use ebcandle_core::{test_device, test_utils, DType, Device, IndexOp, Result, Tensor, D}; fn zeros(device: &Device) -> Result<()> { let tensor = Tensor::zeros((5, 2), DType::F32, device)?; let (dim1, dim2) = tensor.dims2()?; assert_eq!(dim1, 5); assert_eq!(dim2, 2); Ok(()) } fn ones(device: &Device) -> Result<()> { assert_eq!( Tensor::ones((2, 3), DType::U8, device)?.to_vec2::()?, [[1, 1, 1], [1, 1, 1]], ); assert_eq!( Tensor::ones((2, 3), DType::U32, device)?.to_vec2::()?, [[1, 1, 1], [1, 1, 1]], ); assert_eq!( Tensor::ones((2, 3), DType::I16, device)?.to_vec2::()?, [[1, 1, 1], [1, 1, 1]], ); assert_eq!( Tensor::ones((2, 3), DType::I32, device)?.to_vec2::()?, [[1, 1, 1], [1, 1, 1]], ); assert_eq!( Tensor::ones((2, 3), DType::I64, device)?.to_vec2::()?, [[1, 1, 1], [1, 1, 1]], ); assert_eq!( Tensor::ones((2, 3), DType::F32, device)?.to_vec2::()?, [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ); assert_eq!( Tensor::ones((2, 3), DType::F64, device)?.to_vec2::()?, [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ); assert_eq!( Tensor::ones((2, 3), DType::F16, device)?.to_vec2::()?, [ [ half::f16::from_f32(1.0), half::f16::from_f32(1.0), half::f16::from_f32(1.0) ], [ half::f16::from_f32(1.0), half::f16::from_f32(1.0), half::f16::from_f32(1.0) ] ], ); assert_eq!( Tensor::ones((2, 3), DType::BF16, device)?.to_vec2::()?, [ [ half::bf16::from_f32(1.0), half::bf16::from_f32(1.0), half::bf16::from_f32(1.0) ], [ half::bf16::from_f32(1.0), half::bf16::from_f32(1.0), half::bf16::from_f32(1.0) ] ], ); Ok(()) } fn full(device: &Device) -> Result<()> { assert_eq!( Tensor::full(42u32, (2, 3), device)?.to_vec2::()?, [[42, 42, 42], [42, 42, 42]], ); Ok(()) } fn arange(device: &Device) -> Result<()> { assert_eq!( Tensor::arange(0u8, 5u8, device)?.to_vec1::()?, [0, 1, 2, 3, 4], ); assert_eq!( Tensor::arange_step(0u8, 5u8, 2, device)?.to_vec1::()?, [0, 2, 4], ); assert_eq!( Tensor::arange_step(0u8, 5u8, 3, device)?.to_vec1::()?, [0, 3], ); assert_eq!( Tensor::arange_step(5i64, 0i64, -1, device)?.to_vec1::()?, [5, 4, 3, 2, 1], ); Ok(()) } fn add_mul(device: &Device) -> Result<()> { let tensor = Tensor::new(&[3f32, 1., 4.], device)?; let dim1 = tensor.dims1()?; assert_eq!(dim1, 3); let content: Vec = tensor.to_vec1()?; assert_eq!(content, [3., 1., 4.]); let tensor = Tensor::add(&tensor, &tensor)?; let content: Vec = tensor.to_vec1()?; assert_eq!(content, [6., 2., 8.]); let tensor = Tensor::mul(&tensor, &tensor)?; let content: Vec = tensor.to_vec1()?; assert_eq!(content, [36., 4., 64.]); Ok(()) } fn tensor_2d(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let tensor = Tensor::new(data, device)?; let dims = tensor.dims2()?; assert_eq!(dims, (2, 5)); let content: Vec> = tensor.to_vec2()?; assert_eq!(content, data); Ok(()) } fn clamp(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let tensor = Tensor::new(data, device)?; let tensor = tensor.clamp(1.5, 6.2)?; assert_eq!( tensor.to_vec2::()?, [[3.0, 1.5, 4.0, 1.5, 5.0], [2.0, 1.5, 6.2, 6.2, 2.0]], ); Ok(()) } fn asort(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1.1, 5.], [2.1, 1., 7., 8., 2.]]; let tensor = Tensor::new(data, device)?; let indexes = tensor.arg_sort_last_dim(true)?; assert_eq!( indexes.to_vec2::()?, [[1, 3, 0, 2, 4], [1, 4, 0, 2, 3]], ); let indexes = tensor.arg_sort_last_dim(false)?; assert_eq!( indexes.to_vec2::()?, [[4, 2, 0, 3, 1], [3, 2, 0, 4, 1]], ); let (sorted, indexes) = tensor.sort_last_dim(true)?; assert_eq!( indexes.to_vec2::()?, [[1, 3, 0, 2, 4], [1, 4, 0, 2, 3]], ); assert_eq!( sorted.to_vec2::()?, [[1.0, 1.1, 3.0, 4.0, 5.0], [1.0, 2.0, 2.1, 7.0, 8.0]] ); let (sorted, indexes) = tensor.sort_last_dim(false)?; assert_eq!( indexes.to_vec2::()?, [[4, 2, 0, 3, 1], [3, 2, 0, 4, 1]], ); assert_eq!( sorted.to_vec2::()?, [[5.0, 4.0, 3.0, 1.1, 1.0], [8.0, 7.0, 2.1, 2.0, 1.0]] ); Ok(()) } fn unary_op(device: &Device) -> Result<()> { let data = &[[-3f32, 1., 4., -0.1, 0.5], [2.7, -1.8, -0.28, 1.8, 2.8]]; let tensor = Tensor::new(data, device)?; assert_eq!( test_utils::to_vec2_round(&tensor.gelu()?, 4)?, [ [-0.0036, 0.8412, 3.9999, -0.046, 0.3457], [2.6911, -0.0647, -0.1091, 1.7353, 2.7933] ] ); let t_f16 = tensor.to_dtype(DType::F16)?.gelu()?.to_dtype(DType::F32)?; let max_diff = (tensor.gelu()? - t_f16)?.flatten_all()?.max(0)?; assert!(max_diff.to_vec0::()? < 5e-3); assert_eq!( test_utils::to_vec2_round(&tensor.gelu_erf()?, 4)?, [ [-0.004, 0.8413, 3.9999, -0.046, 0.3457], [2.6906, -0.0647, -0.1091, 1.7353, 2.7928] ] ); assert_eq!( test_utils::to_vec2_round(&tensor.erf()?, 4)?, [ [-1.0, 0.8427, 1.0, -0.1125, 0.5205], [0.9999, -0.9891, -0.3079, 0.9891, 0.9999] ] ); assert_eq!( test_utils::to_vec2_round(&tensor.silu()?, 4)?, [ [-0.1423, 0.7311, 3.9281, -0.0475, 0.3112], [2.53, -0.2553, -0.1205, 1.5447, 2.6395] ] ); assert_eq!( test_utils::to_vec2_round(&tensor.ceil()?, 4)?, [[-3.0, 1.0, 4.0, -0.0, 1.0], [3.0, -1.0, -0.0, 2.0, 3.0]] ); assert_eq!( test_utils::to_vec2_round(&tensor.floor()?, 4)?, [[-3.0, 1.0, 4.0, -1.0, 0.0], [2.0, -2.0, -1.0, 1.0, 2.0]] ); assert_eq!( test_utils::to_vec2_round(&tensor.round()?, 4)?, [[-3.0, 1.0, 4.0, -0.0, 1.0], [3.0, -2.0, -0.0, 2.0, 3.0]] ); let tensor = Tensor::new(&[2997.9246, 314.15926f32], device)?; assert_eq!