use crate::benchmarks::{BenchDevice, BenchDeviceHandler}; use ebcandle_core::{DType, Device, Tensor}; use criterion::{black_box, criterion_group, Criterion, Throughput}; use std::time::Instant; fn run(a: &Tensor) { a.affine(12.34, 56.78).unwrap(); } fn run_affine_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) { let b = 1; let m = 1024; let k = 1024; let tensor = Tensor::zeros((b, m, k), dtype, device).unwrap(); let flops = b * m * k * dtype.size_in_bytes(); let mut group = c.benchmark_group(device.bench_name(name)); group.throughput(Throughput::Bytes(flops as u64)); group.bench_function("iter", move |b| { b.iter_custom(|iters| { let start = Instant::now(); for _i in 0..iters { run(black_box(&tensor)); } device.sync().unwrap(); start.elapsed() }) }); group.finish(); } fn criterion_benchmark(c: &mut Criterion) { let handler = BenchDeviceHandler::new().unwrap(); for device in handler.devices { run_affine_benchmark(c, &device, DType::F32, "affine_f32"); run_affine_benchmark(c, &device, DType::F16, "affine_f16"); run_affine_benchmark(c, &device, DType::BF16, "affine_bf16"); } } criterion_group!(benches, criterion_benchmark);