"use strict"; module.exports = earcut; module.exports.default = earcut; function earcut(data, holeIndices, dim) { // console.log("earcut " + data.length + "," + holeIndices + "," + dim); dim = dim || 2; var hasHoles = holeIndices && holeIndices.length, outerLen = hasHoles ? holeIndices[0] * dim : data.length, outerNode = linkedList(data, 0, outerLen, dim, true), triangles = []; if (!outerNode) return triangles; var minX, minY, maxX, maxY, x, y, invSize; if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we"ll use z-order curve hash later; calculate polygon bbox if (data.length > 80 * dim) { minX = maxX = data[0]; minY = maxY = data[1]; for (var i = dim; i < outerLen; i += dim) { x = data[i]; y = data[i + 1]; if (x < minX) minX = x; if (y < minY) minY = y; if (x > maxX) maxX = x; if (y > maxY) maxY = y; } // minX, minY and invSize are later used to transform coords into integers for z-order calculation invSize = Math.max(maxX - minX, maxY - minY); invSize = invSize !== 0 ? 1 / invSize : 0; } earcutLinked(outerNode, triangles, dim, minX, minY, invSize); return triangles; } // create a circular doubly linked list from polygon points in the specified winding order function linkedList(data, start, end, dim, clockwise) { // console.log("llist" + data.length + "," + start.i + "," + end.i + "," + dim + "," + clockwise); var i, last; if (clockwise === (signedArea(data, start, end, dim) > 0)) { for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last); } else { for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last); } if (last && equals(last, last.next)) { removeNode(last); last = last.next; } return last; } // eliminate colinear or duplicate points function filterPoints(start, end) { if (!start) return start; if (!end) end = start; // console.log("filterpoints points " + start.i + "," + end.i); var p = start, again; do { again = false; if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) { removeNode(p); p = end = p.prev; if (p === p.next) break; again = true; } else { p = p.next; } } while (again || p !== end); // console.log("filter points end", end.i); return end; } /* main ear slicing loop which triangulates a polygon (given as a linked list). nodes are removed from the linked list as the triangles are added. */ function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) { // console.log("earcutlinked: ear.i:", ear.i, "pass:", pass); //",",dim,minX,minY,invSize,pass); if (!ear) return; // interlink polygon nodes in z-order if (!pass && invSize) indexCurve(ear, minX, minY, invSize); var stop = ear, prev, next; // iterate through ears, slicing them one by one while (ear.prev !== ear.next) { prev = ear.prev; next = ear.next; if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { // cut off the triangle triangles.push(prev.i / dim); triangles.push(ear.i / dim); triangles.push(next.i / dim); // console.log("earcutlinked beg removeNode ear.i:",ear.i," cyclen:",cycle_len(ear)); removeNode(ear); // skipping the next vertex leads to less sliver triangles ear = next.next; stop = next.next; // console.log("earcutlinked end removeNode ear.i:",ear.i," cyclen:",cycle_len(ear)); continue; } /* 4:earcutlinked beg remove_node ear.i 1454 cyclen 1339 4:earcutlinked end remove_node ear.i 1450 cyclen 1338 4:earcutlinked beg remove_node ear.i 1448 cyclen 1338 << vi 327,n328,nn1323 4:earcutlinked end remove_node ear.i 2674 cyclen 1337 <<<<< vi i p n vi:1323 4:earcutlinked beg remove_node ear.i 2674 cyclen 1337 4:earcutlinked end remove_node ear.i 2670 cyclen 1336 4:earcutlinked beg remove_node ear.i 2660 cyclen 1336 4:earcutlinked end remove_node ear.i 2656 cyclen 1335 4:earcutlinked beg remove_node ear.i 1446 cyclen 1335 4:earcutlinked end remove_node ear.i 1442 cyclen 1334 b 1454 1339 -- e 1450 1338 -- b 1448 1338 -- e 1444 1337 xx <<<<<<<<< s/b vi 329 b 2660 1337 xx e 2656 1336 xx b 1440 1336 e 1436 1335 b 1434 1335 e 1430 1334 */ ear = next; // if we looped through the whole remaining polygon and can"t find any more ears if (ear === stop) { // try filtering points and slicing again if (!pass) { earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn"t work, try curing all small self-intersections locally } else if (pass === 1) { ear = cureLocalIntersections(ear, triangles, dim); earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two } else if (pass === 2) { splitEarcut(ear, triangles, dim, minX, minY, invSize); } break; } } } // check whether a polygon node forms a valid ear with adjacent nodes function isEar(ear) { // console.log("isear"+ear); var a = ear.prev, b = ear, c = ear.next; if (area(a, b, c) >= 0) return false; // reflex, can"t be an ear // now make sure we don"t have other points inside the potential ear var p = ear.next.next; while (p !