( test_utils::to_vec1_round(&tensor.round_to(2)?, 4)?, [2997.92, 314.16] ); assert_eq!( test_utils::to_vec1_round(&tensor.round_to(-2)?, 4)?, [3000.0, 300.] ); let tensor = Tensor::new( &[-1.01f32, -0.9, -0.1, 0.0, -0.0, 0.1, 0.9, 1.0, 1.1], device, )?; assert_eq!( tensor.sign()?.to_vec1::()?, [-1., -1., -1., 0., 0., 1., 1., 1., 1.] ); let tensor = Tensor::new(&[-1.0f32, 0., -2., 3.], device)?; let y = tensor.elu(2.)?; assert_eq!( test_utils::to_vec1_round(&y, 4)?, [-1.2642, 0.0000, -1.7293, 3.0000] ); // This test failed on metal prior to the following PR: // https://github.com/huggingface/ebcandle/pull/2490 let y = tensor.reshape((2, 2))?.t()?.elu(2.)?.flatten_all()?; assert_eq!( test_utils::to_vec1_round(&y, 4)?, [-1.2642, -1.7293, 0.0000, 3.0000] ); Ok(()) } fn binary_op(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let tensor1 = Tensor::new(data, device)?; let data2 = &[[5f32, 5., 5., 5., 5.], [2., 1., 7., 8., 2.]]; let tensor2 = Tensor::new(data2, device)?; let tensor = (&tensor1 + (&tensor1 * &tensor1)? / (&tensor1 + &tensor2))?; let dims = tensor.dims2()?; assert_eq!(dims, (2, 5)); let content: Vec> = tensor.to_vec2()?; assert_eq!(content[0], [4.125, 1.1666666, 5.7777777, 1.1666666, 7.5]); assert_eq!(content[1], [3.0, 1.5, 10.5, 12.0, 3.0]); #[allow(clippy::eq_op)] let tensor = (&tensor - &tensor)?; let content: Vec> = tensor.to_vec2()?; assert_eq!(content[0], [0., 0., 0., 0., 0.]); let min = tensor1.minimum(&(&tensor2 * 0.5)?)?; let max = tensor1.maximum(&(&tensor2 * 0.5)?)?; assert_eq!( min.to_vec2::()?, [[2.5, 1.0, 2.5, 1.0, 2.5], [1.0, 0.5, 3.5, 4.0, 1.0]], ); assert_eq!( max.to_vec2::()?, [[3.0, 2.5, 4.0, 2.5, 5.0], [2.0, 1.0, 7.0, 8.0, 2.0]] ); Ok(()) } fn transpose(device: &Device) -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let tensor = Tensor::new(data, device)?.t()?; let dims = tensor.dims2()?; assert_eq!(dims, (5, 2)); assert_eq!( tensor.to_vec2::()?, &[[3f32, 2.], [1., 1.], [4., 7.], [1., 8.], [5., 2.]] ); assert_eq!(tensor.t()?.to_vec2::()?, data); assert_eq!(tensor.contiguous()?.t()?.to_vec2::()?, data); assert_eq!(((tensor + 1.)?.t()? - 1.)?.to_vec2::()?, data); Ok(()) } fn var(device: &Device) -> Result<()> { // Values taken from https://pytorch.org/docs/stable/generated/torch.var.html let data = &[ [0.2035f32, 1.2959, 1.8101, -0.4644], [1.5027, -0.3270, 0.5905, 0.6538], [-1.5745, 1.3330, -0.5596, -0.6548], [0.1264, -0.5080, 1.6420, 0.1992], ]; let tensor = Tensor::new(data, device)?; assert_eq!( test_utils::to_vec2_round(&tensor.var_keepdim(1)?, 4)?, &[[1.0631], [0.559], [1.4893], [0.8258]] ); Ok(()) } fn sum(device: &Device) -> Result<()> { let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.sum_keepdim(2)?.to_vec3::()?, &[[[8], [15]], [[10], [18]]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec3::()?, &[[[5, 2, 11], [9, 7, 17]]], ); assert_eq!(tensor.sum_keepdim((0, 2, 1))?.to_vec3::()?, &[[[51]]],); assert_eq!( tensor.t()?.sum_keepdim(1)?.t()?.to_vec3::()?, &[[[8], [15]], [[10], [18]]] ); assert_eq!( tensor.sum_keepdim((2, 1))?.to_vec3::()?, &[[[8 + 15]], [[10 + 18]]] ); let data: Vec = (0..4000u32).collect(); let tensor = Tensor::new(data.as_slice(), device)?; assert_eq!(tensor.sum_keepdim(0)?.to_vec1::()?, &[7998000]); let tensor = tensor.reshape((2000, 2))?; assert_eq!(tensor.sum_keepdim((0, 1))?.to_vec2::()?, &[[7998000]]); assert_eq!( tensor.sum_keepdim(0)?.sum_keepdim(1)?.to_vec2::()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(1)?.sum_keepdim(0)?.to_vec2::()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec2::()?, &[[3998000, 4000000]] ); // Make the tensor non contiguous. let tensor = tensor.t()?.contiguous()?.t()?; assert_eq!(tensor.sum_keepdim((0, 1))?.to_vec2::()?, &[[7998000]]); assert_eq!( tensor.sum_keepdim(0)?.sum_keepdim(1)?.to_vec2::()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(1)?.sum_keepdim(0)?.to_vec2::()?, &[[7998000]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec2::()?, &[[3998000, 4000000]] ); let t1 = tensor.reshape((200, 5, 4))?; let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?; for tensor in [t1, t2] { assert_eq!( tensor.sum_keepdim((0, 1, 2))?.to_vec3::()?, &[[[7998000]]] ); assert_eq!( tensor .sum_keepdim(0)? .sum_keepdim(2)? .sum_keepdim(1)? .to_vec3::()?, &[[[7998000]]] ); assert_eq!( tensor .sum_keepdim(0)? .sum_keepdim((1, 2))? .to_vec3::()?, &[[[7998000]]] ); assert_eq!( tensor .sum_keepdim(1)? .sum_keepdim((0, 2))? .to_vec3::()?, &[[[7998000]]] ); assert_eq!( tensor.sum_keepdim(0)?.to_vec3::()?, &[[ [398000, 398200, 398400, 398600], [398800, 399000, 399200, 399400], [399600, 399800, 400000, 400200], [400400, 400600, 400800, 401000], [401200, 401400, 401600, 401800] ]] ); } Ok(()) } fn min(device: &Device) -> Result<()> { let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.min_keepdim(2)?.to_vec3::()?, &[[[1], [1]], [[1], [2]]] ); assert_eq!( tensor.min_keepdim(0)?.to_vec3::()?, &[[[2, 1, 4], [1, 2, 8]]], ); let data: Vec = (200..4000u32).collect(); let tensor = Tensor::new(data.as_slice(), device)?; assert_eq!(tensor.min_keepdim(0)?.to_vec1::()?, &[200]); let tensor = tensor.reshape((1900, 2))?; assert_eq!( tensor.min_keepdim(0)?.min_keepdim(1)?.to_vec2::()?, &[[200]] ); assert_eq!