
DEDAUB.COM

EigenLayer Middleware
Smart Contract Security Assessment

Feb 05, 2024

DEDAUB.COM

ABSTRACT

Dedaub was commissioned to perform a security audit of the EigenLayer middleware
functionality, as well as EigenDA, the first AVS (actively validated service) to launch on
EigenLayer. The audit was over smart contract code and included a review of the
cryptographic implementation as well as overall code logic. The code, documentation,
and supporting elements (esp. test cases) are of excellent quality. However, given the
generality of the infrastructure, much of the correctness burden is on the client of the
middleware.

BACKGROUND

EigenLayer-middleware is a set of contracts that offer the necessary functionality for
interacting with the EigenLayer base (restaking) infrastructure. This set of contracts is
expected to serve the role of both static library and runtime support for AVSs. EigenDA, a
data availability service, is the first AVS used to showcase and refine the middleware. For
more detailed reading, there is extensive documentation in the respective repos as well
as in the main EigenLayer document repository.

SETTING & CAVEATS

The audit report is over the contracts of repository
https://github.com/Layr-Labs/eigenlayer-middleware, branch m2-mainnet,
at commit 2856834e1f90133ed692cbc25f2880e3769c5c80 and of repository
https://github.com/Layr-Labs/eigenda/, branch m2-mainnet-contracts, at commit
d06dec1a94c4e8082355f5e323d763e50d0712e4.

2 auditors worked on the codebase for 15 days on the following contracts:

eigenlayer-middleware/src/
├── BLSApkRegistry.sol

1

https://github.com/Layr-Labs/eigenda/
https://github.com/Layr-Labs/eigenlayer-middleware/blob/m2-mainnet/README.md
https://docs.eigenlayer.xyz/overview/
https://github.com/Layr-Labs/eigenlayer-middleware
https://github.com/Layr-Labs/eigenda/

DEDAUB.COM

├── BLSApkRegistryStorage.sol
├── BLSSignatureChecker.sol
├── IndexRegistry.sol
├── IndexRegistryStorage.sol
├── interfaces/
│ ├── IBLSApkRegistry.sol
│ ├── IBLSSignatureChecker.sol
│ ├── IDelayedService.sol
│ ├── IIndexRegistry.sol
│ ├── IRegistryCoordinator.sol
│ ├── IRegistry.sol
│ ├── IServiceManager.sol
│ ├── ISocketUpdater.sol
│ └── IStakeRegistry.sol
├── libraries/
│ ├── BitmapUtils.sol
│ └── BN254.sol
├── OperatorStateRetriever.sol
├── RegistryCoordinator.sol
├── RegistryCoordinatorStorage.sol
├── ServiceManagerBase.sol
├── StakeRegistry.sol
└── StakeRegistryStorage.sol

eigenda/contracts/src/
├── core/
│ ├── EigenDAServiceManager.sol
│ └── EigenDAServiceManagerStorage.sol
├── Imports.sol
├── interfaces/
│ └── IEigenDAServiceManager.sol
├── libraries/
│ ├── EigenDAHasher.sol
│ └── EigenDARollupUtils.sol
└── rollup/

└── MockRollup.sol

2

DEDAUB.COM

There are some caveats that should be spelled out, i.e., threats that are out-of-scope for
this report. These provide an important context for the rest of the report.

A major caveat in the case of EigenDA is that the smart contract code constitutes a small
part of the overall implementation. There are about 400 lines (excluding interfaces) of
smart contract code andmany thousands of lines of Go (i.e., off-chain) code. It is hard to
separate the correctness obligations of the off-chain code relative to the smart contract
code. Therefore, most of the correctness is left to off-chain code. Even checks defined
inside smart contracts (such as the function EigenDARollupUtils::verifyBlob) are
intended fully to be applied off-chain (the function is not called by any other smart
contract code) and sanity-check inputs against other inputs, not against on-chain state.

Generally, the line between on-chain and off-chain validation in EigenDA is hard to
discern and it seems possible that it may shift in the future (e.g., with more
decentralization). For instance, issue A1 results directly from the difficulty of telling why
some validation is done on-chain whereas other is performed off-chain. In principle,
given that the current EigenDA architecture is centralized and the obligation of checking
is entirely left to the batch checker, all validation (including confirmation of batches/
signatures) could be performed off-chain, with only final records committed on-chain.

