) - offset)); /* offset is now target of the pending split (right after jump) */ duk__insert_jump_offset(re_ctx, unpatched_disjunction_split, offset - unpatched_disjunction_split); } /* add a new pending split to the beginning of the entire disjunction */ (void) duk__insert_u32(re_ctx, entry_offset, DUK_REOP_SPLIT1); /* prefer direct execution */ unpatched_disjunction_split = entry_offset + 1; /* +1 for opcode */ /* add a new pending match jump for latest finished alternative */ duk__append_u32(re_ctx, DUK_REOP_JUMP); unpatched_disjunction_jump = (duk_int32_t) DUK__BUFLEN(re_ctx); /* 'taint' result as complex */ res_charlen = -1; break; } case DUK_RETOK_QUANTIFIER: { if (atom_start_offset < 0) { DUK_ERROR(re_ctx->thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_QUANTIFIER_NO_ATOM); } if (re_ctx->curr_token.qmin > re_ctx->curr_token.qmax) { DUK_ERROR(re_ctx->thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_QUANTIFIER_VALUES); } if (atom_char_length >= 0) { /* * Simple atom * * If atom_char_length is zero, we'll have unbounded execution time for e.g. * /()*x/.exec('x'). We can't just skip the match because it might have some * side effects (for instance, if we allowed captures in simple atoms, the * capture needs to happen). The simple solution below is to force the * quantifier to match at most once, since the additional matches have no effect. * * With a simple atom there can be no capture groups, so no captures need * to be reset. */ duk_int32_t atom_code_length; duk_uint32_t offset; duk_uint32_t qmin, qmax; qmin = re_ctx->curr_token.qmin; qmax = re_ctx->curr_token.qmax; if (atom_char_length == 0) { /* qmin and qmax will be 0 or 1 */ if (qmin > 1) { qmin = 1; } if (qmax > 1) { qmax = 1; } } duk__append_u32(re_ctx, DUK_REOP_MATCH); /* complete 'sub atom' */ atom_code_length = (duk_int32_t) (DUK__BUFLEN(re_ctx) - atom_start_offset); offset = atom_start_offset; if (re_ctx->curr_token.greedy) { offset += duk__insert_u32(re_ctx, offset, DUK_REOP_SQGREEDY); offset += duk__insert_u32(re_ctx, offset, qmin); offset += duk__insert_u32(re_ctx, offset, qmax); offset += duk__insert_u32(re_ctx, offset, atom_char_length); offset += duk__insert_jump_offset(re_ctx, offset, atom_code_length); } else { offset += duk__insert_u32(re_ctx, offset, DUK_REOP_SQMINIMAL); offset += duk__insert_u32(re_ctx, offset, qmin); offset += duk__insert_u32(re_ctx, offset, qmax); offset += duk__insert_jump_offset(re_ctx, offset, atom_code_length); } DUK_UNREF(offset); /* silence scan-build warning */ } else { /* * Complex atom * * The original code is used as a template, and removed at the end * (this differs from the handling of simple quantifiers). * * NOTE: there is no current solution for empty atoms in complex * quantifiers. This would need some sort of a 'progress' instruction. * * XXX: impose limit on maximum result size, i.e. atom_code_len * atom_copies? */ duk_int32_t atom_code_length; duk_uint32_t atom_copies; duk_uint32_t tmp_qmin, tmp_qmax; /* pre-check how many atom copies we're willing to make (atom_copies not needed below) */ atom_copies = (re_ctx->curr_token.qmax == DUK_RE_QUANTIFIER_INFINITE) ? re_ctx->curr_token.qmin : re_ctx->curr_token.qmax; if (atom_copies > DUK_RE_MAX_ATOM_COPIES) { DUK_ERROR(re_ctx->thr, DUK_ERR_RANGE_ERROR, DUK_STR_QUANTIFIER_TOO_MANY_COPIES); } /* wipe the capture range made by the atom (if any) */ DUK_ASSERT(atom_start_captures <= re_ctx->captures); if (atom_start_captures != re_ctx->captures) { DUK_ASSERT(atom_start_captures < re_ctx->captures); DUK_DDD(DUK_DDDPRINT("must wipe ]atom_start_captures,re_ctx->captures]: ]%ld,%ld]", (long) atom_start_captures, (long) re_ctx->captures)); /* insert (DUK_REOP_WIPERANGE, start, count) in reverse order so the order ends up right */ duk__insert_u32(re_ctx, atom_start_offset, (re_ctx->captures - atom_start_captures) * 2); duk__insert_u32(re_ctx, atom_start_offset, (atom_start_captures + 1) * 2); duk__insert_u32(re_ctx, atom_start_offset, DUK_REOP_WIPERANGE); } else { DUK_DDD(DUK_DDDPRINT("no need to wipe captures: atom_start_captures == re_ctx->captures == %ld", (long) atom_start_captures)); } atom_code_length = (duk_int32_t) DUK__BUFLEN(re_ctx) - atom_start_offset; /* insert the required matches (qmin) by copying the atom */ tmp_qmin = re_ctx->curr_token.qmin; tmp_qmax = re_ctx->curr_token.qmax; while (tmp_qmin > 0) { duk__append_slice(re_ctx, atom_start_offset, atom_code_length); tmp_qmin--; if (tmp_qmax != DUK_RE_QUANTIFIER_INFINITE) { tmp_qmax--; } } DUK_ASSERT(tmp_qmin == 0); /* insert code for matching the remainder - infinite or finite */ if (tmp_qmax == DUK_RE_QUANTIFIER_INFINITE) { /* reuse last emitted atom for remaining 'infinite' quantifier */ if (re_ctx->curr_token.qmin == 0) { /* Special case: original qmin was zero so there is nothing * to repeat. Emit an atom copy but jump over it here. */ duk__append_u32(re_ctx, DUK_REOP_JUMP); duk__append_jump_offset(re_ctx, atom_code_length); duk__append_slice(re_ctx, atom_start_offset, atom_code_length); } if (re_ctx->curr_token.greedy) { duk__append_u32(re_ctx, DUK_REOP_SPLIT2); /* prefer jump */ } else { duk__append_u32(re_ctx, DUK_REOP_SPLIT1); /* prefer direct */ } duk__append_jump_offset(re_ctx, -atom_code_length - 1); /* -1 for opcode */ } else { /* * The remaining matches are emitted as sequence of SPLITs and atom * copies; the SPLITs skip the remaining copies and match the sequel. * This sequence needs to be emitted starting from the last copy * because the SPLITs are variable length due to the variable length * skip offset. This causes a lot of memory copying now. * * Example structure (greedy, match maximum # atoms): * * SPLIT1 LSEQ * (atom) * SPLIT1 LSEQ ; <- the byte length of this instruction is needed * (atom) ; to encode the above SPLIT1 correctly * ... * LSEQ: */ duk_uint32_t offset = (duk_uint32_t) DUK__BUFLEN(re_ctx); while (tmp_qmax > 0) { duk__insert_slice(re_ctx, offset, atom_start_offset, atom_code_length); if (re_ctx->curr_token.greedy) { duk__insert_u32(re_ctx, offset, DUK_REOP_SPLIT1); /* prefer direct */ } else { duk__insert_u32(re_ctx, offset, DUK_REOP_SPLIT2); /* prefer jump */ } duk__insert_jump_offset(re_ctx, offset + 1, /* +1 for opcode */ (duk_int32_t) (DUK__BUFLEN(re_ctx) - (offset + 1))); tmp_qmax--; } } /* remove the original 'template' atom */ duk__remove_slice(re_ctx, atom_start_offset, atom_code_length); } /* 'taint' result as complex */ res_charlen = -1; break; } case