== ear.prev) { if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.next; } return true; } function isEarHashed(ear, minX, minY, invSize) { //console.log("isearhashed",ear.i,minX,minY,invSize); var a = ear.prev, b = ear, c = ear.next; if (area(a, b, c) >= 0) return false; // reflex, can"t be an ear // triangle bbox; min & max are calculated like this for speed var minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x), minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y), maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x), maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y); // z-order range for the current triangle bbox; var minZ = zOrder(minTX, minTY, minX, minY, invSize), maxZ = zOrder(maxTX, maxTY, minX, minY, invSize); var p = ear.prevZ, n = ear.nextZ; // look for points inside the triangle in both directions while (p && p.z >= minZ && n && n.z <= maxZ) { if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.prevZ; if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; n = n.nextZ; } // look for remaining points in decreasing z-order while (p && p.z >= minZ) { if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.prevZ; } // look for remaining points in increasing z-order while (n && n.z <= maxZ) { if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; n = n.nextZ; } return true; } // go through all polygon nodes and cure small local self-intersections function cureLocalIntersections(start, triangles, dim) { console.log("cure local intersections i" + start.i + "," + triangles + "," + dim); var p = start; do { var a = p.prev, b = p.next.next; if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) { triangles.push(a.i / dim); triangles.push(p.i / dim); triangles.push(b.i / dim); // remove two nodes involved removeNode(p); removeNode(p.next); p = start = b; } p = p.next; } while (p !== start); return p; } // try splitting polygon into two and triangulate them independently function splitEarcut(start, triangles, dim, minX, minY, invSize) { // console.log("split ear cut i:" + start.i); // look for a valid diagonal that divides the polygon into two var a = start; do { var b = a.next.next; // console.log("splitearcut loop is:", a.i, ",", b.i); while (b !== a.prev) { // console.log("splitearcut mloop", a.i, b.i, isValidDiagonal(a, b)); if (a.i !== b.i && isValidDiagonal(a, b)) { // console.log("splitear inner loop ai bi", a.i, b.i); // split the polygon in two by the diagonal var c = splitPolygon(a, b); // filter colinear points around the cuts a = filterPoints(a, a.next); c = filterPoints(c, c.next); // run earcut on each half earcutLinked(a, triangles, dim, minX, minY, invSize); earcutLinked(c, triangles, dim, minX, minY, invSize); return; } b = b.next; } a = a.next; } while (a !== start); } function cycle_len(node) { var start = node; var a = start; var count = 0; var s1 = a.i; var s2 = -1; do { count += 1; s2 = a.i; a = a.next; } while (a != start); return count; } // https://www.cs.hmc.edu/~geoff/classes/hmc.cs070.200101/homework10/hashfuncs.html // https://stackoverflow.com/questions/1908492/unsigned-integer-in-javascript function horsh(h,n) { var highorder = h>>>0 & 0xf8000000 >>>0 ; // extract high-order 5 bits from h // console.log("horsh a",h>>>0," ",n>>>0); // 0xf8000000 is the hexadecimal representation // for the 32-bit number with the first five // bits = 1 and the other bits = 0 h = h << 5 ; // shift h left by 5 bits // console.log("horsh b",h>>>0," ",n>>>0); h = h ^ ( highorder >>> 27) ; // move the highorder 5 bits to the low-order // end and XOR into h // console.log("horsh c",h>>>0," ",n>>>0); h = h ^ n ; // XOR h and ki // console.log("horsh d",h>>>0," ",n>>>0); return h >>>0; } function llhorsh(node) { var start = node; var a = start; var count = 0; var s1 = a.i; var s2 = -1; var state = 0; do { state = horsh(state,a.i); count += 1; a = a.next; } while (a != start); return "horshcount:"+count+" horsh:"+state; } function dumpnodes(node) { var start = node; var a = start; var count = 0; var s1 = a.i; var s2 = -1; var state = 0; do { state = horsh(state,a.i); // console.log(count, a.i, a.prev.i, a.next.i, a.x, a.y, a.steiner); count += 1; a = a.next; } while (a != start); // console.log("ll dump end. horsh: ",state); } function dumplist(node) { var start = node; var a = start; var count = 0; var s1 = a.i; var s2 = -1; do { count += 1; s2 = a.i; a = a.next; } while (a != start); // console.log("ll count:", count, " 1sti:", s1, " lasti:", s2); } // link every hole into the outer loop, producing a single-ring polygon without holes function eliminateHoles(data, holeIndices, outerNode, dim) { // console.log("eliminateHoles", data, holeIndices, outerNode, dim); var queue = [], i, len, start, end, list; for (i = 0, len = holeIndices.length; i < len; i++) { start = holeIndices[i] * dim; end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; list = linkedList(data, start, end, dim, false); if (list === list.next) list.steiner = true; queue.push(getLeftmost(list)); } queue.sort(compareX); // process holes from left to right for (i = 0; i < queue.length; i++) { // console.log("eliminating hole begin, " + i + " of " + queue.length, "outerNode.i", outerNode.i, " cyclelen", cycle_len(outerNode),llhorsh( outerNode) ); eliminateHole(queue[i], outerNode); // console.log("eliminating hole end, " + i + " of " + queue.length, "outerNode.i", outerNode.i, " cyclelen", cycle_len(outerNode), llhorsh( outerNode) ); outerNode = filterPoints(outerNode, outerNode.next); } return outerNode; } function compareX(a, b) { return a.x - b.x; } // find a bridge between vertices that connects hole with an outer ring and and link it function eliminateHole(hole, outerNode) { // console.log("eliminateHole", hole.i, outerNode.i); outerNode = findHoleBridge(hole, outerNode); if (outerNode) { var b = splitPolygon(outerNode, hole); filterPoints(b, b.next); } } // David Eberly"s algorithm for finding a bridge between hole and outer // polygon function findHoleBridge(hole, outerNode) { // console.log("findholebridge", hole.i, outerNode.i); var p = outerNode, hx = hole.x, hy = hole.y, qx = -Infinity, m; // find a segment intersected by a ray from the hole"s leftmost point to the left; // segment"s endpoint with lesser x will be potential connection point do { if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { var x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y); if (x <= hx && x > qx) { qx = x; if (x === hx) { if (hy === p.y) return p; if (hy === p.next.y) return p.next; } m = p.x < p.next.x ? p : p.next; } } p = p.next; } while (p !== outerNode); // console.log("fhb p",p.i,"hx",hx,"hy",hy,"qx",qx,"m",m.i); if (!m) return null; if (hx === qx) return m.prev; // hole touches outer segment; pick lower endpoint // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point var stop = m, mx = m.x, my = m.y, tanMin = Infinity, tan; p = m.next; while (p !== stop) { var x1 = hy < my ? hx : qx; var x2 = hy < my ? qx : hx; if ( (hx >= p.x) && (p.x >= mx) && (hx !== p.x) && pointInTriangle( x1, hy, mx, my, x2, hy, p.x, p.y)) { tan = Math.abs(hy - p.y) / (hx - p.x); // tangential if ((tan < tanMin || (tan === tanMin && p.x > m.x)) && locallyInside(p, hole)) { m = p; tanMin = tan; } } p = p.next; } return m; } // interlink polygon nodes in z-order function indexCurve(start, minX, minY, invSize) { // console.log("indexcurve", start, minX, minY, invSize); var p = start; do { if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize); p.prevZ = p.prev; p.nextZ = p.next; p = p.next; } while (p !== start); p.prevZ.nextZ = null; p.prevZ = null; sortLinked(p); } // Simon Tatham"s linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html function sortLinked(list) { // console.log("sortlinked", list); var i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1; do { p = list; list = null; tail = null; numMerges = 0; while (p) { numMerges++; q = p; pSize = 0; for (i = 0; i < inSize; i++) { pSize++; q = q.nextZ; if (!q) break; } qSize = inSize; while (pSize > 0 || (qSize > 0 && q)) { if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) { e = p; p = p.nextZ; pSize--; } else { e = q; q = q.nextZ; qSize--; } if (tail) tail.nextZ = e; else list = e; e.prevZ = tail; tail = e; } p = q; } tail.nextZ = null; inSize *= 2; } while (numMerges > 1); return list; } // z-order of a point given coords and inverse of the longer side of data bbox function zOrder(x, y, minX, minY, invSize) { //console.log("zorder",x,y); // coords are transformed into non-negative 15-bit integer range x = 32767 * (x - minX) * invSize; y = 32767 * (y - minY) * invSize; x = (x | (x << 8)) & 0x00FF00FF; x = (x | (x << 4)) & 0x0F0F0F0F; x = (x | (x << 2)) & 0x33333333; x = (x | (x << 1)) & 0x55555555; y = (y | (y << 8)) & 0x00FF00FF; y = (y | (y << 4)) & 0x0F0F0F0F; y = (y | (y << 2)) & 0x33333333; y = (y | (y << 1)) & 0x55555555; return x | (y << 1); } // find the leftmost node of a polygon ring function getLeftmost(start) { // console.log("getleftmost ", start.i); var p = start, leftmost = start; do { if (p.x < leftmost.x) leftmost = p; p = p.next; } while (p !