
Patrick Dubroy / Mar 05 2023

with Martin Kavalar, Dieter Komendera, Joshua Sierles and Gregor

Koehler

Ohm: Parsing Made Easy
Patrick Dubroy, co-author of Ohm

OhmOhmOhmOhmOhmOhmOhmOhmOhmOhmOhmOhmOhm (((((((((((((https://ohmjs.orghttps://ohmjs.orghttps://ohmjs.orghttps://ohmjs.orghttps://ohmjs.orghttps://ohmjs.orghttps://ohmjs.orghttps://ohmjs.orghttps://ohmjs.orghttps://ohmjs.orghttps://ohmjs.orghttps://ohmjs.orghttps://ohmjs.org))))))))))))) is a parsing library for JavaScript, which was created at HARCHARCHARCHARCHARCHARCHARCHARCHARCHARCHARCHARCHARC (((((((((((((https://github.com/https://github.com/https://github.com/https://github.com/https://github.com/https://github.com/https://github.com/https://github.com/https://github.com/https://github.com/https://github.com/https://github.com/https://github.com/
harcharcharcharcharcharcharcharcharcharcharcharcharc))))))))))))) to support our programming language research. We think of it as a language implementation toolkit that
lets you quickly prototype new languages and experiment with extensions to existing languages. You can use
Ohm to parse custom file formats or quickly build parsers, interpreters, and compilers for programming
languages.

In this article, we'll introduce the basic features of Ohm by creating a simple arithmetic language and writing
an interpreter for that language. When we're done, we'll have a desktop calculator that can evaluate
expressions like 100 * 2 + 3 .

Setup
Browser

The quickest way to use Ohm in the browser is to load it directly from unpkgunpkgunpkgunpkgunpkgunpkgunpkgunpkgunpkgunpkgunpkgunpkgunpkg (((((((((((((https://unpkg.comhttps://unpkg.comhttps://unpkg.comhttps://unpkg.comhttps://unpkg.comhttps://unpkg.comhttps://unpkg.comhttps://unpkg.comhttps://unpkg.comhttps://unpkg.comhttps://unpkg.comhttps://unpkg.comhttps://unpkg.com))))))))))))), by adding
the following script tag to your page:

This introduces a new global variable named ohm .

Node.js

Under Node.js, you'll first need to install the ohm-js package using npmnpmnpmnpmnpmnpmnpmnpmnpmnpmnpmnpmnpm (((((((((((((https://www.npmjs.com/https://www.npmjs.com/https://www.npmjs.com/https://www.npmjs.com/https://www.npmjs.com/https://www.npmjs.com/https://www.npmjs.com/https://www.npmjs.com/https://www.npmjs.com/https://www.npmjs.com/https://www.npmjs.com/https://www.npmjs.com/https://www.npmjs.com/))))))))))))):

...then use require to load the Ohm module into your script:

Getting Started
Ohm consists of two parts: a domain-specific language, and a library. The Ohm language is based on parsing parsing parsing parsing parsing parsing parsing parsing parsing parsing parsing parsing parsing
expression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammars (https://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammar) (PEGs), which are a formal

HTML

Bash

JavaScript

const ohm = require('ohm-js');

<script src="https://unpkg.com/ohm-js@17/dist/ohm.min.js"></script>

npm install ohm-js

https://nextjournal.com/dubroy
https://nextjournal.com/dubroy
https://nextjournal.com/dubroy
https://nextjournal.com/dubroy
https://nextjournal.com/mk
https://nextjournal.com/mk
https://nextjournal.com/mk
https://nextjournal.com/kommen
https://nextjournal.com/kommen
https://nextjournal.com/kommen
https://nextjournal.com/jsierles
https://nextjournal.com/jsierles
https://nextjournal.com/jsierles
https://nextjournal.com/gkoehler
https://nextjournal.com/gkoehler
https://nextjournal.com/gkoehler
https://nextjournal.com/gkoehler
https://nextjournal.com/gkoehler
https://ohmjs.org/
https://ohmjs.org/
https://ohmjs.org/
https://ohmjs.org/
https://ohmjs.org/
https://ohmjs.org/
https://github.com/harc
https://github.com/harc
https://github.com/harc
https://github.com/harc
https://github.com/harc
https://github.com/harc
https://github.com/harc
https://github.com/harc
https://github.com/harc
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://unpkg.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar

Gt {name: "Arithmetic", superGrammar: Gt, rules: Object, defaultStartRule: "Exp", _matchStateInitia

expression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammarsexpression grammars (((((((((((((https://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammarhttps://en.wikipedia.org/wiki/Parsing_expression_grammar))))))))))))) (PEGs), which are a formal
way of describing syntax, similar to regular expressions and context-free grammars. The Ohm library provides
a JavaScript interface for creating parsers, interpreters, and more from the grammars you write.

 When writing grammars, we recommend using the Ohm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm Editor (((((((((((((https://ohmjs.org/editorhttps://ohmjs.org/editorhttps://ohmjs.org/editorhttps://ohmjs.org/editorhttps://ohmjs.org/editorhttps://ohmjs.org/editorhttps://ohmjs.org/editorhttps://ohmjs.org/editorhttps://ohmjs.org/editorhttps://ohmjs.org/editorhttps://ohmjs.org/editorhttps://ohmjs.org/editorhttps://ohmjs.org/editor))))))))))))) — its parsing
visualization can be a huge aid to understanding and debugging.

Creating a Grammar

The first step in defining a new language with Ohm is to create a grammar. Here is a very simple grammar for
a language named "Arithmetic":

A grammar is made up of rules. This grammar has a single rule named "Exp" whose rule body is the literal
string "42". To use this grammar, we must first instantiate a grammar object using the Ohm library:

 In this article, our grammar definitions use ES6 template literal syntaxES6 template literal syntaxES6 template literal syntaxES6 template literal syntaxES6 template literal syntaxES6 template literal syntaxES6 template literal syntaxES6 template literal syntaxES6 template literal syntaxES6 template literal syntaxES6 template literal syntaxES6 template literal syntaxES6 template literal syntax (((((((((((((https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literalsdocs/Web/JavaScript/Reference/Template_literals))))))))))))), because it's the only standardized way to do multi-line strings
in JavaScript.

Matching Input

We can use the grammar object's match method to recognize arithmetic expressions in our library. match
returns a MatchResult object which (among other things) has a succeeded method:

Our arithmetic grammar doesn't actually do much yet — it successfully matches against the string "42", but
anything else will fail:

Ohm

arithmetic0 Javascript

ohm.grammar(`

 Arithmetic {

 Exp = "42"

 }

`);

Javascript

const matchResult = arithmetic0.match('42');

matchResult.succeeded()

Javascript

const matchResult = arithmetic0.match('1 + 2');

matchResult.succeeded()

Arithmetic {

 Exp = "42"

}

https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://ohmjs.org/editor
https://ohmjs.org/editor
https://ohmjs.org/editor
https://ohmjs.org/editor
https://ohmjs.org/editor
https://ohmjs.org/editor
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

true

false

 For more, see the documentation for Grammar.match() Grammar.match() Grammar.match() Grammar.match() Grammar.match() Grammar.match() Grammar.match() Grammar.match() Grammar.match() Grammar.match() Grammar.match() Grammar.match() Grammar.match() (((((((((((((https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-https://github.com/harc/ohm/blob/master/doc/api-
reference.md#Grammar.matchreference.md#Grammar.matchreference.md#Grammar.matchreference.md#Grammar.matchreference.md#Grammar.matchreference.md#Grammar.matchreference.md#Grammar.matchreference.md#Grammar.matchreference.md#Grammar.matchreference.md#Grammar.matchreference.md#Grammar.matchreference.md#Grammar.matchreference.md#Grammar.match))))))))))))).

Parsers and Parse Trees

Though we called it a "grammar object", we could also say that arithmetic0 is a parser. A parser is just a
tool that takes some input and produces a structural representation of that input, typically in the form of a
parse tree.

