// Copyright 2020 The IREE Authors // // Licensed under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception #include "runtime/bindings/tflite/tensor.h" #include "runtime/bindings/tflite/shim.h" iree_status_t _TfLiteTensorParseNameAttr(TfLiteTensor* tensor, iree_string_view_t attr, iree_allocator_t allocator) { char* str = NULL; IREE_RETURN_IF_ERROR( iree_allocator_malloc(allocator, attr.size + 1, (void**)&str)); memcpy(str, attr.data, attr.size); str[attr.size] = 0; tensor->name = iree_make_string_view(str, attr.size); return iree_ok_status(); } iree_status_t _TfLiteTensorParseTypeAttr(TfLiteTensor* tensor, iree_string_view_t attr) { // TODO(#3978): extract tensor type and plumb through iree.reflection. tensor->type = kTfLiteFloat32; return iree_ok_status(); } iree_status_t _TfLiteTensorParseQuantAttr(TfLiteTensor* tensor, iree_string_view_t attr) { // TODO(#3972): extract !quant.uniform and plumb through iree.reflection. tensor->quantization_params.scale = 0.0f; tensor->quantization_params.zero_point = 0; return iree_ok_status(); } // Who the hell uses sizeof(bool) - an **implementation-defined value** - // as a wire format? https://stackoverflow.com/a/4897859 static_assert(sizeof(bool) == 1, "bool must be 1 byte to match tf/tflite"); // Converts a tflite type to the HAL storage type. // If the is a composite of multiple primitive types (such as a complex number) // then |out_storage_scalar| is set to >1. static iree_status_t _TfLiteTypeToElementType( TfLiteType type, iree_hal_element_type_t* out_element_type, iree_host_size_t* out_storage_scalar) { *out_element_type = IREE_HAL_ELEMENT_TYPE_NONE; *out_storage_scalar = 1; switch (type) { default: case kTfLiteNoType: // Hopefully only used as a sentinel. *out_element_type = IREE_HAL_ELEMENT_TYPE_NONE; break; case kTfLiteInt8: *out_element_type = IREE_HAL_ELEMENT_TYPE_SINT_8; break; case kTfLiteUInt8: *out_element_type = IREE_HAL_ELEMENT_TYPE_UINT_8; break; case kTfLiteInt16: *out_element_type = IREE_HAL_ELEMENT_TYPE_SINT_16; break; case kTfLiteInt32: *out_element_type = IREE_HAL_ELEMENT_TYPE_SINT_32; break; case kTfLiteInt64: *out_element_type = IREE_HAL_ELEMENT_TYPE_SINT_64; break; case kTfLiteUInt64: *out_element_type = IREE_HAL_ELEMENT_TYPE_UINT_64; break; case kTfLiteFloat16: *out_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_16; break; case kTfLiteFloat32: *out_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_32; break; case kTfLiteFloat64: *out_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_64; break; case kTfLiteBool: *out_element_type = IREE_HAL_ELEMENT_TYPE_UINT_8; break; case kTfLiteComplex64: *out_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_32; *out_storage_scalar = 2; // real + imag break; case kTfLiteComplex128: *out_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_64; *out_storage_scalar = 2; // real + imag break; case kTfLiteString: // This isn't a tensor, it's an std::vector. Don't use this // type and instead use the IREE C API which has such amazing modern // programming concepts like ... lists. return iree_make_status(IREE_STATUS_UNIMPLEMENTED, "kTfLiteString is not implemented (and won't " "be); use the IREE C API"); } return iree_ok_status(); } iree_status_t _TfLiteTensorReallocateIfNeeded( TfLiteTensor* tensor, iree_hal_allocator_t* buffer_allocator, iree_allocator_t heap_allocator) { IREE_TRACE_ZONE_BEGIN(z0); // Format conversion; ensure we can support the type. iree_hal_element_type_t element_type = IREE_HAL_ELEMENT_TYPE_NONE; iree_host_size_t storage_scalar = 1; IREE_RETURN_AND_END_ZONE_IF_ERROR( z0, _TfLiteTypeToElementType(tensor->type, &element_type, &storage_scalar)); // Compute the total allocation size required, possibly with padding. iree_hal_dim_t shape_dims[IREE_BINDINGS_TFLITE_MAX_RANK]; for (int32_t i = 0; i < tensor->shape_rank; ++i) { shape_dims[i] = (iree_hal_dim_t)tensor->shape_dims[i]; } iree_device_size_t allocation_size = 0; IREE_RETURN_AND_END_ZONE_IF_ERROR( z0, iree_hal_buffer_compute_view_size( tensor->shape_rank, shape_dims, element_type, IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR, &allocation_size)); allocation_size *= storage_scalar; // If the old buffer is the same size then no need to realloc. if (tensor->buffer && iree_hal_buffer_byte_length(tensor->buffer) == allocation_size) { IREE_TRACE_ZONE_END(z0); return iree_ok_status(); } // Allocate the underlying buffer for the tensor. IREE_RETURN_AND_END_ZONE_IF_ERROR( z0, iree_hal_allocator_allocate_buffer( buffer_allocator, (iree_hal_buffer_params_t){ .type = IREE_HAL_MEMORY_TYPE_DEVICE_LOCAL | IREE_HAL_MEMORY_TYPE_HOST_VISIBLE, .usage = IREE_HAL_BUFFER_USAGE_DISPATCH_STORAGE | IREE_HAL_BUFFER_USAGE_TRANSFER | IREE_HAL_BUFFER_USAGE_MAPPING, }, allocation_size, &tensor->buffer)); // Map the buffer memory immediately. The tflite API doesn't let us know if // this is a buffer the user will actually touch or some state buffer that is // just going to be passed to future invocations. We could move this to an // on-demand mapping when the user calls TfLiteTensorData but this at least // puts potential errors in the same easy to find place. IREE_RETURN_AND_END_ZONE_IF_ERROR( z0, iree_hal_buffer_map_range(tensor->buffer, IREE_HAL_MAPPING_MODE_SCOPED, IREE_HAL_MEMORY_ACCESS_ALL, 0, IREE_WHOLE_BUFFER, &tensor->buffer_mapping)); IREE_TRACE_ZONE_END(z0); return iree_ok_status(); } iree_status_t _TfLiteTensorBind(TfLiteTensor* tensor, iree_hal_buffer_t* buffer) { IREE_TRACE_ZONE_BEGIN(z0); _TfLiteTensorDiscardBuffer(tensor); if (!buffer) { // Just a discard (invalid output/etc). IREE_TRACE_ZONE_END(z0); return iree_ok_status(); } // Attempt to map the buffer. The tflite API doesn't let us know if this // should be read or read/write - or if we even need to map at all. We could // move this to an on-demand mapping when the user calls TfLiteTensorData but // this at least puts potential errors in the same easy to find place. iree_device_size_t byte_offset = 0; iree_device_size_t byte_length = IREE_WHOLE_BUFFER; IREE_RETURN_AND_END_ZONE_IF_ERROR( z0, iree_hal_buffer_map_range( buffer, IREE_HAL_MAPPING_MODE_SCOPED, IREE_HAL_MEMORY_ACCESS_READ | IREE_HAL_MEMORY_ACCESS_WRITE, byte_offset, byte_length, &tensor->buffer_mapping)); // Retain the buffer view until discarded/reset. tensor->buffer = buffer; iree_hal_buffer_retain(tensor->buffer); IREE_TRACE_ZONE_END(z0); return iree_ok_status(); } void _TfLiteTensorDiscardBuffer(TfLiteTensor* tensor) { IREE_TRACE_ZONE_BEGIN(z0); if (tensor->buffer_mapping.contents.data != NULL) { iree_hal_buffer_unmap_range(&tensor->buffer_mapping); } iree_hal_buffer_release(tensor->buffer); tensor->buffer = NULL; IREE_TRACE_ZONE_END(z0); } void _TfLiteTensorReset(TfLiteTensor* tensor, iree_allocator_t allocator) { _TfLiteTensorDiscardBuffer(tensor); if (tensor->name.data) { iree_allocator_free(allocator, (void*)tensor->name.data); } } TFL_CAPI_EXPORT extern TfLiteType TfLiteTensorType(const TfLiteTensor* tensor) { return tensor->type; } TFL_CAPI_EXPORT extern int32_t TfLiteTensorNumDims(const TfLiteTensor* tensor) { return tensor->shape_rank; } TFL_CAPI_EXPORT extern int32_t TfLiteTensorDim(const TfLiteTensor* tensor, int32_t dim_index) { return tensor->shape_dims[dim_index]; } TFL_CAPI_EXPORT extern size_t TfLiteTensorByteSize(const TfLiteTensor* tensor) { return (size_t)iree_hal_buffer_byte_length(tensor->buffer); } TFL_CAPI_EXPORT extern void* TfLiteTensorData(const TfLiteTensor* tensor) { return tensor->buffer_mapping.contents.data; } TFL_CAPI_EXPORT extern const char* TfLiteTensorName( const TfLiteTensor* tensor) { return tensor->name.data; } TFL_CAPI_EXPORT extern TfLiteQuantizationParams TfLiteTensorQuantizationParams( const TfLiteTensor* tensor) { return tensor->quantization_params; } TFL_CAPI_EXPORT extern TfLiteStatus TfLiteTensorCopyFromBuffer( TfLiteTensor* tensor, const void* input_data, size_t input_data_size) { if (input_data_size != tensor->buffer_mapping.contents.data_length) { return kTfLiteApplicationError; } IREE_TRACE_ZONE_BEGIN(z0); IREE_TRACE_ZONE_APPEND_VALUE_I64(z0, tensor->buffer_mapping.contents.data_length); // NOTE: we could use a iree_hal_buffer_map_write here but we already // have the buffer mapped. If we knew the user would never use // TfLiteTensorData and could avoid mapping the buffer it would be more // efficient and portable to do the iree_hal_buffer_map_copy. memcpy(tensor->buffer_mapping.contents.data, input_data, input_data_size); IREE_TRACE_ZONE_END(z0); return kTfLiteOk; } TFL_CAPI_EXPORT extern TfLiteStatus TfLiteTensorCopyToBuffer( const TfLiteTensor* output_tensor, void* output_data, size_t output_data_size) { if (output_data_size != output_tensor->buffer_mapping.contents.data_length) { return kTfLiteApplicationError; } IREE_TRACE_ZONE_BEGIN(z0); IREE_TRACE_ZONE_APPEND_VALUE_I64( z0, output_tensor->buffer_mapping.contents.data_length); // NOTE: as with above we should use an iree_hal_buffer_map_read here. memcpy(output_data, output_tensor->buffer_mapping.contents.data, output_data_size); IREE_TRACE_ZONE_END(z0); return kTfLiteOk; }