// RUN: iree-compile %s -o ignored.mlir \ // RUN: --iree-hal-target-backends=vmvx \ // RUN: --iree-hal-dump-executable-benchmarks-to=- | \ // RUN: iree-compile - | \ // RUN: iree-benchmark-module --module=- | \ // RUN: FileCheck %s // This test relies on us piping stdout and that there's only a single // executable (otherwise we'd need to look at files and that's harder // cross-platform). Real automation of this requires xargs: compile and dump a // directory of .mlir benchmarks by specifying a path to the dump flag instead // of `-` (indicating stdout) and then ls | xargs them to iree-compile to // produce the vmfbs (optionally with different flags for each) and run // iree-benchmark-module to run them. // // Example of dumping per-dispatch executable benchmarks, compiling each, and // then benchmarking each: // iree-compile some_input.mlir -o ignored.mlir \ // --iree-hal-target-backends=vmvx \ // --iree-hal-dump-executable-benchmarks-to=benchmarks/ | \ // ls -1 benchmarks/ | xargs -i sh -c "iree-compile benchmarks/{} | iree-benchmark-module --module=-" // // NOTE: only dispatches that are able to be benchmarked automatically will be // written; if you don't end up with a .mlir file for the dispatch you're // interested in then either the pass needs improvement or the usage needs to be // reduced/simplified. Dynamic shapes, for example, will usually stop a dispatch // from being benchmarkable without explicit shape arguments. // CHECK: BM_abs_dispatch_0_vmvx_bytecode_fb_abs_dispatch_0_generic func.func @abs(%input : tensor) -> (tensor) { %result = math.absf %input : tensor return %result : tensor }