In Ohm, you do not directly deal with parse trees — though every successful MatchResult object contains a
parse tree internally. However, seeing the parse tree for a given input makes it easier to understand how an
Ohm grammar works. For that reason, as we build up the arithmetic grammar in this article, many of the
examples will include a parse tree visualization taken from the Ohm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm EditorOhm Editor (((((((((((((https://ohmjs.org/editor/https://ohmjs.org/editor/https://ohmjs.org/editor/https://ohmjs.org/editor/https://ohmjs.org/editor/https://ohmjs.org/editor/https://ohmjs.org/editor/https://ohmjs.org/editor/https://ohmjs.org/editor/https://ohmjs.org/editor/https://ohmjs.org/editor/https://ohmjs.org/editor/https://ohmjs.org/editor/))))))))))))).

Recognizing Numbers
First, let's modify our grammar to recognize numbers (other than 42 that is). Here's one way we could do that:

The | operator represents a choice between different alternatives. This definition means that to match a
number, Ohm first tries to match the character "0", then if that fails, it tries to match the character "1", etc.

Character Ranges

However, since it's fairly common to want to match a particular character range like this. Using the range
operator (..), we can express the same thing in a clearer and more compact way:

But in this case, we can just use Ohm's built-in "digit" rule, which does the same thing:

Repetition Operators

To match numbers with more than one digit, we use the + operator, which means that the preceding
expression should be matched one or more times:

Javascript

Ohm

Ohm

Ohm

.grammar(`

Arithmetic {

 Exp = number

 number = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

}

 number = "0".."9"

 number = digit

https://github.com/harc/ohm/blob/master/doc/api-reference.md#Grammar.match
https://github.com/harc/ohm/blob/master/doc/api-reference.md#Grammar.match
https://github.com/harc/ohm/blob/master/doc/api-reference.md#Grammar.match
https://github.com/harc/ohm/blob/master/doc/api-reference.md#Grammar.match
https://github.com/harc/ohm/blob/master/doc/api-reference.md#Grammar.match
https://github.com/harc/ohm/blob/master/doc/api-reference.md#Grammar.match
https://github.com/harc/ohm/blob/master/doc/api-reference.md#Grammar.match
https://github.com/harc/ohm/blob/master/doc/api-reference.md#Grammar.match
https://github.com/harc/ohm/blob/master/doc/api-reference.md#Grammar.match
https://ohmjs.org/editor/
https://ohmjs.org/editor/
https://ohmjs.org/editor/
https://ohmjs.org/editor/
https://ohmjs.org/editor/
https://ohmjs.org/editor/

This version of the grammar can recognize numbers with any number of digits:

Here is the parse tree for the last example:

Other Repetition Operators

The other repetition operator supported by Ohm is the Kleene star (*), which matches an expression zero or
more times. So another way of defining the "number" rule would be number = digit digit* .

Addition and Subtraction
Now that we can recognize whole numbers, let's extend the grammar to support addition and subtraction:

arithmetic1 Javascript

ohm.grammar(`

 Arithmetic {

 Exp = number

 number = digit+

 }

`)

Javascript

[

arithmetic1.match('1').succeeded(),

arithmetic1.match('99').succeeded(),

arithmetic1.match('123456789').succeeded()

]

Parse tree for the input "123456789"

ohm.grammar(`

 Arithmetic {

 Exp = Exp "+" number -- plus

 | Exp "-" number -- minus

 | number

 number = digit+

 }

Gt {name: "Arithmetic", superGrammar: Gt, rules: Object, defaultStartRule: "Exp", _matchStateInitia

Array(3)[true, true, true]

We've changed the body of the "Exp" rule to be a choice (or alternation) with three branches: one for addition,
one for subtraction, and a final branch that just matches a number.

The text -- plus and -- minus are known as case labels. They do not affect what input is matched, but
they do affect how that input is matched. A full explanation will come later, but for now, you can think of
them as comments that document the purpose of a branch.