( tensor.min_keepdim(1)?.min_keepdim(0)?.to_vec2::()?, &[[200]] ); assert_eq!(tensor.min_keepdim(0)?.to_vec2::()?, &[[200, 201]]); // Make the tensor non contiguous. let tensor = tensor.t()?.contiguous()?.t()?; assert_eq!( tensor.min_keepdim(0)?.min_keepdim(1)?.to_vec2::()?, &[[200]] ); assert_eq!( tensor.min_keepdim(1)?.min_keepdim(0)?.to_vec2::()?, &[[200]] ); assert_eq!(tensor.min_keepdim(0)?.to_vec2::()?, &[[200, 201]]); let t1 = tensor.reshape((190, 5, 4))?; let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?; for tensor in [t1, t2] { assert_eq!( tensor .min_keepdim(0)? .min_keepdim(2)? .min_keepdim(1)? .to_vec3::()?, &[[[200]]] ); assert_eq!( tensor.min_keepdim(0)?.to_vec3::()?, &[[ [200, 201, 202, 203], [204, 205, 206, 207], [208, 209, 210, 211], [212, 213, 214, 215], [216, 217, 218, 219] ]] ); } Ok(()) } fn max(device: &Device) -> Result<()> { let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.max_keepdim(2)?.to_vec3::()?, &[[[4], [9]], [[7], [8]]] ); assert_eq!( tensor.max_keepdim(0)?.to_vec3::()?, &[[[3, 1, 7], [8, 5, 9]]], ); let data: Vec = (200..4000u32).collect(); let tensor = Tensor::new(data.as_slice(), device)?; assert_eq!(tensor.max_keepdim(0)?.to_vec1::()?, &[3999]); let tensor = tensor.reshape((1900, 2))?; assert_eq!( tensor.max_keepdim(0)?.max_keepdim(1)?.to_vec2::()?, &[[3999]] ); assert_eq!( tensor.max_keepdim(1)?.max_keepdim(0)?.to_vec2::()?, &[[3999]] ); assert_eq!(tensor.max_keepdim(0)?.to_vec2::()?, &[[3998, 3999]]); // Make the tensor non contiguous. let tensor = tensor.t()?.contiguous()?.t()?; assert_eq!( tensor.max_keepdim(0)?.max_keepdim(1)?.to_vec2::()?, &[[3999]] ); assert_eq!( tensor.max_keepdim(1)?.max_keepdim(0)?.to_vec2::()?, &[[3999]] ); assert_eq!(tensor.max_keepdim(0)?.to_vec2::()?, &[[3998, 3999]]); let t1 = tensor.reshape((190, 5, 4))?; let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?; for tensor in [t1, t2] { assert_eq!( tensor .max_keepdim(0)? .max_keepdim(2)? .max_keepdim(1)? .to_vec3::()?, &[[[3999]]] ); assert_eq!( tensor.max_keepdim(0)?.to_vec3::()?, &[[ [3980, 3981, 3982, 3983], [3984, 3985, 3986, 3987], [3988, 3989, 3990, 3991], [3992, 3993, 3994, 3995], [3996, 3997, 3998, 3999] ]] ); } Ok(()) } fn argmin(device: &Device) -> Result<()> { let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.argmin_keepdim(2)?.to_vec3::()?, &[[[1], [0]], [[1], [1]]] ); assert_eq!( tensor.argmin_keepdim(0)?.to_vec3::()?, &[[[1, 0, 0], [0, 1, 1]]], ); let data: Vec = (200..4000u32).collect(); let tensor = Tensor::new(data.as_slice(), device)?; assert_eq!(tensor.argmin_keepdim(0)?.to_vec1::()?, &[0]); let tensor = tensor.reshape((1900, 2))?; assert_eq!( tensor .argmin_keepdim(0)? .argmin_keepdim(1)? .to_vec2::()?, &[[0]] ); assert_eq!( tensor .argmin_keepdim(1)? .argmin_keepdim(0)? .to_vec2::()?, &[[0]] ); assert_eq!(tensor.argmin_keepdim(0)?.to_vec2::()?, &[[0, 0]]); // Make the tensor non contiguous. let tensor = tensor.t()?.contiguous()?.t()?; assert_eq!( tensor .argmin_keepdim(0)? .argmin_keepdim(1)? .to_vec2::()?, &[[0]] ); assert_eq!( tensor .argmin_keepdim(1)? .argmin_keepdim(0)? .to_vec2::()?, &[[0]] ); assert_eq!(tensor.argmin_keepdim(0)?.to_vec2::()?, &[[0, 0]]); let t1 = tensor.reshape((190, 5, 4))?; let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?; for tensor in [t1, t2] { assert_eq!( tensor .argmin_keepdim(0)? .argmin_keepdim(2)? .argmin_keepdim(1)? .to_vec3::()?, &[[[0]]] ); assert_eq!( tensor.argmin_keepdim(0)?.to_vec3::()?, &[[ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], ]] ); } Ok(()) } fn argmax(device: &Device) -> Result<()> { let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.argmax_keepdim(2)?.to_vec3::()?, &[[[2], [2]], [[2], [0]]] ); assert_eq!( tensor.argmax_keepdim(0)?.to_vec3::()?, &[[[0, 0, 1], [1, 0, 0]]], ); let data: Vec = (200..4000u32).collect(); let tensor = Tensor::new(data.as_slice(), device)?; assert_eq!(tensor.argmax_keepdim(0)?.to_vec1::()?, &[3799]); let tensor = tensor.reshape((1900, 2))?; assert_eq!( tensor .argmax_keepdim(0)? .argmax_keepdim(1)? .to_vec2::()?, &[[0]] ); assert_eq!( tensor .argmax_keepdim(1)? .argmax_keepdim(0)? .to_vec2::()?, &[[0]] ); assert_eq!(tensor.argmax_keepdim(0)?.to_vec2::()?, &[[1899, 1899]]); // Make the tensor non contiguous. let tensor = tensor.t()?.contiguous()?.t()?; assert_eq!( tensor .argmax_keepdim(0)? .argmax_keepdim(1)? .to_vec2::()?, &[[0]] ); assert_eq!( tensor .argmax_keepdim(1)? .argmax_keepdim(0)? .to_vec2::()?, &[[0]] ); assert_eq!(tensor.argmax_keepdim(0)?.to_vec2::()?, &[[1899, 1899]]); let t1 = tensor.reshape((190, 5, 4))?; let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?; for tensor in [t1, t2] { assert_eq!( tensor .argmax_keepdim(0)? .argmax_keepdim(2)? .argmax_keepdim(1)? .to_vec3::()?, &[[[0]]] ); assert_eq!( tensor.argmax_keepdim(0)?.to_vec3::()?, &[[ [189, 189, 189, 189], [189, 189, 189, 189], [189, 189, 189, 189], [189, 189, 189, 189], [189, 189, 189, 189], ]] ); } Ok(()) } fn narrow(device: &Device) -> Result<()> { let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.narrow(2, 1, 2)?.to_vec3::()?, &[[[1.0, 4.0], [5.0, 9.0]], [[1.0, 7.0], [2.0, 8.0]]], ); assert_eq!