As a result, we assume a well-functioning off-chain facility that maintains the
documented properties of EigenDA (including tolerance to reorgs, correct economic
incentives, etc.) and calls the smart contracts with correct inputs.

Another caveat concerns the guarantees provided by the base EigenLayer protocol.
Straightforward attacks, such as temporarily achieving amajority stake only to influence
a quorum, are economic threats in the heart of EigenLayer. Clearly, if the base protocol is
not sufficiently protected against a malicious large-stake owner then EigenLayer
middleware is also unsafe: the middleware trusts the main EigenLayer delegation
manager contract and assigns validation power based on the stakes it reports. We do not

3

DEDAUB.COM

report any such threats as issues of EigenLayer middleware, although clearly any
qualifications of the base EigenLayer protocol economic security have to be considered
in the context of every middleware client, i.e., every AVS deployed on EigenLayer. (For
instance, it is perfectly conceivable that some AVS will not be able to tolerate
instantaneous loss of control to a malicious party that temporarily holds a high stake,
although it can accept the risk if the stake is held for a time long enough for misbehavior
to incur economic penalties.)

Finally, the audit carefully reviewed cryptographic assumptions and the implementation.
The assumptions appear entirely safe, but remain assumptions. This trivially includes
widely-accepted cryptographic assumptions, but also, more meaningfully, simple
complexity calculations (e.g., truncating public key hashes to 24 bytes appears safe to
us as it did to the developers), as well as protocol design decisions. Specifically, the main
optimization, at the heart of the implementation, is based on an informal article:
https://geometry.xyz/notebook/Optimized-BLS-multisignatures-on-EVM. We reviewed in
depth the article’s cryptography, proof-of-concept code, and final implementation of
the mechanism. Although we are convinced of correctness, the article does not supply
rigorous proofs.

PROTOCOL-LEVEL CONSIDERATIONS

As a middleware facility, EigenLayer-middleware is to be used in a large variety of
settings. This makes some protocol-level considerations rise in importance. We itemize
issues that we think are vectors of general threats. These are warnings for all future
clients of EigenLayer-middleware (beyond the current EigenDA, which is unaffected).

ID Description STATUS

P1
Race conditions and records inconsistent with public
structures

LARGELY
RESOLVED
(6e010fee)

4

https://geometry.xyz/notebook/Optimized-BLS-multisignatures-on-EVM

DEDAUB.COM

[Resolution: the item is, for all practical intents, resolved: the checkSignatures

function, which is the foremost entry point, no longer allows processing based on
current-block data. The underlying potential for races remains, in the sense that all
data structures return values for the current block number, although these may be
overwritten. Thus, view functions can return data for the current block and these data
can trigger actions that will fail. However, mere awareness of this potential in clients
should be enough.]

Although BLSSignatureChecker::checkSignatures checks that the reference block
number is not in the future, the current block (i.e., the next to be produced) is accepted
as reference:

function checkSignatures(
bytes32 msgHash,
bytes calldata quorumNumbers,
uint32 referenceBlockNumber,
NonSignerStakesAndSignature memory params

){
...
require(referenceBlockNumber <= uint32(block.number),

"BLSSignatureChecker.checkSignatures: invalid reference block");

As a consequence, users of eigenlayer-middleware could be tempted to submit
confirmations for the current block, in an attempt to provide them as early as possible.
This practice, however, is risky, as it creates race conditions between the signature
check and other updates that might be performed in the same block.

If an update happens in the same block before checkSignatures, it might violate
some of the data included in the check, such as the APK or the stake history indexes,
causing the signature check to fail. In issues M1 and L2 we discuss in detail two

5

DEDAUB.COM

scenarios in which such a race condition could be causedmaliciously to achieve a DoS
attack.

Similarly, an update might happen in the same block but after checkSignatures. In
this case, the signature check will succeed, but there will be an inconsistency between
the data being checked and the information stored for that block, which could have
undesirable consequences for the protocol. For instance, the signatoryRecord hashed
and stored by EigenDAServiceManager::confirmBatch could be referring to a block
with data inconsistent with the globally-maintained data about that block. To
reconstruct records, one would need to replay past transactions.

As a consequence we recommend strengthening the above require to ensure that
only blocks strictly in the past can be used as reference. Alternatively, AVS
implementations should be careful to ensure they can tolerate such races and
apparent-inconsistency in records.