Left Recursion

Another interesting thing to note about the new definition of "Exp" above is that it is recursive — i.e., its
body contains an application of "Exp" itself. More specifically, it is left recursiveleft recursiveleft recursiveleft recursiveleft recursiveleft recursiveleft recursiveleft recursiveleft recursiveleft recursiveleft recursiveleft recursiveleft recursive (((((((((((((https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/
Left_recursionLeft_recursionLeft_recursionLeft_recursionLeft_recursionLeft_recursionLeft_recursionLeft_recursionLeft_recursionLeft_recursionLeft_recursionLeft_recursionLeft_recursion))))))))))))), meaning that the recursive application is the first expression in the branch.

Many PEG-based parser generators do not support left recursion — requiring grammar authors to use
repetition or right recursion instead. But left recursion is the most straightforward way to express left
associative operators, which is why left recursion is supported by Ohm.

Before we move on, let's verify that our grammar can successfully recognize addition and subtraction:

Below is the parse tree for "99 + 2 - 1":

arithmetic2 Javascript

 }

`)

Javascript

[

arithmetic2.match('99').succeeded(),arithmetic2.match('99 + 1 - 2').succeeded()

]

The parse tree for "99 + 1 - 2"

https://en.wikipedia.org/wiki/Left_recursion
https://en.wikipedia.org/wiki/Left_recursion
https://en.wikipedia.org/wiki/Left_recursion
https://en.wikipedia.org/wiki/Left_recursion
https://en.wikipedia.org/wiki/Left_recursion
https://en.wikipedia.org/wiki/Left_recursion
https://en.wikipedia.org/wiki/Left_recursion
https://en.wikipedia.org/wiki/Left_recursion
https://en.wikipedia.org/wiki/Left_recursion

Gt {name: "Arithmetic", superGrammar: Gt, rules: Object, defaultStartRule: "Exp", _matchStateInitia

Array(2)[true, true]

Note that the case labels ("— minus" and "— plus") actually appear in the tree, indicating which branch
succeeded in matching the input.

Multiplication and Division
Adding support for multiplication and division can be done in a similar way — we just need to add two more
cases to the "Exp" rule:

And once again, let's verify that it works as expected:

Operator Precedence

Our grammar can now parse arithmetic expressions, but it still has one problem: all of the operators are
treated equally. This can be seen in the parse tree for "1 + 99 * 2":

arithmetic3 Javascript

ohm.grammar(`

 Arithmetic {

 Exp = Exp "+" number -- plus

 | Exp "-" number -- minus

 | Exp "*" number -- times

 | Exp "/" number -- div

 | number

 number = digit+

 }

`)

Javascript

[

arithmetic3.match('1 + 99 * 2').succeeded(),

arithmetic3.match('1024 / 256').succeeded(),

]

Gt {name: "Arithmetic", superGrammar: Gt, rules: Object, defaultStartRule: "Exp", _matchStateInitia

Notice that "plus" case appears lower in the tree than the "times" case. This is fine when we are just
recognizing expressions, but when it comes time to evaluate them, this structure will make things difficult.

In Ohm, the simplest way to handle precedence is to encode it in the grammar. To do this, we should first
refactor the "times" and "div" cases into a separate "MulExp" rule:

Then, we'll do the same with the "plus" and "minus" cases, but with one small change — replacing
applications of "number" with "MulExp":

Here is what the grammar looks like after refactoring:

Parse tree for "1 + 99 * 2" with no operator precedence

Ohm

Ohm

arithmetic Javascript

ohm.grammar(`

 Arithmetic {

 Exp = AddExp

 AddExp = AddExp "+" MulExp -- plus

 | AddExp "-" MulExp -- minus

 | MulExp

 MulExp = MulExp "*" number -- times

 | MulExp "/" number -- div

 | number

 number = digit+

 }

`)

 MulExp = MulExp "*" number -- times

 | MulExp "/" number -- div

 | number

 AddExp = AddExp "+" MulExp -- plus

 | AddExp "-" MulExp -- minus

 | MulExp

Array(2)[true, true]

And here is the new parse tree for "1 + 99 * 2":

Notice that the "times" case now appears lower in the tree, indicating that the * operator binds more tightly
than + , as it should.