== start); return leftmost; } // check if a point lies within a convex triangle function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) { //console.log("point in tri",ax,ay,bx,by,cx,cy,px,py); return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0; } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) function isValidDiagonal(a, b) { // console.log("is-valid-diagonal a.i b.i !ip li li mi ", a.i, b.i, !intersectsPolygon(a, b), locallyInside(a, b), locallyInside(b, a), middleInside(a, b)); return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b); } // signed area of a triangle function area(p, q, r) { // console.log("area",p,q,r); return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); } // check if two points are equal function equals(p1, p2) { return p1.x === p2.x && p1.y === p2.y; } // check if two segments intersect p1-q1 p2-q2 function intersects(p1, q1, p2, q2) { // console.log("intersects",p1,q1,p2,q1); if ((equals(p1, p2) && equals(q1, q2)) || (equals(p1, q2) && equals(q1, p2))) return true; return area(p1, q1, p2) > 0 !== area(p1, q1, q2) > 0 && area(p2, q2, p1) > 0 !== area(p2, q2, q1) > 0; } // check if a polygon diagonal intersects any polygon segments function intersectsPolygon(a, b) { // console.log("intersectsPolygon",a,b); var p = a; do { // console.log("intersectsPolygon isect?", p.i, p.next.i, a.i, b.i, intersects(p, p.next, a, b)); if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) { return true; } p = p.next; } while (p !== a); return false; } // check if a polygon diagonal is locally inside the polygon function locallyInside(a, b) { // console.log("locallyInside",a,b); return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0; } // check if the middle point of a polygon diagonal is inside the polygon function middleInside(a, b) { // console.log("middleInside",a,b); var p = a, inside = false, px = (a.x + b.x) / 2, py = (a.y + b.y) / 2; do { if (((p.y > py) !== (p.next.y > py)) && p.next.y !== p.y && (px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x)) inside = !inside; p = p.next; } while (p !== a); return inside; } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring function splitPolygon(a, b) { // console.log("splitPolygon", a.i, b.i); var a2 = new Node(a.i, a.x, a.y), b2 = new Node(b.i, b.x, b.y), an = a.next, bp = b.prev; a.next = b; b.prev = a; a2.next = an; an.prev = a2; b2.next = a2; a2.prev = b2; bp.next = b2; b2.prev = bp; return b2; } // create a node and optionally link it with previous one (in a circular doubly linked list) function insertNode(i, x, y, last) { var p = new Node(i, x, y); if (!last) { p.prev = p; p.next = p; } else { p.next = last.next; p.prev = last; last.next.prev = p; last.next = p; } return p; } function removeNode(p) { // console.log("removeNode",p.i); p.next.prev = p.prev; p.prev.next = p.next; if (p.prevZ) p.prevZ.nextZ = p.nextZ; if (p.nextZ) p.nextZ.prevZ = p.prevZ; } function Node(i, x, y) { // console.log("Node",i,x,y); // vertex index in coordinates array this.i = i; // vertex coordinates this.x = x; this.y = y; // previous and next vertex nodes in a polygon ring this.prev = null; this.next = null; // z-order curve value this.z = null; // previous and next nodes in z-order this.prevZ = null; this.nextZ = null; // indicates whether this is a steiner point this.steiner = false; } // return a percentage difference between the polygon area and its triangulation area; // used to verify correctness of triangulation earcut.deviation = function(data, holeIndices, dim, triangles) { var hasHoles = holeIndices && holeIndices.length; var outerLen = hasHoles ? holeIndices[0] * dim : data.length; var polygonArea = Math.abs(signedArea(data, 0, outerLen, dim)); if (hasHoles) { for (var i = 0, len = holeIndices.length; i < len; i++) { var start = holeIndices[i] * dim; var end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; polygonArea -= Math.abs(signedArea(data, start, end, dim)); } } var trianglesArea = 0; for (i = 0; i < triangles.length; i += 3) { var a = triangles[i] * dim; var b = triangles[i + 1] * dim; var c = triangles[i + 2] * dim; trianglesArea += Math.abs( (data[a] - data[c]) * (data[b + 1] - data[a + 1]) - (data[a] - data[b]) * (data[c + 1] - data[a + 1])); } return polygonArea === 0 && trianglesArea === 0 ? 0 : Math.abs((trianglesArea - polygonArea) / polygonArea); }; function signedArea(data, start, end, dim) { //console.log("signedarea",data,start,end,dim); var sum = 0; for (var i = start, j = end - dim; i < end; i += dim) { sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]); j = i; } return sum; } // turn a polygon in a multi-dimensional array form (e.g. as in GeoJSON) into a form Earcut accepts earcut.flatten = function(data) { console.log("flatten", data); var dim = data[0][0].length, result = { vertices: [], holes: [], dimensions: dim }, holeIndex = 0; for (var i = 0; i < data.length; i++) { for (var j = 0; j < data[i].length; j++) { for (var d = 0; d < dim; d++) result.vertices.push(data[i][j][d]); } if (i > 0) { holeIndex += data[i - 1].length; result.holes.push(holeIndex); } } return result; };