P2
msgHash parameter of checkSignatures should be
non-tainted in clients of EigenLayer middleware

RESOLVED,
documentation
(bfe962b0)

Clients of EigenLayer-middleware will call its main validation function,
checkSignatures:

function checkSignatures(
bytes32 msgHash,
bytes calldata quorumNumbers,
uint32 referenceBlockNumber,
NonSignerStakesAndSignature memory params

)

Clients should be careful to ensure that argument msgHash is indeed a hash (i.e.,
collision-resistant), and not directly controlled by an untrusted party. If the latter were
to happen, multiple purported signed messages (likely garbage) could be validated.

6

DEDAUB.COM

The reason is that the argument is being passed to function
trySignatureAndApkVerification and eventually to hashToG1, which (despite its
name) is not a collision-resistant hash function: it directly applies a modulo operation
to its argument, before attempting to find a group element.
BN254::hashToG1:293

function hashToG1(bytes32 _x) internal view returns (G1Point memory) {
uint256 beta = 0;
uint256 y = 0;
uint256 x = uint256(_x) % FP_MODULUS;
…

P3 Multiple valid sequences of signers possible INFO

Similarly to item P2, but even more obviously, clients should be aware that the sets of
signers/non-signers/signed messages that can be correctly validated will not be
unique. E.g., if a set of non-signers NS would validate correctly, the set can be
augmented by one more purported non-signer, by mere subtraction from the
signatures and public keys sets. If the larger non-signer set (i.e., smaller signer set)
still satisfies stake constraints, validation will pass. This is an “obvious” concern and is
unlikely to pose problems for most protocols, but we note it here for completeness, for
consideration in future clients (especially highly-decentralized ones, with multiple
independent and potentially racing callers of checkSignatures).

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues affecting the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

7

DEDAUB.COM

Category Description

CRITICAL
Can be profitably exploited by any knowledgeable third-party attacker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH
Third-party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM

Examples:
● User or system funds can be lost when third-party systems
misbehave.

● DoS, under specific conditions.
● Part of the functionality becomes unusable due to a programming
error.

LOW

Examples:
● Breaking important system invariants but without apparent
consequences.

● Buggy functionality for trusted users where a workaround exists.
● Security issues whichmaymanifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

CRITICAL SEVERITY:

[No critical severity issues]

8

DEDAUB.COM

HIGH SEVERITY:

[No high severity issues]

9

DEDAUB.COM

MEDIUM SEVERITY:

ID Description STATUS

M1
StakeUpdate-based DoS on confirmBatch (or any future
client of checkSignatures) if referenceBlockNumber is
the current block

RESOLVED
(6e010fee)

As discussed in P1, BLSSignatureChecker::checkSignatures allows the use of the
current block as the referenceBlockNumber. As a consequence, EigenDA could be
configured to call EigenDAServiceManager::confirmBatch with the current block
(i.e., the next to be produced) as reference, with the possible goal of providing
confirmations as early as possible. Such a practice, however, could allow an external
malicious entity (not necessarily an operator) to cause the confirmBatch transaction
to fail. We describe the concrete attack below.

In order to verify the operators’ stakes at the reference block, checkSignatures
requires the caller to provide indexes to the stake history list (so that the list does not
need to be traversed), for instance params.totalStakeIndices should point to the
total stake record for each quorum. These indexes are validated by
StakeRegistry::_validateOperatorStakeUpdateAtBlockNumber, by checking
that the corresponding StakeUpdate happened before or at the referenced block, and
that the next update happened later (or that the update is the last in the list).

function _validateOperatorStakeUpdateAtBlockNumber(
StakeUpdate memory operatorStakeUpdate,
uint32 blockNumber

) internal pure {
/**
* Validate that the update is valid for the given blockNumber:
* - blockNumber should be >= the update block number
* - the next update block number should be either 0 or strictly

10

DEDAUB.COM

greater than blockNumber
*/
require(
blockNumber >= operatorStakeUpdate.updateBlockNumber,
"StakeRegistry._validateOperatorStakeAtBlockNumber:

operatorStakeUpdate is from after blockNumber"
);
require(
operatorStakeUpdate.nextUpdateBlockNumber == 0 ||
blockNumber < operatorStakeUpdate.nextUpdateBlockNumber,
"StakeRegistry._validateOperatorStakeAtBlockNumber: there is a

newer operatorStakeUpdate available before blockNumber"
);

}

Now in order to call confirmBatch for the current block, the batch confirmer needs to
provide an index to the last history entry in the list (that is an entry having
nextUpdateBlockNumber == 0). That StakeUpdate happened in a previous block
(the batch confirmer is an EOA so cannot reliably perform an update and call
confirmBash in the same block), but it is still valid for the current block since it is the
last in the list.