For the purposes of this tutorial, our arithmetic grammar is done. In the next section, we'll move on to
evaluating arithmetic expressions. Alternatively, you can open it in the Ohm Editoropen it in the Ohm Editoropen it in the Ohm Editoropen it in the Ohm Editoropen it in the Ohm Editoropen it in the Ohm Editoropen it in the Ohm Editoropen it in the Ohm Editoropen it in the Ohm Editoropen it in the Ohm Editoropen it in the Ohm Editoropen it in the Ohm Editoropen it in the Ohm Editor (((((((((((((https://https://https://https://https://https://https://https://https://https://https://https://https://
ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030))))))))))))) and keep experimenting.

Defining Semantics
While the grammar above defines the syntax of the arithmetic language, it doesn't specify the semantics —
i.e., what to do with valid inputs.

In many parser generators (e.g. Yacc and ANTLR), a grammar author can specify the language semantics by
including semantic actions inside the grammar. A semantic action is a snippet of code — typically written in a
different language —that produces a desired value or effect each time a particular rule is matched.

But Ohm is a bit different: it completely separates grammars from semantic actions. In Ohm, a grammar
defines a language, and semantic actions are written separately using the Ohm library. One advantage of this
approach is that a single grammar can have more than one semantics associated with it.

Action Dictionaries

In Ohm, a set of semantic actions for a grammar is usually written using an object literal. E.g.:

Parse tree for "1 + 99 * 2" with correct operator precedence

const actions = {

Exp() { ... },

AddExp() { ... },

https://ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030
https://ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030
https://ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030
https://ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030
https://ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030
https://ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030
https://ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030
https://ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030
https://ohmlang.github.io/editor/#df0722395daf6df4cd99e02188b9c030

Gt {name: "Arithmetic", superGrammar: Gt, rules: Object, defaultStartRule: "Exp", _matchStateInitia

Each key in the object is a rule name, and the value is the rule's semantic action (a function). We call this kind
of object an action dictionary. There are three specially-named keys that can also appear in an action
dictionary:

Before we talk about how to write the various semantic actions, let's first discuss how semantic actions are
used in Ohm.

Defining an Operation

To associate a set of semantic actions with a particular grammar, we first need to create a Semantics object for
that grammar, using its createSemantics method:

 Then, we add a new operation to the semantics, by calling its addOperation method with an action
dictionary as the argument:

Using an Operation

In the next section, we'll take a closer look at the details of the semantic actions, but first, let's talk about how
to use an operation after you've defined it. If you look at the result of createSemantics, you'll see that it
actually returns a function:

This function takes a single argument: a MatchResult object, as returned by the grammar's match method:

JavaScript

AddExp() { ... },

MulExp() { ... },

number() { ... }

};

"_terminal" specifies the action to use for all terminal expressions (e.g. ,"abc").•
"_nonterminal" species a catch-all action for all other expresssions. This is analogous to
Smalltalk's doesNotUnderstand: or Ruby's method_missing .

•

"_iter" is used for repetition expressions.•

JavaScript

const s = arithmetic.createSemantics();

JavaScript

s.addOperation('myOperation', {

Exp() { ... },

AddExp() { ... },

MulExp() { ... },

number() { ... }

});

Javascript

typeof arithmetic.createSemantics();

The result of invoking the semantics function is an object called a semantic adapter. A semantic adapter is
just an object that gives you a way to execute operations on a particular MatchResult . If you defined an
operation called "myOperation", the adapter will have a myOperation method that you can call:

Now that we've explained how to define and create operations, let's take a look at how to write semantic
actions.

Writing Semantic Actions
In the previous section, we introduced Ohm's concept of an operation, which is defined by a name and a set of
semantic actions. The semantic actions are stored in an action dictionary, which provides a mapping between
a rule name and its semantic action (a JavaScript function). In this section, we'll write the semantic actions
for an operation called eval that will evaluate expressions in the arithmetic grammar.

Let's begin with an action for the number rule:

This action takes the text that is matched by the "number" rule — e.g., "100" — and converts it to an actual
number using JavaScript's built-in parseInt function. Inside any semantic action, you can always use
this.sourceString to get the raw text matched by that node.