( tensor.narrow(1, 1, 1)?.to_vec3::()?, &[[[1.0, 5.0, 9.0]], [[8.0, 2.0, 8.0]]], ); assert_eq!( tensor.narrow(0, 0, 1)?.to_vec3::()?, &[[[3.0, 1.0, 4.0], [1.0, 5.0, 9.0]]], ); assert_eq!( tensor.narrow(0, 1, 1)?.to_vec3::()?, &[[[2.0, 1.0, 7.0], [8.0, 2.0, 8.0]]], ); // The following has been checked against PyTorch via: // import torch // t = torch.tensor([[[3., 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]) // t.transpose(-1, -2).narrow(1, 1, 2) assert_eq!( tensor.t()?.narrow(1, 1, 2)?.to_vec3::()?, &[[[1.0, 5.0], [4.0, 9.0]], [[1.0, 2.0], [7.0, 8.0]]], ); Ok(()) } fn broadcast(device: &Device) -> Result<()> { let data = &[3f32, 1., 4.]; let tensor = Tensor::new(data, device)?; assert_eq!( tensor.broadcast_left((3, 1))?.to_vec3::()?, &[[[3.0, 1.0, 4.0]], [[3.0, 1.0, 4.0]], [[3.0, 1.0, 4.0]]] ); Ok(()) } fn slice_set(device: &Device) -> Result<()> { let (b, h, max_t, d) = (2, 4, 7, 3); let cache = Tensor::zeros((b, h, max_t, d), DType::F32, device)?; let tensor = Tensor::randn(0f32, 1f32, (b, h, 4, d), device)?; cache.slice_set(&tensor, 2, 0)?; let cache_t = cache.narrow(2, 0, 4)?; let diff = (cache_t - &tensor)?.abs()?.sum_all()?.to_vec0::()?; assert_eq!(diff, 0.); cache.slice_set(&tensor, 2, 1)?; let cache_t = cache.narrow(2, 1, 4)?; let diff = (cache_t - &tensor)?.abs()?.sum_all()?.to_vec0::()?; assert_eq!(diff, 0.); let ones = Tensor::ones((b, h, 1, d), DType::F32, device)?; cache.slice_set(&ones, 2, 6)?; let diff = cache.narrow(2, 5, 1)?.abs()?.sum_all()?.to_vec0::()?; assert_eq!(diff, 0.); let diff = (cache.narrow(2, 6, 1)? - 1.)? .abs()? .sum_all()? .to_vec0::()?; assert_eq!(diff, 0.); Ok(()) } fn cat(device: &Device) -> Result<()> { // 1D let t1 = Tensor::new(&[3f32, 1., 4.], device)?; let t2 = Tensor::new(&[1f32, 5., 9., 2.], device)?; let t3 = Tensor::new(&[6f32, 5., 3., 5., 8., 9.], device)?; assert_eq!(Tensor::cat(&[&t1], 0)?.to_vec1::()?, [3f32, 1., 4.],); assert_eq!( Tensor::cat(&[&t1, &t2], 0)?.to_vec1::()?, [3f32, 1., 4., 1., 5., 9., 2.], ); assert_eq!( Tensor::cat(&[&t1, &t2, &t3], 0)?.to_vec1::()?, [3f32, 1., 4., 1., 5., 9., 2., 6., 5., 3., 5., 8., 9.], ); // 2D let data = &[[3f32, 1., 4., 1., 5.], [2., 7., 1., 8., 2.]]; let t1 = Tensor::new(data, device)?; let data2 = &[[5f32, 5., 5., 5., 5.], [2., 7., 1., 8., 2.]]; let t2 = Tensor::new(data2, device)?; assert_eq!( Tensor::cat(&[&t1, &t2], 0)?.to_vec2::()?, [ [3.0, 1.0, 4.0, 1.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0], [5.0, 5.0, 5.0, 5.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0] ] ); // PyTorch equivalent: // import torch // t1 = torch.tensor([[3, 1, 4, 1, 5], [2, 7, 1, 8, 2]]) // t2 = torch.tensor([[5]*5, [2, 7, 1, 8, 2]]) // torch.cat([t1.t(), t2.t()], dim=1).t() assert_eq!( Tensor::cat(&[&t1.t()?, &t2.t()?], 1)? .t()? .to_vec2::()?, [ [3.0, 1.0, 4.0, 1.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0], [5.0, 5.0, 5.0, 5.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0] ] ); assert_eq!( Tensor::cat(&[&t1, &t2], 1)?.to_vec2::()?, [ [3.0, 1.0, 4.0, 1.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0], [2.0, 7.0, 1.0, 8.0, 2.0, 2.0, 7.0, 1.0, 8.0, 2.0] ] ); // 3D let t1 = Tensor::arange(0, 48i64, device)?.reshape((2, 6, 4))?; let t2 = Tensor::arange(100, 124i64, device)?.reshape((2, 3, 4))?; let t3 = Tensor::arange(10000, 10032i64, device)?.reshape((2, 4, 4))?; let t_cat = Tensor::cat(&[&t1, &t2, &t3], 1)?; let t1 = t1.t()?.contiguous()?.t()?; let t2 = t2.t()?.contiguous()?.t()?; let t3 = t3.t()?.contiguous()?.t()?; let t_cat2 = Tensor::cat(&[&t1, &t2, &t3], 1)?; let diff = t_cat.eq(&t_cat2)?.to_dtype(DType::F32)?.sum_all()?; assert_eq!(diff.to_vec0::()?, 104.0); assert_eq!(t_cat.i((0, 0, 0))?.to_vec0::()?, 0); assert_eq!(t_cat.i((0, 4, 0))?.to_vec0::()?, 16); assert_eq!(t_cat.i((0, 5, 0))?.to_vec0::()?, 20); assert_eq!(t_cat.i((1, 5, 0))?.to_vec0::()?, 44); assert_eq!(t_cat.i((0, 6, 0))?.to_vec0::()?, 100); assert_eq!(t_cat.i((1, 6, 0))?.to_vec0::()?, 112); assert_eq!(t_cat.i((0, 6, 1))?.to_vec0::()?, 101); assert_eq!(t_cat.i((0, 7, 1))?.to_vec0::()?, 105); assert_eq!(t_cat.i((0, 12, 1))?.to_vec0::()?, 10013); assert_eq!(t_cat.i((1, 12, 3))?.to_vec0::()?, 10031); Ok(()) } fn embeddings(device: &Device) -> Result<()> { let ids = Tensor::new(&[0u32, 2u32, 1u32], device)?; let t = Tensor::new(&[[0f32, 1f32], [2f32, 3f32], [4f32, 5f32]], device)?; let hs = t.embedding(&ids)?; assert_eq!(hs.to_vec2::()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]); let hs = t.index_select(&ids, 0)?; assert_eq!(hs.to_vec2::()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]); let hs = t.index_select(&ids.to_dtype(DType::I64)?, 0)?; assert_eq!(hs.to_vec2::()?, &[[0.0, 1.0], [4.0, 5.0], [2.0, 3.0]]); Ok(()) } fn cmp(device: &Device) -> Result<()> { let t1 = Tensor::new(&[[0f32, 1f32], [2f32, 3f32], [4f32, 5f32]], device)?; let t2 = Tensor::new(&[[1f32, 0f32], [3f32, 3f32], [4f32, 7f32]], device)?; assert_eq!(t1.eq(&t2)?.to_vec2::()?, &[[0, 0], [0, 1], [1, 0]]); assert_eq!(t1.ne(&t2)?.to_vec2::()?, &[[1, 1], [1, 0], [0, 1]]); assert_eq!(t1.le(&t2)?.to_vec2::()?, &[[1, 0], [1, 1], [1, 1]]); assert_eq!(t1.lt(&t2)?.to_vec2::()?, &[[1, 0], [1, 0], [0, 1]]); assert_eq!(t1.gt(&t2)?.to_vec2::()?, &[[0, 1], [0, 0], [0, 0]]); assert_eq!