/* * Core bignum functions * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later */ #include "common.h" #if defined(MBEDTLS_BIGNUM_C) #include #include "mbedtls/error.h" #include "mbedtls/platform_util.h" #include "constant_time_internal.h" #include "mbedtls/platform.h" #include "bignum_core.h" #include "bn_mul.h" #include "constant_time_internal.h" size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a) { #if defined(__has_builtin) #if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_clz) #define core_clz __builtin_clz #elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_clzl) #define core_clz __builtin_clzl #elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_clzll) #define core_clz __builtin_clzll #endif #endif #if defined(core_clz) return (size_t) core_clz(a); #else size_t j; mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1); for (j = 0; j < biL; j++) { if (a & mask) { break; } mask >>= 1; } return j; #endif } size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs) { int i; size_t j; for (i = ((int) A_limbs) - 1; i >= 0; i--) { if (A[i] != 0) { j = biL - mbedtls_mpi_core_clz(A[i]); return (i * biL) + j; } } return 0; } static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a) { if (MBEDTLS_IS_BIG_ENDIAN) { /* Nothing to do on bigendian systems. */ return a; } else { #if defined(MBEDTLS_HAVE_INT32) return (mbedtls_mpi_uint) MBEDTLS_BSWAP32(a); #elif defined(MBEDTLS_HAVE_INT64) return (mbedtls_mpi_uint) MBEDTLS_BSWAP64(a); #endif } } void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A, size_t A_limbs) { mbedtls_mpi_uint *cur_limb_left; mbedtls_mpi_uint *cur_limb_right; if (A_limbs == 0) { return; } /* * Traverse limbs and * - adapt byte-order in each limb * - swap the limbs themselves. * For that, simultaneously traverse the limbs from left to right * and from right to left, as long as the left index is not bigger * than the right index (it's not a problem if limbs is odd and the * indices coincide in the last iteration). */ for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1); cur_limb_left <= cur_limb_right; cur_limb_left++, cur_limb_right--) { mbedtls_mpi_uint tmp; /* Note that if cur_limb_left == cur_limb_right, * this code effectively swaps the bytes only once. */ tmp = mpi_bigendian_to_host(*cur_limb_left); *cur_limb_left = mpi_bigendian_to_host(*cur_limb_right); *cur_limb_right = tmp; } } /* Whether min <= A, in constant time. * A_limbs must be at least 1. */ mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min, const mbedtls_mpi_uint *A, size_t A_limbs) { /* min <= least significant limb? */ mbedtls_ct_condition_t min_le_lsl = mbedtls_ct_uint_ge(A[0], min); /* limbs other than the least significant one are all zero? */ mbedtls_ct_condition_t msll_mask = MBEDTLS_CT_FALSE; for (size_t i = 1; i < A_limbs; i++) { msll_mask = mbedtls_ct_bool_or(msll_mask, mbedtls_ct_bool(A[i])); } /* min <= A iff the lowest limb of A is >= min or the other limbs * are not all zero. */ return mbedtls_ct_bool_or(msll_mask, min_le_lsl); } mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A, const mbedtls_mpi_uint *B, size_t limbs) { mbedtls_ct_condition_t ret = MBEDTLS_CT_FALSE, cond = MBEDTLS_CT_FALSE, done = MBEDTLS_CT_FALSE; for (size_t i = limbs; i > 0; i--) { /* * If B[i - 1] < A[i - 1] then A < B is false and the result must * remain 0. * * Again even if we can make a decision, we just mark the result and * the fact that we are done and continue looping. */ cond = mbedtls_ct_uint_lt(B[i - 1], A[i - 1]); done = mbedtls_ct_bool_or(done, cond); /* * If A[i - 1] < B[i - 1] then A < B is true. * * Again even if we can make a decision, we just mark the result and * the fact that we are done and continue looping. */ cond = mbedtls_ct_uint_lt(A[i - 1], B[i - 1]); ret = mbedtls_ct_bool_or(ret, mbedtls_ct_bool_and(cond, mbedtls_ct_bool_not(done))); done = mbedtls_ct_bool_or(done, cond); } /* * If all the limbs were equal, then the numbers are equal, A < B is false * and leaving the result 0 is correct. */ return ret; } void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X, const mbedtls_mpi_uint *A, size_t limbs, mbedtls_ct_condition_t assign) { if (X == A) { return; } /* This function