Note that this action takes a single argument, but its value is ignored. (In JavaScript, the underscore
character is a valid identifier; naming an argument _ is just a convention to indicate that its value is not
used.)

Rule Arity

The number of arguments a semantic action takes is determined by the arity of the body of its corresponding
rule. In general, the arity of an expression is equal to the "number of things" matched by that expression. For
example, recall the definition of the "Exp" rule:

The semantic action for "Exp" will have one argument, because the rule body consists of a single expression:
an application of the "AddExp" rule.

Similarly, the body of "number" consists of a single expression:

JavaScript

const matchResult = arithmetic.match('100 * 2 + 3');

const adapter = s(matchResult);

JavaScript

adapter.myOperation();

JavaScript

 number(_) {

return parseInt(this.sourceString);

 }

Ohm

 Exp = AddExp

"function"

Similarly, the body of "number" consists of a single expression:

...so the semantic action for "number" also takes a single argument.

Argument Types

Each argument to a semantic action is a semantic adapter, just like the ones that are used to execute an
operation. Hopefully this helps make their purpose more clear: a semantic adapter is an interface to a
particular parse tree node, providing a way to execute operations on that node.

To invoke an operation on an adapter, you just call the appropriate method, e.g., eval . For example, here is
a possible semantic action for the "Exp" rule:

The argument e is a semantic adapter for an "AddExp" node. The meaning of this action is: the result of
evaluating an "Exp" node is the result of evaluating its only child. We call this a pass-through action, and
because it's such a common case, you can actually omit these actions entirely. If you don't specify a
semantic action, Ohm will use a pass-through action by default (as long as the action only takes a single
argument).

Case Labels and Arity

To complete the discussion of arities, let's look at the definition of "AddExp":

The first and second branches — labeled "plus" and "minus", respectively — each have three subexpressions.
The last (unlabeled) branch only has one. So how many arguments should the semantic action for "AddExp"
take?

Suppose it took three arguments — then, inside the action, you might check arguments.length to
determine which case succeeded. This would work, but it's awkward an error-prone. For these reasons, Ohm
requires every branch of an expression to have the same arity.

One way to eliminate the amibiguity would be to refactor the "plus" and "minus" cases into their own rules:

Ohm

JavaScript

 Exp(e) {

 return e.eval();

 }

 AddExp = AddExp "+" MulExp -- plus

 | AddExp "-" MulExp -- minus

 | MulExp

 AddExp = AddExp_plus

 | AddExp_minus

 | MulExp

 number = digit+

function

Now, each branch in "AddExp" has arity 1, and the "plus" and "minus" cases can be handled in separate
semantic actions. The downside of this refactoring is that it makes the grammar more verbose.

Recall the case labels (e.g., "plus", "minus") that were introduced earlier, and how they actually appeared in
the parse tree. In turns out the case labels are actually a shorthand for declaring separate rules named
"AddExp_plus" and "AddExp_minus". In other words, the original declaration of "AddExp" is actually
equivalent to the refactored version above.

This ensures that each branch in "AddExp" has the same arity, and it also makes it easy to write semantic
actions for the three different cases — you simply write separate actions for "AddExp_plus" and
"AddExp_minus":

These are pretty straightforward: evaluate the the two operands, and return the result of adding (or
subtracting) them.

Note that in both actions, the second argument is ignored. It represents the operator, but because of the case
labels, we don't need to examine it.

The actions for "MulExp_times" and "MulExp_div" follow the same pattern:

Putting It All Together
Here is a complete definition of the "eval" operation, with the unnecessary pass-through actions omitted:

 AddExp_plus = AddExp "+" MulExp

 AddExp_minus = AddExp "-" MulExp

 AddExp_plus(a, _, b) {

return a.eval() + b.eval();

 },

 AddExp_minus(a, _, b) {

 return a.eval() - b.eval();

 },

 MulExp_times(a, _, b) {

 return a.eval() * b.eval();

 },

 MulExp_div(a, _, b) {

 return a.eval() / b.eval();

 },

const semantics = _.createSemantics();

semantics.addOperation('eval', {

We can use this operation to evaluate arithmetic expressions:

Multiple Operations

Ohm's approach to semantic actions clearly requires more work than just embedding the actions directly in
the grammar — so why do we do things this way?