DUK_RETOK_ASSERT_START: { duk__append_u32(re_ctx, DUK_REOP_ASSERT_START); break; } case DUK_RETOK_ASSERT_END: { duk__append_u32(re_ctx, DUK_REOP_ASSERT_END); break; } case DUK_RETOK_ASSERT_WORD_BOUNDARY: { duk__append_u32(re_ctx, DUK_REOP_ASSERT_WORD_BOUNDARY); break; } case DUK_RETOK_ASSERT_NOT_WORD_BOUNDARY: { duk__append_u32(re_ctx, DUK_REOP_ASSERT_NOT_WORD_BOUNDARY); break; } case DUK_RETOK_ASSERT_START_POS_LOOKAHEAD: case DUK_RETOK_ASSERT_START_NEG_LOOKAHEAD: { duk_uint32_t offset; duk_uint32_t opcode = (re_ctx->curr_token.t == DUK_RETOK_ASSERT_START_POS_LOOKAHEAD) ? DUK_REOP_LOOKPOS : DUK_REOP_LOOKNEG; offset = (duk_uint32_t) DUK__BUFLEN(re_ctx); duk__parse_disjunction(re_ctx, 0, &tmp_disj); duk__append_u32(re_ctx, DUK_REOP_MATCH); (void) duk__insert_u32(re_ctx, offset, opcode); (void) duk__insert_jump_offset(re_ctx, offset + 1, /* +1 for opcode */ (duk_int32_t) (DUK__BUFLEN(re_ctx) - (offset + 1))); /* 'taint' result as complex -- this is conservative, * as lookaheads do not backtrack. */ res_charlen = -1; break; } case DUK_RETOK_ATOM_PERIOD: { new_atom_char_length = 1; new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx); duk__append_u32(re_ctx, DUK_REOP_PERIOD); break; } case DUK_RETOK_ATOM_CHAR: { /* Note: successive characters could be joined into string matches * but this is not trivial (consider e.g. '/xyz+/); see docs for * more discussion. */ duk_uint32_t ch; new_atom_char_length = 1; new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx); duk__append_u32(re_ctx, DUK_REOP_CHAR); ch = re_ctx->curr_token.num; if (re_ctx->re_flags & DUK_RE_FLAG_IGNORE_CASE) { ch = duk_unicode_re_canonicalize_char(re_ctx->thr, ch); } duk__append_u32(re_ctx, ch); break; } case DUK_RETOK_ATOM_DIGIT: case DUK_RETOK_ATOM_NOT_DIGIT: { new_atom_char_length = 1; new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx); duk__append_u32(re_ctx, (re_ctx->curr_token.t == DUK_RETOK_ATOM_DIGIT) ? DUK_REOP_RANGES : DUK_REOP_INVRANGES); duk__append_u32(re_ctx, sizeof(duk_unicode_re_ranges_digit) / (2 * sizeof(duk_uint16_t))); duk__append_u16_list(re_ctx, duk_unicode_re_ranges_digit, sizeof(duk_unicode_re_ranges_digit) / sizeof(duk_uint16_t)); break; } case DUK_RETOK_ATOM_WHITE: case DUK_RETOK_ATOM_NOT_WHITE: { new_atom_char_length = 1; new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx); duk__append_u32(re_ctx, (re_ctx->curr_token.t == DUK_RETOK_ATOM_WHITE) ? DUK_REOP_RANGES : DUK_REOP_INVRANGES); duk__append_u32(re_ctx, sizeof(duk_unicode_re_ranges_white) / (2 * sizeof(duk_uint16_t))); duk__append_u16_list(re_ctx, duk_unicode_re_ranges_white, sizeof(duk_unicode_re_ranges_white) / sizeof(duk_uint16_t)); break; } case DUK_RETOK_ATOM_WORD_CHAR: case DUK_RETOK_ATOM_NOT_WORD_CHAR: { new_atom_char_length = 1; new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx); duk__append_u32(re_ctx, (re_ctx->curr_token.t == DUK_RETOK_ATOM_WORD_CHAR) ? DUK_REOP_RANGES : DUK_REOP_INVRANGES); duk__append_u32(re_ctx, sizeof(duk_unicode_re_ranges_wordchar) / (2 * sizeof(duk_uint16_t))); duk__append_u16_list(re_ctx, duk_unicode_re_ranges_wordchar, sizeof(duk_unicode_re_ranges_wordchar) / sizeof(duk_uint16_t)); break; } case DUK_RETOK_ATOM_BACKREFERENCE: { duk_uint32_t backref = (duk_uint32_t) re_ctx->curr_token.num; if (backref > re_ctx->highest_backref) { re_ctx->highest_backref = backref; } new_atom_char_length = -1; /* mark as complex */ new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx); duk__append_u32(re_ctx, DUK_REOP_BACKREFERENCE); duk__append_u32(re_ctx, backref); break; } case DUK_RETOK_ATOM_START_CAPTURE_GROUP: { duk_uint32_t cap; new_atom_char_length = -1; /* mark as complex (capture handling) */ new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx); cap = ++re_ctx->captures; duk__append_u32(re_ctx, DUK_REOP_SAVE); duk__append_u32(re_ctx, cap * 2); duk__parse_disjunction(re_ctx, 0, &tmp_disj); /* retval (sub-atom char length) unused, tainted as complex above */ duk__append_u32(re_ctx, DUK_REOP_SAVE); duk__append_u32(re_ctx, cap * 2 + 1); break; } case DUK_RETOK_ATOM_START_NONCAPTURE_GROUP: { new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx); duk__parse_disjunction(re_ctx, 0, &tmp_disj); new_atom_char_length = tmp_disj.charlen; break; } case DUK_RETOK_ATOM_START_CHARCLASS: case DUK_RETOK_ATOM_START_CHARCLASS_INVERTED: { /* * Range parsing is done with a special lexer function which calls * us for every range parsed. This is different from how rest of * the parsing works, but avoids a heavy, arbitrary size intermediate * value type to hold the ranges. * * Another complication is the handling of character ranges when * case insensitive matching is used (see docs for discussion). * The range handler callback given to the lexer takes care of this * as well. * * Note that duplicate ranges are not eliminated when parsing character * classes, so that canonicalization of * * [0-9a-fA-Fx-{] * * creates the result (note the duplicate ranges): * * [0-9A-FA-FX-Z{-{] * * where [x-{] is split as a result of canonicalization. The duplicate * ranges are not a semantics issue: they work correctly. */ duk_uint32_t offset; DUK_DD(DUK_DDPRINT("character class")); /* insert ranges instruction, range count patched in later */ new_atom_char_length = 1; new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx); duk__append_u32(re_ctx, (re_ctx->curr_token.t == DUK_RETOK_ATOM_START_CHARCLASS) ? DUK_REOP_RANGES : DUK_REOP_INVRANGES); offset = (duk_uint32_t) DUK__BUFLEN(re_ctx); /* patch in range count later */ /* parse ranges until character class ends */ re_ctx->nranges = 0; /* note: ctx-wide temporary */ duk_lexer_parse_re_ranges(&re_ctx->lex, duk__generate_ranges, (void *) re_ctx); /* insert range count */ duk__insert_u32(re_ctx, offset, re_ctx->nranges); break; } case DUK_RETOK_ATOM_END_GROUP: { if (expect_eof) { DUK_ERROR(re_ctx->thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_UNEXPECTED_CLOSING_PAREN); } goto done; } case DUK_RETOK_EOF: { if (!expect_eof) { DUK_ERROR(re_ctx->thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_UNEXPECTED_END_OF_PATTERN); } goto done; } default: { DUK_ERROR(re_ctx->thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_UNEXPECTED_REGEXP_TOKEN); } } /* a complex (new) atom taints the result */ if (new_atom_start_offset >= 0) { if (new_atom_char_length < 0) { res_charlen = -1; } else if (res_charlen >= 0) { /* only advance if not tainted */ res_charlen += new_atom_char_length; } } /* record previous