The DoS possibility then is as follows: upon observing a pending transaction containing
confirmBatch for the next block, any malicious entity could front-run it with a call to
RegistryCoordinator::updateOperators. Such an update essentially invalidates
the index included in the call to confirmBatch. The entry’s nextUpdateBlockNumber
will become equal to the current block number, causing
_validateOperatorStakeUpdateAtBlockNumber to fail (the newly created history
entry should be used instead of the old one).

11

DEDAUB.COM

To prevent such DoS opportunities, confirmBatch can always be called for past
blocks, which could also be enforced on-chain by modifying the
referenceBlockNumber check in BLSSignatureChecker::checkSignatures.

LOW SEVERITY:

ID Description STATUS

L1 Idiom results in nested loop, can be optimized RESOLVED
(b51fda48)

The code idiom, below, using bytes.concat, incurs a loop, creating new copies of the
intermediate array. This results in O(n^2) complexity, which is unnecessary and can be
optimized with pre-allocation of the final array.
[The issue was discussed and addressed during the audit period.]
BitmapUtils::bitmapToBytesArray:126

for (uint256 i = 0; i < 256; ++i) {
// construct a single-bit mask for the i-th bit
bitMask = uint256(1 << i);
// check if the i-th bit is flipped in the bitmap
if (bitmap & bitMask != 0) {

// if the i-th bit is flipped, then add a byte … to the `bytesArray`
bytesArray = bytes.concat(bytesArray, bytes1(uint8(i)));

}
}

12

DEDAUB.COM

L2
APK-based DoS on confirmBatch (or any future client of
checkSignatures) if referenceBlockNumber is the
current block

RESOLVED
(6e010fee)

In P1 we discussed that allowing the current block to be used as a reference in
BLSSignatureChecker::checkSignatures can be potentially problematic. In M1 we
described in detail how it can lead to DoS on confirmBatch by front-running

confirmBatch with a stake update. Here, we briefly describe a similar DoS possibility,
this time via an APK update.

Consider a pending transaction with a call to confirmBatch for the current block. Such
a transaction contains a signature built w.r.t. to the aggregate public key registered for
that block. If this APK is modified before executing confirmBatch, it will cause the
transaction to fail for two reasons:

- The APK will not match the one of the signature
- The APK index (in params.quorumApkIndices) will no longer match the

reference block.

An APK update can be performed:
- Either by a malicious registered operator (independently from whether he has

signed the batch or not), who could deregister and re-register afterwards.
- Or by a malicious unregistered operator (if the conditions for a new registration

are met).

Although this attack is harder to execute than M1, it further reinforces our view that
only past blocks should be used as reference.

13

DEDAUB.COM

CENTRALIZATION ISSUES:

ID Description STATUS

N1 Permissioned accounts and centralized services INFO

The EigenLayer-middleware contracts include clearly-identified permissioned roles,
such as the owner of the RegistryCoordinator.

Furthermore, the EigenDA protocol operates currently in a centralized manner: a single
permissioned account can confirm batches. This mitigates some potential issues (e.g.,
P3, A1) but creates a trust obligation.

OTHER / ADVISORY ISSUES:

This section details issues that are not thought to directly affect the functionality of the
project, but we recommend considering them. These issues are explicitly labeled “Info”
and not “Open”. Before acting on such issues, developers should also confirm them to
the best of their ability.

ID Description STATUS

A1
EigenDAServiceManager::confirmBatch does not fully
validate its inputs

INFO

It is not clear what are the correctness obligations of the confirmBatch function of
EigenDAServiceManager. It is reasonable to assume that the input has been validated
by the permissioned caller, the batch confirmer. However, some input validation
checks (e.g., on the referenceBlockNumber) are performed on-chain, whereas others
are not. Notably, the length of the batchHeader.quorumNumbers and that of

14

DEDAUB.COM

batchHeader.quorumThresholdPercentages are not checked to match. The latter
can well be zero, eschewing all stake checks.