(t1.ge(&t2)?.to_vec2::()?, &[[0, 1], [0, 1], [1, 0]]); Ok(()) } fn index_select(device: &Device) -> Result<()> { let ids = Tensor::new(&[0u32, 2u32, 1u32], device)?; let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); for dtype in [DType::U8, DType::U32, DType::I16, DType::I32, DType::I64] { let ids = ids.to_dtype(dtype)?; let hs = t.index_select(&ids, 1)?; assert_eq!( hs.to_vec2::()?, &[ [0.0, 2.0, 1.0], [3.0, 5.0, 4.0], [6.0, 8.0, 7.0], [9.0, 11.0, 10.0] ] ); let hs = t.index_select(&ids, 0)?; assert_eq!( hs.to_vec2::()?, &[[0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0]] ); // Prior to https://github.com/huggingface/ebcandle/pull/1022 // There would be a bug where the last values in the result tensor would be set to 0. let ids = Tensor::new(&[0u32, 2u32, 1u32, 0u32, 2u32, 1u32], device)?; let hs = t.index_select(&ids, 0)?; assert_eq!( hs.to_vec2::()?, &[ [0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0], [0.0, 1.0, 2.0], [6.0, 7.0, 8.0], [3.0, 4.0, 5.0], ] ); // Test when selecting dim > 0 with ids size different from elem count of // target dim in source/input. let ids = Tensor::new(&[1u32, 0u32, 1u32], device)?; let t = Tensor::arange(1f32, 5f32, device)?.reshape((2, 2))?; assert_eq!(t.to_vec2::()?, &[[1.0, 2.0], [3.0, 4.0]]); let hs = t.index_select(&ids, 1)?; assert_eq!(hs.to_vec2::()?, &[[2.0, 1.0, 2.0], [4.0, 3.0, 4.0]]); } Ok(()) } fn index_add(device: &Device) -> Result<()> { let ids = Tensor::new(&[0u32, 1u32, 1u32], device)?; let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let init = Tensor::ones((4, 2), DType::F32, device)?; let hs = init.index_add(&ids, &t, 1)?; assert_eq!( hs.to_vec2::()?, &[[1.0, 4.0], [4.0, 10.0], [7.0, 16.0], [10.0, 22.0]], ); let init = Tensor::zeros((4, 2), DType::F32, device)?; let ids = Tensor::new(&[1u32, 0u32, 0u32], device)?; let hs = init.index_add(&ids, &t, 1)?; assert_eq!( hs.to_vec2::()?, &[[3.0, 0.0], [9.0, 3.0], [15.0, 6.0], [21.0, 9.0]], ); let init = Tensor::zeros((6, 3), DType::F32, device)?; let ids = Tensor::new(&[5u32, 0u32, 1u32, 0u32], device)?; let hs = init.index_add(&ids, &t, 0)?; assert_eq!( hs.to_vec2::()?, &[ [12.0, 14.0, 16.0], [6.0, 7.0, 8.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 2.0] ] ); Ok(()) } fn slice_scatter(device: &Device) -> Result<()> { let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let src = Tensor::arange(100f32, 106f32, device)?.reshape((2, 3))?; assert_eq!( t.slice_scatter0(&src, 0)?.to_vec2::()?, &[ [100.0, 101.0, 102.0], [103.0, 104.0, 105.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); assert_eq!( t.slice_scatter0(&src, 1)?.to_vec2::()?, &[ [0.0, 1.0, 2.0], [100.0, 101.0, 102.0], [103.0, 104.0, 105.0], [9.0, 10.0, 11.0] ] ); assert_eq!( t.slice_scatter0(&src, 2)?.to_vec2::()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [100.0, 101.0, 102.0], [103.0, 104.0, 105.0], ] ); Ok(()) } fn scatter_add(device: &Device) -> Result<()> { let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let ids = Tensor::new(&[[0u32, 1, 2], [3, 4, 0], [3, 3, 1], [2, 0, 4]], device)?; let init = Tensor::ones((4, 5), DType::F32, device)?; let hs = init.scatter_add(&ids, &t, 1)?; assert_eq!( hs.to_vec2::()?, &[ [1.0, 2.0, 3.0, 1.0, 1.0], [6.0, 1.0, 1.0, 4.0, 5.0], [1.0, 9.0, 1.0, 14.0, 1.0], [11.0, 1.0, 10.0, 1.0, 12.0] ] ); let init = Tensor::ones((6, 3), DType::F32, device)?; let hs = init.scatter_add(&ids, &t, 0)?; assert_eq!( hs.to_vec2::()?, &[ [1.0, 11.0, 6.0], [1.0, 2.0, 9.0], [10.0, 1.0, 3.0], [10.0, 8.0, 1.0], [1.0, 5.0, 12.0], [1.0, 1.0, 1.0] ] ); Ok(()) } fn gather(device: &Device) -> Result<()> { let ids = Tensor::new(&[[0u32], [2u32], [1u32], [0u32]], device)?; let t = Tensor::arange(0f32, 12f32, device)?.reshape((4, 3))?; assert_eq!( t.to_vec2::()?, &[ [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0] ] ); let hs = t.gather(&ids, 1)?; assert_eq!(hs.to_vec2::()?, &[[0.0], [5.0], [7.0], [9.0]]); let ids = Tensor::new( &[[0u32, 0u32], [2u32, 0u32], [1u32, 1u32], [0u32, 2u32]], device, )?; let hs = t.gather(&ids, 1)?; assert_eq!( hs.to_vec2::()?, &[[0.0, 0.0], [5.0, 3.0], [7.0, 7.0], [9.0, 11.0]] ); let ids = Tensor::new(&[[0u32, 2u32, 0u32]], device)?; let hs = t.gather(&ids, 0)?; assert_eq!(hs.to_vec2::()?, &[[0.0, 7.0, 2.0]]); let ids = Tensor::new(&[[0u32, 2u32, 0u32], [0u32, 1u32, 1u32]], device)?; let hs = t.gather(&ids, 0)?; assert_eq!(hs.to_vec2::()?, &[[0.0, 7.0, 2.0], [0.0, 4.0, 5.0]]); // Random data // Dim: 0 let t = Tensor::new( &[ [ [108_f32, -47., 16., -56., -83., -130., 210.], [253., 95., 151., 228., -210., -123., -127.], [-9., -217., 2., -78., 163., 245., -204.], [-246., 79., -238., 88., -226., -184., 171.], [8., -48., -153., 234., -34., 166., -153.], [124., 0., -10., -61., -242., -15., -238.], ], [ [12., -64., -199., 244., -240., 156., -128.], [173., -57., 4., -198., 233., -110., 238.], [95., 82., 0., 240., 53., -211., 209.], [-122., 167., -212., 227., -144., 61., 118.], [-63., -146., 200., 244., 168., -167., 116.], [-125., -147., 110., -253., -178., -250., -18.], ], [ [57., 86., -50., 56., 92., 205., -78.], [-137., -156., -18., 248., -61., -239., 14.], [-248., -30., -50., -70., -251., 250., -83.], [-221., 67., 72., 59., -24., -154., 