# ellp [![Crates.io](https://img.shields.io/crates/v/ellp)](https://crates.io/crates/ellp) [![docs.rs](https://img.shields.io/docsrs/ellp)](https://docs.rs/ellp/) [![GitHub](https://img.shields.io/github/license/kehlert/ellp)](https://github.com/kehlert/ellp/blob/dev/LICENSE.txt) Linear programming library that provides primal and dual simplex solvers. Both solvers are currently working for a small set of test problems. This library is an *early work-in-progress*. ## Examples Here is example code that sets up a linear program, and then solves it with both the primal and dual simplex solvers. ```rust use ellp::*; let mut prob = Problem::new(); let x1 = prob .add_var(2., Bound::TwoSided(-1., 1.), Some("x1".to_string())) .unwrap(); let x2 = prob .add_var(10., Bound::Upper(6.), Some("x2".to_string())) .unwrap(); let x3 = prob .add_var(0., Bound::Lower(0.), Some("x3".to_string())) .unwrap(); let x4 = prob .add_var(1., Bound::Fixed(0.), Some("x4".to_string())) .unwrap(); let x5 = prob .add_var(0., Bound::Free, Some("x5".to_string())) .unwrap(); prob.add_constraint(vec![(x1, 2.5), (x2, 3.5)], ConstraintOp::Gte, 5.) .unwrap(); prob.add_constraint(vec![(x2, 2.5), (x1, 4.5)], ConstraintOp::Lte, 1.) .unwrap(); prob.add_constraint(vec![(x3, -1.), (x4, -3.), (x5, -4.)], ConstraintOp::Eq, 2.) .unwrap(); println!("{}", prob); let primal_solver = PrimalSimplexSolver::default(); let dual_solver = DualSimplexSolver::default(); let primal_result = primal_solver.solve(prob.clone()).unwrap(); let dual_result = dual_solver.solve(prob).unwrap(); if let SolverResult::Optimal(sol) = primal_result { println!("primal obj: {}", sol.obj()); println!("primal opt point: {}", sol.x()); } else { panic!("should have an optimal point"); } if let SolverResult::Optimal(sol) = dual_result { println!("dual obj: {}", sol.obj()); println!("dual opt point: {}", sol.x()); } else { panic!("should have an optimal point"); } ``` The output is ``` minimize + 2 x1 + 10 x2 + 1 x4 subject to + 2.5 x1 + 3.5 x2 ≥ 5 + 2.5 x2 + 4.5 x1 ≤ 1 - 1 x3 - 3 x4 - 4 x5 = 2 with the bounds -1 ≤ x1 ≤ 1 x2 ≤ 6 x3 ≥ 0 x4 = 0 x5 free primal obj: 19.157894736842103 primal opt point: ┌ ┐ │ -0.9473684210526313 │ │ 2.1052631578947367 │ │ 0 │ │ 0 │ │ -0.5 │ └ ┘ dual obj: 19.157894736842103 dual opt point: ┌ ┐ │ -0.9473684210526313 │ │ 2.1052631578947367 │ │ 0 │ │ 0 │ │ -0.5 │ └ ┘ ``` If the problem is infeasible or unbounded, then `solve` will return `SolverResult::Infeasible` or `SolverResult::Unbounded`, respectively. ## Development priorities * clean up the code, add proper logging * performance improvements (LU factorization update, steepest edge) * add benchmarks and test problems, and document how to run them (and how to run all tests) * switch to sparse matrices (perhaps make it optional) * make a binary that solves problems given by mps files ## Various notes * problems in MPS format taken from https://netlib.org/lp/ * can run them with `cargo test --features benchmarks`