A2
The adversaryThresholdPercentage field of
IEigenDAServiceManager::QuorumBlobParam seems
unused.

INFO

The adversaryThresholdPercentage field is only checked against others that are
also supplied externally, but is not otherwise used in smart contract code.

A3 Inaccurate revert message, zero apkHash consideration INFO

In BLSApkRegistry::getApkIndicesAtBlockNumber the message below is not
entirely accurate:

BLSApkRegistry::getApkIndicesAtBlockNumber:212

if (quorumApkUpdatesLength == 0 ||
blockNumber < apkHistory[quorumNumber][0].updateBlockNumber) {
revert("BLSApkRegistry.getApkIndicesAtBlockNumber: blockNumber is

before the first update");
}

Strictly speaking, the first checked condition indicates that the block is before quorum
initialization, not before the first update.

It is possible that the revert message is the desired behavior and that the current
behavior is a bug. I.e., that if there has been no quorum update (with registering
operators) there should be no apkHash (of zero) returnable. We considered whether
returning a zero apkHash is a threat and could not devise an attack.

A4 Loops always iterate upwards INFO

15

DEDAUB.COM

There is a general aversion in the codebase to loops that do not iterate upwards. This is
probably a matter of taste, but we just bring up that the code could be arguably more
direct with a downwards loop. E.g., instead of
RegistryCoordinator::_getQuorumBitmapIndexAtBlockNumber:764

for (uint256 i = 0; i < length; i++) {
index = uint32(length - i - 1);
if (_operatorBitmapHistory[operatorId][index].updateBlockNumber <=

blockNumber) {
return index;

}
}

to have:

for (uint32 i = uint32(length); i > 0; i--) {
if (_operatorBitmapHistory[operatorId][i - 1].updateBlockNumber <=

blockNumber) {
return i - 1;

}
}

Other instances of the upward-loop-that-is-really-downward pattern occur in
BLSApkRegistry::getApkIndicesAtBlockNumber,
IndexRegistry::_operatorCountAtBlockNumber,
IndexRegistry::_operatorIdForIndexAtBlockNumber,
StakeRegistry::_getStakeUpdateIndexForOperatorAtBlockNumber.

A5 Misleading function name INFO

The name of the function (and its argument) below is slightly misleading:
StakeRegistry::_validateOperatorStakeUpdateAtBlockNumber:445

function _validateOperatorStakeUpdateAtBlockNumber(
StakeUpdate memory operatorStakeUpdate,
uint32 blockNumber

) internal pure { … }

16

DEDAUB.COM

The function is used to validate StakeUpdate entries not just of the
operatorStakeHistorymapping but also of the totalStakeHistorymapping.

A6 Minor optimization INFO

The function below admits minor optimization. Notably, it is on the control-flow path
of CheckSignatures, so this is probably worth applying.
BitmapUtils::orderedBytesArrayToBitmap:62

function orderedBytesArrayToBitmap(bytes memory orderedBytesArray,
uint8 bitUpperBound) internal pure returns (uint256) {

uint256 bitmap = orderedBytesArrayToBitmap(orderedBytesArray);

if (bitmap != 0) {
require(
uint8(orderedBytesArray[orderedBytesArray.length - 1]) < bitUpperBound,
"BitmapUtils.orderedBytesArrayToBitmap: bitmap exceeds max value"
);
}
return bitmap;
}

The check could be replaced by “(1 << bitUpperBound) > bitmap” to eliminate the
need for memory access.

A7 Misleading comment INFO

The comment below is not accurate.
IBLSSignatureChecker:19

struct NonSignerStakesAndSignature {
…
BN254.G2Point apkG2;
// is the aggregate G2 pubkey of all signers and non signers
…

}

The supplied group-2 pubkey is only for the signers.

17

DEDAUB.COM

A8 Invalid comments INFO

The comments below are copy-paste or leftover (old name?) errors.
BitmapUtils::isArrayStrictlyAscendingOrdered:100

// loop through each byte in the array to construct the bitmap
for (uint256 i = 1; i < bytesArray.length; ++i) {

StakeRegistryStorage:19

/// @notice Maximum length of dynamic arrays in the
`strategiesConsideredAndMultipliers` mapping.
uint8 public constant MAX_WEIGHING_FUNCTION_LENGTH = 32;

A9 Grammar or spelling errors in comments INFO

There are a few spelling errors in comments:
StakeRegistry:253

* @notice Modifys the weights of existing strategies for …

StakeRegistry:394

* @dev This function …. This is a concious choice,

EigenDAServiceManager:62

* - submitting data availabilty certificates,

And some grammar errors:
IndexResistry::_operatorIdForIndexAtBlockNumber:292

// we should only it this if the operatorIndex was never used before …

ServiceManagerBase:16

* This contract can inherited from or simply used as a point-of-reference.