If semantic actions are embedded in the grammar, the grammar assumes a particular interpretation. But
often, it makes sense to use the same grammar to process the input in multiple ways. For example, you might
want to support evaluation, syntax highlighting, and pretty printing — all from the same grammar.

One way to do this in Ohm is to add multiple operations to the same semantics. E.g., to add a "prettyPrint"
operation, we can just use the addOperation method again:

Now, any adapter objects we create using semantics will have both a prettyPrint method and an eval
method:

semantics.addOperation('eval', {

 AddExp_plus(a, _, b) {

return a.eval() + b.eval();

 },

 AddExp_minus(a, _, b) {

 return a.eval() - b.eval();

 },

 MulExp_times(a, _, b) {

 return a.eval() * b.eval();

 },

 MulExp_div(a, _, b) {

 return a.eval() / b.eval();

 },

 number(digits) {

 return parseInt(digits.sourceString)

 }

});

[

 (.match('100 + 1 * 2')).eval() == 102,

 (.match('1 + 2 - 3 + 4')).eval() == 4,

 (.match('12345')).eval() == 12345

]

semantics.addOperation('prettyPrint', { /* ... */ })

This is how Ohm's notion of operations makes it possible to use different sets of semantic actions with the
same grammar. In fact, the operations in a semantics can even depend on each other — that's why we say that
a semantics is a family of operations.

Further Reading
Hopefully this article has given you a good taste of what it's like to work with Ohm. To learn more, take a look
at some of the following pages:

You might also find it useful to use the Ohm Editor to experiment with real-world grammars, such as a more a more a more a more a more a more a more a more a more a more a more a more a more
fully-featured arithmetic languagefully-featured arithmetic languagefully-featured arithmetic languagefully-featured arithmetic languagefully-featured arithmetic languagefully-featured arithmetic languagefully-featured arithmetic languagefully-featured arithmetic languagefully-featured arithmetic languagefully-featured arithmetic languagefully-featured arithmetic languagefully-featured arithmetic languagefully-featured arithmetic language (((((((((((((https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636))))))))))))), or a
complete ES5 grammarES5 grammarES5 grammarES5 grammarES5 grammarES5 grammarES5 grammarES5 grammarES5 grammarES5 grammarES5 grammarES5 grammarES5 grammar (((((((((((((https://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fehttps://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fe))))))))))))).

If you have questions, you can join us on DiscordDiscordDiscordDiscordDiscordDiscordDiscordDiscordDiscordDiscordDiscordDiscordDiscord (((((((((((((https://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQhttps://discord.gg/KwxY5gegRQ))))))))))))), GitHub DiscussionsGitHub DiscussionsGitHub DiscussionsGitHub DiscussionsGitHub DiscussionsGitHub DiscussionsGitHub DiscussionsGitHub DiscussionsGitHub DiscussionsGitHub DiscussionsGitHub DiscussionsGitHub DiscussionsGitHub Discussions
(((((((((((((https://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussionshttps://github.com/harc/ohm/discussions))))))))))))), or the Ohm mailing listOhm mailing listOhm mailing listOhm mailing listOhm mailing listOhm mailing listOhm mailing listOhm mailing listOhm mailing listOhm mailing listOhm mailing listOhm mailing listOhm mailing list (((((((((((((https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/https://groups.google.com/a/ycr.org/
forum/#!forum/ohmforum/#!forum/ohmforum/#!forum/ohmforum/#!forum/ohmforum/#!forum/ohmforum/#!forum/ohmforum/#!forum/ohmforum/#!forum/ohmforum/#!forum/ohmforum/#!forum/ohmforum/#!forum/ohmforum/#!forum/ohmforum/#!forum/ohm))))))))))))) — there are plenty for friendly folks who are happy to help.