is very performance-sensitive for RSA. For this reason * we have the loop below, instead of calling mbedtls_ct_memcpy_if * (this is more optimal since here we don't have to handle the case where * we copy awkwardly sized data). */ for (size_t i = 0; i < limbs; i++) { X[i] = mbedtls_ct_mpi_uint_if(assign, A[i], X[i]); } } void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X, mbedtls_mpi_uint *Y, size_t limbs, mbedtls_ct_condition_t swap) { if (X == Y) { return; } for (size_t i = 0; i < limbs; i++) { mbedtls_mpi_uint tmp = X[i]; X[i] = mbedtls_ct_mpi_uint_if(swap, Y[i], X[i]); Y[i] = mbedtls_ct_mpi_uint_if(swap, tmp, Y[i]); } } int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X, size_t X_limbs, const unsigned char *input, size_t input_length) { const size_t limbs = CHARS_TO_LIMBS(input_length); if (X_limbs < limbs) { return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; } if (X != NULL) { memset(X, 0, X_limbs * ciL); for (size_t i = 0; i < input_length; i++) { size_t offset = ((i % ciL) << 3); X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset; } } return 0; } int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X, size_t X_limbs, const unsigned char *input, size_t input_length) { const size_t limbs = CHARS_TO_LIMBS(input_length); if (X_limbs < limbs) { return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; } /* If X_limbs is 0, input_length must also be 0 (from previous test). * Nothing to do. */ if (X_limbs == 0) { return 0; } memset(X, 0, X_limbs * ciL); /* memcpy() with (NULL, 0) is undefined behaviour */ if (input_length != 0) { size_t overhead = (X_limbs * ciL) - input_length; unsigned char *Xp = (unsigned char *) X; memcpy(Xp + overhead, input, input_length); } mbedtls_mpi_core_bigendian_to_host(X, X_limbs); return 0; } int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A, size_t A_limbs, unsigned char *output, size_t output_length) { size_t stored_bytes = A_limbs * ciL; size_t bytes_to_copy; if (stored_bytes < output_length) { bytes_to_copy = stored_bytes; } else { bytes_to_copy = output_length; /* The output buffer is smaller than the allocated size of A. * However A may fit if its leading bytes are zero. */ for (size_t i = bytes_to_copy; i < stored_bytes; i++) { if (GET_BYTE(A, i) != 0) { return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; } } } for (size_t i = 0; i < bytes_to_copy; i++) { output[i] = GET_BYTE(A, i); } if (stored_bytes < output_length) { /* Write trailing 0 bytes */ memset(output + stored_bytes, 0, output_length - stored_bytes); } return 0; } int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X, size_t X_limbs, unsigned char *output, size_t output_length) { size_t stored_bytes; size_t bytes_to_copy; unsigned char *p; stored_bytes = X_limbs * ciL; if (stored_bytes < output_length) { /* There is enough space in the output buffer. Write initial * null bytes and record the position at which to start * writing the significant bytes. In this case, the execution * trace of this function does not depend on the value of the * number. */ bytes_to_copy = stored_bytes; p = output + output_length - stored_bytes; memset(output, 0, output_length - stored_bytes); } else { /* The output buffer is smaller than the allocated size of X. * However X may fit if its leading bytes are zero. */ bytes_to_copy = output_length; p = output; for (size_t i = bytes_to_copy; i < stored_bytes; i++) { if (GET_BYTE(X, i) != 0) { return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; } } } for (size_t i = 0; i < bytes_to_copy; i++) { p[bytes_to_copy - i - 1] = GET_BYTE(X, i); } return 0; } void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs, size_t count) { size_t i, v0, v1; mbedtls_mpi_uint r0 = 0, r1; v0 = count / biL; v1 = count & (biL - 1); if (v0 > limbs || (v0 == limbs && v1 > 0)) { memset(X, 0, limbs * ciL); return; } /* * shift by count / limb_size */ if (v0 > 0) { for (i = 0; i < limbs - v0; i++) { X[i] = X[i + v0]; } for (; i < limbs; i++) { X[i] = 0; } } /* * shift by count % limb_size */ if (v1 > 0) { for (i = limbs; i > 0; i--) { r1 = X[i - 1] << (biL - v1); X[i - 1] >>= v1; X[i - 1] |= r0; r0 = r1; } } } void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs, size_t