IBLSApkRegistry:9

* @title Minimal interface for a registry that …for among many quorums.

18

DEDAUB.COM

IBLSSignatureChecker:26

uint32[] totalStakeIndices; // is the indices of each quorums total stake

IEigenDAServiceManager:50

// the must have signed …

A10 Future compatibility threat INFO

Some Ethereum Improvement Proposals suggest that the check “tx.origin ==

msg.sender” may become ineffective in the future, for ensuring that the msg.sender
is an EOA. The possibility currently seems remote and the potential impact to the
protocol is small.
EigenDAServiceManager::confirmBatch:71

function confirmBatch(
BatchHeader calldata batchHeader,
NonSignerStakesAndSignature memory nonSignerStakesAndSignature

) external onlyWhenNotPaused(PAUSED_CONFIRM_BATCH) onlyBatchConfirmer() {
// make sure the information needed to derive the non-signers and
// batch is in calldata to avoid emitting events
require(tx.origin == msg.sender,
"EigenDAServiceManager.confirmBatch: header and nonsigner data must be in calldata");

A11 Unnecessary code INFO

There are some unnecessary checks , which currently never fail.

RegistryCoordinator::updateOperatorsForQuorum:291

uint192 quorumBitmap = uint192(
BitmapUtils.orderedBytesArrayToBitmap(quorumNumbers, quorumCount));
require(
_quorumsAllExist(quorumBitmap),

19

DEDAUB.COM

"RegistryCoordinator.updateOperatorsForQuorum: some quorums do not exist"
);

(The quorumCount argument in the first statement ensures that the quorum numbers
are all below this bound, hence they exist, so the require cannot fail.)

StakeRegistry::_getStakeUpdateIndexForOperatorAtBlockNumber:280

function _getStakeUpdateIndexForOperatorAtBlockNumber(
bytes32 operatorId,
uint8 quorumNumber,
uint32 blockNumber

) internal view returns (uint32) {
uint256 length = operatorStakeHistory[operatorId][quorumNumber].length;
for (uint256 i = 0; i < length; i++) {

if (operatorStakeHistory[operatorId][quorumNumber]
[length - i - 1].updateBlockNumber <= blockNumber) {

uint32 nextUpdateBlockNumber =
operatorStakeHistory[operatorId][quorumNumber]

[length - i - 1].nextUpdateBlockNumber;
require(nextUpdateBlockNumber == 0 ||

nextUpdateBlockNumber > blockNumber,
"StakeRegistry._getStakeUpdateIndexForOperatorAtBlockNumber:

operatorId has no stake update at blockNumber");
return uint32(length - i - 1);

}
}
revert("StakeRegistry._getStakeUpdateIndexForOperatorAtBlockNumber: no

stake update found for operatorId and quorumNumber at block number");
}

The require seems unnecessary: if there is a record in operatorStakeHistory, the
last record’s nextUpdateBlockNumberwill always be zero.

Incidentally, the above function can beminorly gas-optimized, by storing memory and
storage pointers instead of calculating the same addresses repeatedly. We do not

20

DEDAUB.COM

include this and other such items in the report because the function appears to be
called only off-chain.

A12 Unusedmember INFO

BN254:80

bytes32 internal constant powersOfTauMerkleRoot = // Dedaub: unused
0x22c998e49752bbb1918ba87d6d59dd0e83620a311ba91dd4b2cc84990b31b56f;

A13 Compiler bugs INFO

The code is compiled with Solidity 0.8.12. This version has some known bugs, which
we do not believe to affect the correctness of the contracts.

21

https://github.com/ethereum/solidity/blob/3ed82c692374432cfa110bbd356cdd32df3db980/docs/bugs_by_version.json#L1769

DEDAUB.COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB

Dedaub offers significant security expertise combined with cutting-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub's auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and financial
mathematics.

22