Happy parsing!

const adapter = semantics(g.match('100 * 2 + 3'));

const result = adapter.eval();

const prettyExp = adapter.prettyPrint();

Documentation indexDocumentation indexDocumentation indexDocumentation indexDocumentation indexDocumentation indexDocumentation indexDocumentation indexDocumentation indexDocumentation indexDocumentation indexDocumentation indexDocumentation index (((((((((((((https://ohmjs.org/docs/introhttps://ohmjs.org/docs/introhttps://ohmjs.org/docs/introhttps://ohmjs.org/docs/introhttps://ohmjs.org/docs/introhttps://ohmjs.org/docs/introhttps://ohmjs.org/docs/introhttps://ohmjs.org/docs/introhttps://ohmjs.org/docs/introhttps://ohmjs.org/docs/introhttps://ohmjs.org/docs/introhttps://ohmjs.org/docs/introhttps://ohmjs.org/docs/intro)))))))))))))•
Syntax referenceSyntax referenceSyntax referenceSyntax referenceSyntax referenceSyntax referenceSyntax referenceSyntax referenceSyntax referenceSyntax referenceSyntax referenceSyntax referenceSyntax reference (((((((((((((https://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-referencehttps://ohmjs.org/docs/syntax-reference)))))))))))))•
API referenceAPI referenceAPI referenceAPI referenceAPI referenceAPI referenceAPI referenceAPI referenceAPI referenceAPI referenceAPI referenceAPI referenceAPI reference (((((((((((((https://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-referencehttps://ohmjs.org/docs/api-reference)))))))))))))•

Appendix

require('https://unpkg.com/ohm-js@17/dist/ohm.min.js')

Runtimes (1)

https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636
https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636
https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636
https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636
https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636
https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636
https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636
https://ohmjs.org/editor/#30325d346a6e803cc35344ca218d8636
https://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fe
https://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fe
https://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fe
https://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fe
https://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fe
https://ohmjs.org/editor/#0a9a649c3c630fd0a470ba6cb75393fe
https://discord.gg/KwxY5gegRQ
https://discord.gg/KwxY5gegRQ
https://discord.gg/KwxY5gegRQ
https://discord.gg/KwxY5gegRQ
https://discord.gg/KwxY5gegRQ
https://discord.gg/KwxY5gegRQ
https://github.com/harc/ohm/discussions
https://github.com/harc/ohm/discussions
https://github.com/harc/ohm/discussions
https://github.com/harc/ohm/discussions
https://github.com/harc/ohm/discussions
https://github.com/harc/ohm/discussions
https://github.com/harc/ohm/discussions
https://github.com/harc/ohm/discussions
https://github.com/harc/ohm/discussions
https://groups.google.com/a/ycr.org/forum/#!forum/ohm
https://groups.google.com/a/ycr.org/forum/#!forum/ohm
https://groups.google.com/a/ycr.org/forum/#!forum/ohm
https://groups.google.com/a/ycr.org/forum/#!forum/ohm
https://groups.google.com/a/ycr.org/forum/#!forum/ohm
https://groups.google.com/a/ycr.org/forum/#!forum/ohm
https://groups.google.com/a/ycr.org/forum/#!forum/ohm
https://groups.google.com/a/ycr.org/forum/#!forum/ohm
https://groups.google.com/a/ycr.org/forum/#!forum/ohm
https://ohmjs.org/docs/intro
https://ohmjs.org/docs/intro
https://ohmjs.org/docs/intro
https://ohmjs.org/docs/intro
https://ohmjs.org/docs/intro
https://ohmjs.org/docs/intro
https://ohmjs.org/docs/syntax-reference
https://ohmjs.org/docs/syntax-reference
https://ohmjs.org/docs/syntax-reference
https://ohmjs.org/docs/syntax-reference
https://ohmjs.org/docs/syntax-reference
https://ohmjs.org/docs/syntax-reference
https://ohmjs.org/docs/api-reference
https://ohmjs.org/docs/api-reference
https://ohmjs.org/docs/api-reference
https://ohmjs.org/docs/api-reference
https://ohmjs.org/docs/api-reference
https://ohmjs.org/docs/api-reference