232.], [-144., -23., -74., 5., 93., 171., 205.], [46., -77., -38., -226., 246., 161., -17.], ], [ [-153., -231., -236., 161., 126., 2., -22.], [-229., -41., 209., 164., 234., 160., 57.], [223., 254., -186., -162., -46., -160., -102.], [65., 30., 213., -253., 59., 224., -154.], [-82., -203., -177., 17., 31., -256., -246.], [176., -135., -65., 54., -56., 210., 76.], ], [ [-10., -245., 168., 124., -14., -33., -178.], [25., -43., -39., 132., -89., 169., 179.], [187., -215., 32., -133., 87., -7., -168.], [-224., -215., -5., -230., -58., -162., 128.], [158., -137., -122., -100., -202., -83., 136.], [30., -185., -144., 250., 209., -40., 127.], ], [ [-196., 108., -245., 122., 146., -228., 62.], [-1., -66., 160., 137., 13., -172., -21.], [244., 199., -164., 28., 119., -175., 198.], [-62., 253., -162., 195., -95., -230., -211.], [123., -72., -26., -107., -139., 64., 245.], [11., -126., -182., 108., -12., 184., -127.], ], [ [-159., 126., 176., 161., 73., -111., -138.], [-187., 214., -217., -33., -223., -201., -212.], [-61., -120., -166., -172., -95., 53., 196.], [-33., 86., 134., -152., 154., -53., 74.], [186., -28., -154., -174., 141., -109., 217.], [82., 35., 252., 145., 181., 74., -87.], ], ], device, )?; let ids = Tensor::new( &[ [ [6_u32, 6, 4, 3, 4, 4, 6], [3, 3, 2, 4, 4, 4, 6], [3, 3, 0, 2, 4, 6, 4], [2, 5, 1, 2, 6, 6, 1], [2, 1, 6, 5, 3, 2, 3], [6, 1, 0, 1, 0, 2, 6], ], [ [4, 6, 4, 3, 3, 3, 2], [4, 3, 2, 4, 4, 4, 6], [2, 3, 0, 2, 4, 6, 4], [6, 5, 1, 2, 6, 6, 1], [4, 1, 6, 5, 3, 2, 3], [1, 1, 0, 1, 0, 2, 6], ], [ [3, 6, 4, 3, 3, 3, 2], [2, 3, 2, 4, 4, 4, 6], [4, 3, 0, 2, 4, 6, 4], [0, 5, 1, 2, 6, 6, 1], [6, 1, 6, 5, 3, 2, 3], [4, 1, 0, 1, 0, 2, 6], ], [ [0, 6, 4, 3, 3, 3, 2], [5, 3, 2, 4, 4, 4, 6], [0, 3, 0, 2, 4, 6, 4], [3, 5, 1, 2, 6, 6, 1], [0, 1, 6, 5, 3, 2, 3], [3, 1, 0, 1, 0, 2, 6], ], ], device, )?; let hs = t.gather(&ids, 0)?; assert_eq!( hs.to_vec3::()?, &[ [ [-159_f32, 126., 168., 161., -14., -33., -138.], [-229., -41., -18., 132., -89., 169., -212.], [223., 254., 2., -70., 87., 53., -168.], [-221., 253., -212., 59., 154., -53., 118.], [-144., -146., -154., -107., 31., 171., -246.], [82., -147., -10., -253., -242., 161., -87.] ], [ [-10., 126., 168., 161., 126., 2., -78.], [25., -41., -18., 132., -89., 169., -212.], [-248., 254., 2., -70., 87., 53., -168.], [-33., 253., -212., 59., 154., -53., 118.], [158., -146., -154., -107., 31., 171., -246.], [-125., -147., -10., -253., -242., 161., -87.] ], [ [-153., 126., 168., 161., 126., 2., -78.], [-137., -41., -18., 132., -89., 169., -212.], [187., 254., 2., -70., 87., 53., -168.], [-246., 253., -212., 59., 154., -53., 118.], [186., -146., -154., -107., 31., 171., -246.], [30., -147., -10., -253., -242., 161., -87.] ], [ [108., 126., 168., 161., 126., 2., -78.], [-1., -41., -18., 132., -89., 169., -212.], [-9., 254., 2., -70., 87., 53., -168.], [65., 253., -212., 59., 154., -53., 118.], [8., -146., -154., -107., 31., 171., -246.], [176., -147., -10., -253., -242., 161., -87.] ] ] ); // Dim: 1 let t = Tensor::new( &[ [ [-117_f32, -175., 69., -163.], [200., 242., -21., -67.], [179., 150., -126., -75.], [-118., 38., -138., -13.], [-221., 136., -185., 180.], [58., 182., -204., -149.], ], [ [3., -148., -58., -154.], [-43., 45., -108., 4.], [-69., -249., -71., -21.], [80., 110., -152., -235.], [-88., 7., 92., -250.], [-186., 207., -242., 98.], ], [ [238., 19., 64., -242.], [-150., -97., 218., 58.], [111., -233., 204., -212.], [-242., -232., 83., 42.], [153., 62., -251., 219.], [-117., 36., -119., 10.], ], [ [215., 159., -169., -27.], [-83., 101., -88., 169.], [-205., 93., 225., -64.], [-162., 240., 214., 23.], [-112., 6., 21., 245.], [-38., 113., 93., 215.], ], [ [91., -188., -148., 101.], [74., 203., -35., 55.], [-116., -130., -153., -96.], [58., 22., -45., -194.], [-221., -134., 73., 159.], [-203., -254., 31., 235.], ], [ [105., -53., 61., 186.], [-195., 234., 75., -1.], [51., 139., 160., -108.], [-173., -167., 161., 19.], [83., -246., 156., -222.], [109., 39., -149., 137.], ], ], device, )?; let ids = Tensor::new( &[ [[4_u32, 4, 4, 2]], [[0, 4, 4, 3]], [[1, 5, 3, 4]], [[0, 3, 3, 2]], [[1, 1, 5, 2]], [[1, 4, 5, 4]], ], device, )?; let hs = t.gather(&ids, 1)?; assert_eq!( hs.to_vec3::()?, &[ [[-221., 136., -185., -75.]], [[3., 7., 92., -235.]], [[-150., 36., 83., 219.]], [[215., 240., 214., -64.]], [[74., 203., 31., -96.]], [[-195., -246., -149., -222.]] ] ); // Dim: 2 let t = Tensor::new( &[ [[-162_f32, 202.], [-126., -39.], [35., -65.], [1., 80.]], [[37., 248.], [-191., 89.], [117., -40.], [-217., 220.]], ], device, )?; let ids = Tensor::new(&[[[1_u32], [0], [1], [1]], [[0], [1], [0], [1]]], device)?; let hs = t.gather(&ids, 2)?; assert_eq!( hs.to_vec3::()?, &[ [[202.], [-126.], [-65.], [80.]], [[37.], [89.], [117.], [220.]] ] ); let t = Tensor::new( &[ [[-21_f32, -197.], [194., 122.]], [[255., -106.], [-191., 250.]], [[33., -117.], [43., 10.]], [[-130., 238.], [-217., -92.]], ], device, )?; let ids = Tensor::new( &[ [[0_u32, 1], [1, 0]], [[1, 0], [0, 1]], [[0, 1], [0, 1]], [[1, 0], [1, 0]], ], device, )?; let hs = t.gather(&ids, 2)?; assert_eq!