use crate::benchmarks::{BenchDevice, BenchDeviceHandler}; use ebcandle_core::{DType, Device, Tensor}; use criterion::{black_box, criterion_group, Criterion, Throughput}; use std::time::Instant; fn run(a: &Tensor, b: &Tensor) { a.matmul(&b.t().unwrap()).unwrap(); } fn run_bench(c: &mut Criterion, device: &Device) { let b = 1; let m = 1; let n = 2048; let k = 2048; let dtype = DType::F32; let lhs = Tensor::zeros((b, m, k), dtype, device).unwrap(); let rhs = Tensor::zeros((b, n, k), dtype, device).unwrap(); let flops = b * m * n * k; let mut group = c.benchmark_group(device.bench_name("matmul")); group.throughput(Throughput::Bytes(flops as u64)); group.bench_function("iter", move |b| { b.iter_custom(|iters| { let start = Instant::now(); for _i in 0..iters { run(black_box(&lhs), black_box(&rhs)); } device.sync().unwrap(); start.elapsed() }) }); group.finish(); } fn criterion_benchmark(c: &mut Criterion) { let handler = BenchDeviceHandler::new().unwrap(); for device in handler.devices { run_bench(c, &device); } } criterion_group!(benches, criterion_benchmark);