atom info in case next token is a quantifier */ atom_start_offset = new_atom_start_offset; atom_char_length = new_atom_char_length; atom_start_captures = new_atom_start_captures; } done: /* finish up pending jump and split for last alternative */ if (unpatched_disjunction_jump >= 0) { duk_uint32_t offset; DUK_ASSERT(unpatched_disjunction_split >= 0); offset = unpatched_disjunction_jump; offset += duk__insert_jump_offset(re_ctx, offset, (duk_int32_t) (DUK__BUFLEN(re_ctx) - offset)); /* offset is now target of the pending split (right after jump) */ duk__insert_jump_offset(re_ctx, unpatched_disjunction_split, offset - unpatched_disjunction_split); } #if 0 out_atom_info->end_captures = re_ctx->captures; #endif out_atom_info->charlen = res_charlen; DUK_DDD(DUK_DDDPRINT("parse disjunction finished: charlen=%ld", (long) out_atom_info->charlen)); re_ctx->recursion_depth--; } /* * Flags parsing (see E5 Section 15.10.4.1). */ DUK_LOCAL duk_uint32_t duk__parse_regexp_flags(duk_hthread *thr, duk_hstring *h) { duk_uint8_t *p; duk_uint8_t *p_end; duk_uint32_t flags = 0; p = DUK_HSTRING_GET_DATA(h); p_end = p + DUK_HSTRING_GET_BYTELEN(h); /* Note: can be safely scanned as bytes (undecoded) */ while (p < p_end) { duk_uint8_t c = *p++; switch ((int) c) { case (int) 'g': { if (flags & DUK_RE_FLAG_GLOBAL) { goto error; } flags |= DUK_RE_FLAG_GLOBAL; break; } case (int) 'i': { if (flags & DUK_RE_FLAG_IGNORE_CASE) { goto error; } flags |= DUK_RE_FLAG_IGNORE_CASE; break; } case (int) 'm': { if (flags & DUK_RE_FLAG_MULTILINE) { goto error; } flags |= DUK_RE_FLAG_MULTILINE; break; } default: { goto error; } } } return flags; error: DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_REGEXP_FLAGS); return 0; /* never here */ } /* * Create escaped RegExp source (E5 Section 15.10.3). * * The current approach is to special case the empty RegExp * ('' -> '(?:)') and otherwise replace unescaped '/' characters * with '\/' regardless of where they occur in the regexp. * * Note that normalization does not seem to be necessary for * RegExp literals (e.g. '/foo/') because to be acceptable as * a RegExp literal, the text between forward slashes must * already match the escaping requirements (e.g. must not contain * unescaped forward slashes or be empty). Escaping IS needed * for expressions like 'new Regexp("...", "")' however. * Currently, we re-escape in either case. * * Also note that we process the source here in UTF-8 encoded * form. This is correct, because any non-ASCII characters are * passed through without change. */ DUK_LOCAL void duk__create_escaped_source(duk_hthread *thr, int idx_pattern) { duk_context *ctx = (duk_context *) thr; duk_hstring *h; duk_hbuffer_dynamic *buf; const duk_uint8_t *p; duk_size_t i, n; duk_uint_fast8_t c_prev, c; h = duk_get_hstring(ctx, idx_pattern); DUK_ASSERT(h != NULL); p = (const duk_uint8_t *) DUK_HSTRING_GET_DATA(h); n = (duk_size_t) DUK_HSTRING_GET_BYTELEN(h); if (n == 0) { /* return '(?:)' */ duk_push_hstring_stridx(ctx, DUK_STRIDX_ESCAPED_EMPTY_REGEXP); return; } duk_push_dynamic_buffer(ctx, 0); buf = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, -1); DUK_ASSERT(buf != NULL); c_prev = (duk_uint_fast8_t) 0; for (i = 0; i < n; i++) { c = p[i]; if (c == (duk_uint_fast8_t) '/' && c_prev != (duk_uint_fast8_t) '\\') { /* Unescaped '/' ANYWHERE in the regexp (in disjunction, * inside a character class, ...) => same escape works. */ duk_hbuffer_append_byte(thr, buf, (duk_uint8_t) '\\'); } duk_hbuffer_append_byte(thr, buf, (duk_uint8_t) c); c_prev = c; } duk_to_string(ctx, -1); /* -> [ ... escaped_source ] */ } /* * Exposed regexp compilation primitive. * * Sets up a regexp compilation context, and calls duk__parse_disjunction() to do the * actual parsing. Handles generation of the compiled regexp header and the * "boilerplate" capture of the matching substring (save 0 and 1). Also does some * global level regexp checks after recursive compilation has finished. * * An escaped version of the regexp source, suitable for use as a RegExp instance * 'source' property (see E5 Section 15.10.3), is also left on the stack. * * Input stack: [ pattern flags ] * Output stack: [ bytecode escaped_source ] (both as strings) */ DUK_INTERNAL void duk_regexp_compile(duk_hthread *thr) { duk_context *ctx = (duk_context *) thr; duk_re_compiler_ctx re_ctx; duk_lexer_point lex_point; duk_hstring *h_pattern; duk_hstring *h_flags; duk_hbuffer_dynamic *h_buffer; duk__re_disjunction_info ign_disj; DUK_ASSERT(thr != NULL); DUK_ASSERT(ctx != NULL); /* * Args validation */ /* TypeError if fails */ h_pattern = duk_require_hstring(ctx, -2); h_flags = duk_require_hstring(ctx, -1); /* * Create normalized 'source' property (E5 Section 15.10.3). */ /* [ ... pattern flags ] */ duk__create_escaped_source(thr, -2); /* [ ... pattern flags escaped_source ] */ /* * Init compilation context */ duk_push_dynamic_buffer(ctx, 0); h_buffer = (duk_hbuffer_dynamic *) duk_require_hbuffer(ctx, -1); DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(h_buffer)); /* [ ... pattern flags escaped_source buffer ] */ DUK_MEMZERO(&re_ctx, sizeof(re_ctx)); DUK_LEXER_INITCTX(&re_ctx.lex); /* duplicate zeroing, expect for (possible) NULL inits */ re_ctx.thr = thr; re_ctx.lex.thr = thr; re_ctx.lex.input = DUK_HSTRING_GET_DATA(h_pattern); re_ctx.lex.input_length = DUK_HSTRING_GET_BYTELEN(h_pattern); re_ctx.lex.token_limit = DUK_RE_COMPILE_TOKEN_LIMIT; re_ctx.buf = h_buffer; re_ctx.recursion_limit = DUK_RE_COMPILE_RECURSION_LIMIT; re_ctx.re_flags = duk__parse_regexp_flags(thr, h_flags); DUK_DD(DUK_DDPRINT("regexp compiler ctx initialized, flags=0x%08lx, recursion_limit=%ld", (unsigned long) re_ctx.re_flags, (long) re_ctx.recursion_limit)); /* * Init lexer */ lex_point.offset = 0; /* expensive init, just want to fill window */ lex_point.line = 1; DUK_LEXER_SETPOINT(&re_ctx.lex, &lex_point); /* * Compilation */ DUK_D(DUK_DPRINT("starting regexp compilation")); duk__append_u32(&re_ctx, DUK_REOP_SAVE); duk__append_u32(&re_ctx, 0); duk__parse_disjunction(&re_ctx, 1 /*expect_eof*/, &ign_disj); duk__append_u32(&re_ctx, DUK_REOP_SAVE); duk__append_u32(&re_ctx, 1); duk__append_u32(&re_ctx, DUK_REOP_MATCH); DUK_D(DUK_DPRINT("regexp bytecode size (before header) is %ld bytes", (long) DUK_HBUFFER_GET_SIZE(re_ctx.buf))); /* * Check for invalid backreferences; note that it is NOT an error * to back-reference a capture group which has not yet been introduced * in the pattern (as in /\1(foo)/); in fact, the backreference will * always match! It IS an error to back-reference a capture group * which will never be introduced in the pattern. Thus, we can check * for such references only after parsing is complete. */ if (re_ctx.highest_backref > re_ctx.captures) { DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_BACKREFS); } /* * Emit compiled regexp header: flags, ncaptures * (insertion order inverted on purpose) */ duk__insert_u32(&re_ctx, 0, (re_ctx.captures + 1) * 2); duk__insert_u32(&re_ctx, 0, re_ctx.re_flags); DUK_D(DUK_DPRINT("regexp bytecode size (after header) is %ld bytes", (long) DUK_HBUFFER_GET_SIZE(re_ctx.buf))); DUK_DDD(DUK_DDDPRINT("compiled regexp: %!xO", (duk_heaphdr *) re_ctx.buf)); /* [ ... pattern flags escaped_source buffer ] */ duk_to_string(ctx, -1); /* coerce to string */ /* [ ... pattern flags escaped_source bytecode ] */ /* * Finalize stack */ duk_remove(ctx, -4); /* -> [ ... flags escaped_source bytecode ] */ duk_remove(ctx, -3); /* -> [ ... escaped_source bytecode ] */ DUK_D(DUK_DPRINT("regexp compilation successful, bytecode: %!T, escaped source: %!T", (duk_tval *) duk_get_tval(ctx, -1), (duk_tval *) duk_get_tval(ctx, -2))); } /* * Create a RegExp instance (E5 Section 15.10.7). * * Note: the output stack left by duk_regexp_compile() is directly compatible * with the input here. * * Input stack: [ escaped_source bytecode ] (both as strings) * Output stack: [ RegExp ] */ DUK_INTERNAL void duk_regexp_create_instance(duk_hthread *thr) { duk_context *ctx = (duk_context *) thr; duk_hobject *h; duk_hstring *h_bc; duk_small_int_t re_flags; /* [ ... escape_source bytecode ] */ h_bc = duk_get_hstring(ctx, -1); DUK_ASSERT(h_bc != NULL); DUK_ASSERT(DUK_HSTRING_GET_BYTELEN(h_bc) >= 1); /* always at least the header */ DUK_ASSERT(DUK_HSTRING_GET_CHARLEN(h_bc) >= 1); DUK_ASSERT((duk_small_int_t) DUK_HSTRING_GET_DATA(h_bc)[0] < 0x80); /* flags always encodes to 1 byte */ re_flags = (duk_small_int_t) DUK_HSTRING_GET_DATA(h_bc)[0]; /* [ ... escaped_source bytecode ] */ duk_push_object(ctx); h = duk_get_hobject(ctx, -1); DUK_ASSERT(h != NULL); duk_insert(ctx, -3); /* [ ... regexp_object escaped_source bytecode ] */ DUK_HOBJECT_SET_CLASS_NUMBER(h, DUK_HOBJECT_CLASS_REGEXP); DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, h, thr->builtins[DUK_BIDX_REGEXP_PROTOTYPE]); duk_def_prop_stridx(ctx, -3, DUK_STRIDX_INT_BYTECODE, DUK_PROPDESC_FLAGS_NONE); /* [ ... regexp_object escaped_source ] */ duk_def_prop_stridx(ctx, -2, DUK_STRIDX_SOURCE, DUK_PROPDESC_FLAGS_NONE); /* [ ... regexp_object ] */ duk_push_boolean(ctx, (re_flags & DUK_RE_FLAG_GLOBAL)); duk_def_prop_stridx(ctx, -2, DUK_STRIDX_GLOBAL, DUK_PROPDESC_FLAGS_NONE); duk_push_boolean(ctx, (re_flags & DUK_RE_FLAG_IGNORE_CASE)); duk_def_prop_stridx(ctx, -2, DUK_STRIDX_IGNORE_CASE, DUK_PROPDESC_FLAGS_NONE); duk_push_boolean(ctx, (re_flags & DUK_RE_FLAG_MULTILINE)); duk_def_prop_stridx(ctx, -2, DUK_STRIDX_MULTILINE, DUK_PROPDESC_FLAGS_NONE); duk_push_int(ctx, 0); duk_def_prop_stridx(ctx, -2, DUK_STRIDX_LAST_INDEX, DUK_PROPDESC_FLAGS_W); /* [ ... regexp_object ] */ } #undef DUK__BUFLEN #else /* DUK_USE_REGEXP_SUPPORT */ /* regexp support disabled */ #endif /* DUK_USE_REGEXP_SUPPORT */