( hs.to_vec3::()?, &[ [[-21., -197.], [122., 194.]], [[-106., 255.], [-191., 250.]], [[33., -117.], [43., 10.]], [[238., -130.], [-92., -217.]] ] ); Ok(()) } fn broadcasting(device: &Device) -> Result<()> { let t1 = Tensor::arange(0f32, 24f32, device)?.reshape((4, 2, 3))?; let t2 = Tensor::new(&[100f32, 200f32], device)?; let s = t1.broadcast_add(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::()?, &[ [[100.0, 101.0, 102.0], [203.0, 204.0, 205.0]], [[106.0, 107.0, 108.0], [209.0, 210.0, 211.0]], [[112.0, 113.0, 114.0], [215.0, 216.0, 217.0]], [[118.0, 119.0, 120.0], [221.0, 222.0, 223.0]] ] ); let s = t1.t()?.broadcast_add(&t2)?; assert_eq!( s.to_vec3::()?, &[ [[100.0, 203.0], [101.0, 204.0], [102.0, 205.0]], [[106.0, 209.0], [107.0, 210.0], [108.0, 211.0]], [[112.0, 215.0], [113.0, 216.0], [114.0, 217.0]], [[118.0, 221.0], [119.0, 222.0], [120.0, 223.0]] ] ); let s = t1.broadcast_sub(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::()?, &[ [[-100.0, -99.0, -98.0], [-197.0, -196.0, -195.0]], [[-94.0, -93.0, -92.0], [-191.0, -190.0, -189.0]], [[-88.0, -87.0, -86.0], [-185.0, -184.0, -183.0]], [[-82.0, -81.0, -80.0], [-179.0, -178.0, -177.0]] ] ); let s = t1.t()?.broadcast_sub(&t2)?; assert_eq!( s.to_vec3::()?, &[ [[-100.0, -197.0], [-99.0, -196.0], [-98.0, -195.0]], [[-94.0, -191.0], [-93.0, -190.0], [-92.0, -189.0]], [[-88.0, -185.0], [-87.0, -184.0], [-86.0, -183.0]], [[-82.0, -179.0], [-81.0, -178.0], [-80.0, -177.0]] ] ); // Test a narrowed version as this uses a layout start_offset. let t1 = t1.i(2..)?; let s = t1.broadcast_add(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::()?, &[ [[112.0, 113.0, 114.0], [215.0, 216.0, 217.0]], [[118.0, 119.0, 120.0], [221.0, 222.0, 223.0]] ] ); let s = t1.t()?.broadcast_add(&t2)?; assert_eq!( s.to_vec3::()?, &[ [[112.0, 215.0], [113.0, 216.0], [114.0, 217.0]], [[118.0, 221.0], [119.0, 222.0], [120.0, 223.0]] ] ); let s = t1.broadcast_sub(&t2.reshape((2, 1))?)?; assert_eq!( s.to_vec3::()?, &[ [[-88.0, -87.0, -86.0], [-185.0, -184.0, -183.0]], [[-82.0, -81.0, -80.0], [-179.0, -178.0, -177.0]] ] ); let s = t1.t()?.broadcast_sub(&t2)?; assert_eq!( s.to_vec3::()?, &[ [[-88.0, -185.0], [-87.0, -184.0], [-86.0, -183.0]], [[-82.0, -179.0], [-81.0, -178.0], [-80.0, -177.0]] ] ); let t3 = Tensor::new(1f32, device)?.broadcast_div(&t2)?; let s = t1.broadcast_mul(&t2.reshape((2, 1))?)?; let s_div = t1.broadcast_div(&t3.reshape((2, 1))?)?; assert_eq!( s.to_vec3::()?, &[ [[1200.0, 1300.0, 1400.0], [3000.0, 3200.0, 3400.0]], [[1800.0, 1900.0, 2000.0], [4200.0, 4400.0, 4600.0]] ] ); assert_eq!(s.to_vec3::()?, s_div.to_vec3::()?,); let s = t1.t()?.broadcast_mul(&t2)?; let s_div = t1.t()?.broadcast_div(&t3)?; assert_eq!( s.to_vec3::()?, &[ [[1200.0, 3000.0], [1300.0, 3200.0], [1400.0, 3400.0]], [[1800.0, 4200.0], [1900.0, 4400.0], [2000.0, 4600.0]] ] ); assert_eq!(s.to_vec3::()?, s_div.to_vec3::()?,); Ok(()) } fn randn(device: &Device) -> Result<()> { let tensor = Tensor::randn(0f32, 1f32, (5, 3), device)?; assert_eq!(tensor.dims(), [5, 3]); // Check that the seed gets updated by checking that // a new series of numbers is generated each time let tensor2 = Tensor::randn(0f32, 1f32, (5, 3), device)?; assert_ne!(tensor.to_vec2::()?, tensor2.to_vec2::()?); let tensor = Tensor::rand(0f32, 1f32, (5, 3), device)?; assert_eq!(tensor.dims(), [5, 3]); // Check that the seed gets updated by checking that // a new series of numbers is generated each time let tensor2 = Tensor::rand(0f32, 1f32, (5, 3), device)?; assert_ne!(tensor.to_vec2::()?, tensor2.to_vec2::()?); // We do not expect deterministic elements at any index. // There once was a bug that had a deterministic zero element in evenly sized tensors. const N: usize = 2; let v = (0..100) .map(|_| Tensor::randn(0f32, 1f32, N, device).and_then(|t| t.to_vec1::())) .collect::>>()?; assert!( (0..N).all(|i| v.windows(2).any(|pair| pair[0][i] != pair[1][i])), "There are deterministic values in the randn tensors" ); let v = (0..100) .map(|_| Tensor::rand(0f32, 1f32, N, device).and_then(|t| t.to_vec1::())) .collect::>>()?; assert!( (0..N).all(|i| v.windows(2).any(|pair| pair[0][i] != pair[1][i])), "There are deterministic values in the rand tensors" ); Ok(()) } fn zero_dim(device: &Device) -> Result<()> { let t = Tensor::zeros((4, 0, 1), DType::F32, device)?; assert_eq!(t.dims3()?, (4, 0, 1)); let t2 = Tensor::zeros((4, 3, 1), DType::F32, device)?; let t_cat = Tensor::cat(&[&t, &t2], 1)?; assert_eq!(t_cat.dims3()?, (4, 3, 1)); let t_cat = Tensor::cat(&[&t, &t], 1)?; assert_eq!(t_cat.dims3()?, (4, 0, 1)); let t_unary = t.sqrt()?; assert_eq!(t_unary.dims3()?, (4, 0, 1)); let t_plus = (&t + 1.)?; assert_eq!(t_plus.dims3()?, (4, 0, 1)); let t_mm = t2.matmul(&t.t()?)?; assert_eq!(t_mm.dims3()?, (4, 3, 0)); let t_mm = t.matmul(&t2.t()?)?; assert_eq!(t_mm.dims3()?, (4, 0, 3)); let t_mm = t.t()?.matmul(&t)?; assert_eq!(t_mm.dims3()?, (4, 1, 1)); Ok(()) } test_device!(zeros, zeros_cpu, zeros_gpu, zeros_metal); test_device!(ones, ones_cpu, ones_gpu, ones_metal); test_device!(full, full_cpu, full_gpu, full_metal); test_device!(arange, arange_cpu, arange_gpu, arange_metal); test_device!(add_mul, add_mul_cpu, add_mul_gpu, add_mul_metal); test_device!(tensor_2d, tensor_2d_cpu, tensor_2d_gpu, tensor_2d_metal); test_device!(narrow, narrow_cpu, narrow_gpu, narrow_metal); test_device!(broadcast, broadcast_cpu, broadcast_gpu, broadcast_metal); test_device!(slice_set, ss_cpu, ss_gpu, ss_metal); test_device!(cat, cat_cpu, cat_gpu, cat_metal); test_device!(sum, sum_cpu, sum_gpu, sum_metal); test_device!(min, min_cpu, min_gpu, min_metal); test_device!(max, max_cpu, max_gpu, max_metal); test_device!(argmax, argmax_cpu, argmax_gpu, argmax_metal); test_device!(argmin, argmin_cpu, argmin_gpu, argmin_metal); test_device!(transpose, transpose_cpu, transpose_gpu, transpose_metal); test_device!(unary_op, unary_op_cpu, unary_op_gpu, unary_op_metal); test_device!(binary_op, binary_op_cpu, binary_op_gpu, binary_op_metal); test_device!(embeddings, embeddings_cpu, embeddings_gpu, embeddings_metal); test_device!(cmp, cmp_cpu, cmp_gpu, cmp_metal); test_device!( broadcasting, broadcasting_cpu, broadcasting_gpu, broadcasting_metal ); test_device!( index_select, index_select_cpu, index_select_gpu, index_select_metal ); test_device!(index_add, index_add_cpu, index_add_gpu, index_add_metal); test_device!(gather, gather_cpu, gather_gpu, gather_metal); test_device!( scatter_add, scatter_add_cpu, scatter_add_gpu, scatter_add_metal ); test_device!( slice_scatter, slice_scatter_cpu, slice_scatter_gpu, slice_scatter_metal ); test_device!(randn, randn_cpu, randn_gpu, randn_metal); test_device!(clamp, clamp_cpu, clamp_gpu, clamp_metal); test_device!(asort, asort_cpu, asort_gpu, asort_metal); test_device!(var, var_cpu, var_gpu, var_metal); test_device!(zero_dim, zero_dim_cpu, zero_dim_gpu, zero_dim_metal); // There was originally a bug on the CPU implementation for randn // https://github.com/huggingface/ebcandle/issues/381 #[test] fn randn_hasneg() -> Result<()> { let t = Tensor::randn(0f32, 1f32, 200, &Device::Cpu)?.to_vec1::()?; if t.iter().all(|&v| v >= 0.) { ebcandle_core::bail!("all values in tensors are non-negative") } Ok(()) } #[test] fn pad_with_same() -> Result<()> { let t = Tensor::arange(1f32, 5f32, &Device::Cpu)?.reshape((2, 2))?; let t0 = t.pad_with_same(0, 1, 2)?; assert_eq!( t0.to_vec2::()?, [[1.0, 2.0], [1.0, 2.0], [3.0, 4.0], [3.0, 4.0], [3.0, 4.0]] ); let t1 = t.pad_with_same(1, 1, 2)?; assert_eq!( t1.to_vec2::()?, [[1.0, 1.0, 2.0, 2.0, 2.0], [3.0, 3.0, 4.0, 4.0, 4.0]] ); Ok(()) } #[test] fn i64_abs() -> Result<()> { let t = Tensor::new(&[-42i64, 1337], &Device::Cpu)?; let t = t.abs()?; assert_eq!(t.to_vec1::()?, [42, 1337]); Ok(()) } #[test] fn tril_triu_eye() -> Result<()> { let t = Tensor::tril2(4, DType::F32, &Device::Cpu)?; assert_eq!( t.to_vec2::()?, [ [1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 1.0, 1.0] ], ); let t = Tensor::triu2(4, DType::F32, &Device::Cpu)?; assert_eq!( t.to_vec2::()?, [ [1.0, 1.0, 1.0, 1.0], [0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0] ] ); let t = Tensor::eye(4, DType::F32, &Device::Cpu)?; assert_eq!( t.to_vec2::()?, [ [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0] ] ); Ok(()) } #[test] fn cumsum() -> Result<()> { let t = &[3f32, 1., 4., 1., 5.]; let t = Tensor::new(t, &Device::Cpu)?; assert_eq!(t.cumsum(0)?.to_vec1::()?, [3., 4., 8., 9., 14.]); let t = t.unsqueeze(1)?; assert_eq!( t.cumsum(0)?.to_vec2::()?, [[3.0], [4.0], [8.0], [9.0], [14.0]] ); assert_eq!( t.cumsum(1)?.to_vec2::()?, [[3.0], [1.0], [4.0], [1.0], [5.0]] ); let t = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; let t = Tensor::new(t, &Device::Cpu)?; assert_eq!( t.cumsum(1)?.to_vec2::()?, [[3.0, 4.0, 8.0, 9.0, 14.0], [2.0, 3.0, 10.0, 18.0, 20.0]], ); assert_eq!( t.cumsum(0)?.to_vec2::()?, [[3.0, 1.0, 4.0, 1.0, 5.0], [5.0, 2.0, 11.0, 9.0, 7.0]] ); Ok(()) } /// A helper function for floating point comparison. Both a and b must be 1D Tensor and contains the same amount of data. /// Assertion passes if the difference of all pairs of a and b is smaller than epsilon. fn assert_close(a: &Tensor, b: &Tensor, epsilon: f64) -> Result<()> { let a_vec: Vec = a.to_vec1()?; let b_vec: Vec = b.to_vec1()?; assert_eq!(a_vec.len(), b_vec.len()); for (a, b) in a_vec.iter().zip(b_vec.iter()) { assert!((a - b).abs() < epsilon); } Ok(()) } #[test] fn log_sum_exp() -> Result<()> { let input = Tensor::new( &[ [[1f64, 2., 3.], [4., 5., 6.]], [[-1000.0, -999.0, -1001.0], [1000.0, 999.0, 1001.0]], ], &Device::Cpu, )?; let output = input.log_sum_exp(D::Minus1)?; // The expectations obtained from pytorch. let expected = Tensor::new(&[[3.4076, 6.4076], [-998.5924, 1001.4076]], &Device::Cpu)?; assert_eq!(output.dims(), expected.dims()); assert_close(&output.flatten_all()?, &expected.flatten_all()?, 0.00001)?; assert_eq!( input.log_sum_exp((0, 1))?.to_vec1::()?, [1000.0, 999.0, 1001.0] ); assert_eq!( input.log_sum_exp(())?.to_vec3::()?, input.to_vec3::()? ); Ok(()) } #[test] fn pow() -> Result<()> { let lhs = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &Device::Cpu)?; let rhs = (&lhs - 2.)?; let res = lhs.pow(&rhs)?; assert_eq!( test_utils::to_vec2_round(&res, 3)?, [[1.0, 1.0, 3.0], [16.0, 125.0, 1296.0]] ); Ok(()) } #[test] fn unfold() -> Result<()> { let x = Tensor::arange(0i64, 3 * 2, &Device::Cpu)?.reshape((3, 2))?; let unfolded = x.unfold(0, 2, 1)?; dbg!(&unfolded); assert_eq!( unfolded.to_vec3::()?, vec![[[0i64, 2], [1, 3]], [[2, 4], [3, 5]]] ); Ok(()) }