count) { size_t i, v0, v1; mbedtls_mpi_uint r0 = 0, r1; v0 = count / (biL); v1 = count & (biL - 1); /* * shift by count / limb_size */ if (v0 > 0) { for (i = limbs; i > v0; i--) { X[i - 1] = X[i - v0 - 1]; } for (; i > 0; i--) { X[i - 1] = 0; } } /* * shift by count % limb_size */ if (v1 > 0) { for (i = v0; i < limbs; i++) { r1 = X[i] >> (biL - v1); X[i] <<= v1; X[i] |= r0; r0 = r1; } } } mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X, const mbedtls_mpi_uint *A, const mbedtls_mpi_uint *B, size_t limbs) { mbedtls_mpi_uint c = 0; for (size_t i = 0; i < limbs; i++) { mbedtls_mpi_uint t = c + A[i]; c = (t < A[i]); t += B[i]; c += (t < B[i]); X[i] = t; } return c; } mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X, const mbedtls_mpi_uint *A, size_t limbs, unsigned cond) { mbedtls_mpi_uint c = 0; mbedtls_ct_condition_t do_add = mbedtls_ct_bool(cond); for (size_t i = 0; i < limbs; i++) { mbedtls_mpi_uint add = mbedtls_ct_mpi_uint_if_else_0(do_add, A[i]); mbedtls_mpi_uint t = c + X[i]; c = (t < X[i]); t += add; c += (t < add); X[i] = t; } return c; } mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X, const mbedtls_mpi_uint *A, const mbedtls_mpi_uint *B, size_t limbs) { mbedtls_mpi_uint c = 0; for (size_t i = 0; i < limbs; i++) { mbedtls_mpi_uint z = (A[i] < c); mbedtls_mpi_uint t = A[i] - c; c = (t < B[i]) + z; X[i] = t - B[i]; } return c; } mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len, const mbedtls_mpi_uint *s, size_t s_len, mbedtls_mpi_uint b) { mbedtls_mpi_uint c = 0; /* carry */ /* * It is a documented precondition of this function that d_len >= s_len. * If that's not the case, we swap these round: this turns what would be * a buffer overflow into an incorrect result. */ if (d_len < s_len) { s_len = d_len; } size_t excess_len = d_len - s_len; size_t steps_x8 = s_len / 8; size_t steps_x1 = s_len & 7; while (steps_x8--) { MULADDC_X8_INIT MULADDC_X8_CORE MULADDC_X8_STOP } while (steps_x1--) { MULADDC_X1_INIT MULADDC_X1_CORE MULADDC_X1_STOP } while (excess_len--) { *d += c; c = (*d < c); d++; } return c; } void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X, const mbedtls_mpi_uint *A, size_t A_limbs, const mbedtls_mpi_uint *B, size_t B_limbs) { memset(X, 0, (A_limbs + B_limbs) * ciL); for (size_t i = 0; i < B_limbs; i++) { (void) mbedtls_mpi_core_mla(X + i, A_limbs + 1, A, A_limbs, B[i]); } } /* * Fast Montgomery initialization (thanks to Tom St Denis). */ mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N) { mbedtls_mpi_uint x = N[0]; x += ((N[0] + 2) & 4) << 1; for (unsigned int i = biL; i >= 8; i /= 2) { x *= (2 - (N[0] * x)); } return ~x + 1; } void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X, const mbedtls_mpi_uint *A, const mbedtls_mpi_uint *B, size_t B_limbs, const mbedtls_mpi_uint *N, size_t AN_limbs, mbedtls_mpi_uint mm, mbedtls_mpi_uint *T) { memset(T, 0, (2 * AN_limbs + 1) * ciL); for (size_t i = 0; i < AN_limbs; i++) { /* T = (T + u0*B + u1*N) / 2^biL */ mbedtls_mpi_uint u0 = A[i]; mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm; (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0); (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1); T++; } /* * The result we want is (T >= N) ? T - N : T. * * For better constant-time properties in this function, we always do the * subtraction, with the result in X. * * We also look to see if there was any carry in the final additions in the * loop above. */ mbedtls_mpi_uint carry = T[AN_limbs]; mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs); /* * Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs): * * T can be in one of 3 ranges: * * 1) T < N : (carry, borrow) = (0, 1): we want T * 2) N <= T < R : (carry, borrow) = (0, 0): we want X * 3) T >= R : (carry, borrow) = (1, 1): we want X * * and (carry, borrow) = (1, 0) can't happen. * * So the correct return value is already in X if (carry ^ borrow) = 0, * but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1. */ mbedtls_ct_memcpy_if(mbedtls_ct_bool(carry ^ borrow), (unsigned char *) X, (unsigned char *) T, NULL, AN_limbs * sizeof(mbedtls_mpi_uint)); } int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X, const mbedtls_mpi *N) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1)); MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL)); MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N)); MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n)); cleanup: return ret; } MBEDTLS_STATIC_TESTABLE void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest, const mbedtls_mpi_uint *table, size_t limbs, size_t count, size_t index) { for (size_t i = 0; i < count; i++, table += limbs) { mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq(i, index); mbedtls_mpi_core_cond_assign(dest, table, limbs, assign); } } /* Fill X with n_bytes random bytes. * X must already have room for those bytes. * The ordering of the bytes returned from the RNG is suitable for * deterministic ECDSA (see RFC 6979 §3.3 and the specification of * mbedtls_mpi_core_random()). */ int mbedtls_mpi_core_fill_random( mbedtls_mpi_uint *X, size_t X_limbs, size_t n_bytes, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; const size_t limbs = CHARS_TO_LIMBS(n_bytes); const size_t overhead = (limbs * ciL) - n_bytes; if (X_limbs < limbs) { return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; } memset(X, 0, overhead); memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL); MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes)); mbedtls_mpi_core_bigendian_to_host(X, limbs); cleanup: return ret; } int mbedtls_mpi_core_random(mbedtls_mpi_uint *X, mbedtls_mpi_uint min, const mbedtls_mpi_uint *N, size_t limbs, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { mbedtls_ct_condition_t ge_lower = MBEDTLS_CT_TRUE, lt_upper = MBEDTLS_CT_FALSE; size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs); size_t n_bytes = (n_bits + 7) / 8; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; /* * When min == 0, each try has at worst a probability 1/2 of failing * (the msb has a probability 1/2 of being 0, and then the result will * be < N), so after 30 tries failure probability is a most 2**(-30). * * When N is just below a power of 2, as is the case when generating * a random scalar on most elliptic curves, 1 try is enough with * overwhelming probability. When N is just above a power of 2, * as when generating a random scalar on secp224k1, each try has * a probability of failing that is almost 1/2. * * The probabilities are almost the same if min is nonzero but negligible * compared to N. This is always the case when N is crypto-sized, but * it's convenient to support small N for testing purposes. When N * is small, use a higher repeat count, otherwise the probability of * failure is macroscopic. */ int count = (n_bytes > 4 ? 30 : 250); /* * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA) * when f_rng is a suitably parametrized instance of HMAC_DRBG: * - use the same byte ordering; * - keep the leftmost n_bits bits of the generated octet string; * - try until result is in the desired range. * This also avoids any bias, which is especially important for ECDSA. */ do { MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs, n_bytes, f_rng, p_rng)); mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits); if (--count == 0) { ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; goto cleanup; } ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs); lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs); } while (mbedtls_ct_bool_and(ge_lower, lt_upper) == MBEDTLS_CT_FALSE); cleanup: return ret; } static size_t exp_mod_get_window_size(size_t Ebits) { #if MBEDTLS_MPI_WINDOW_SIZE >= 6 return (Ebits > 671) ? 6 : (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1; #elif MBEDTLS_MPI_WINDOW_SIZE == 5 return (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1; #elif MBEDTLS_MPI_WINDOW_SIZE > 1 return (Ebits > 79) ? MBEDTLS_MPI_WINDOW_SIZE : 1; #else (void) Ebits; return 1; #endif } size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs) { const size_t wsize = exp_mod_get_window_size(E_limbs * biL); const size_t welem = ((size_t) 1) << wsize; /* How big does each part of the working memory pool need to be? */ const size_t table_limbs = welem * AN_limbs; const size_t select_limbs = AN_limbs; const size_t temp_limbs = 2 * AN_limbs + 1; return table_limbs + select_limbs + temp_limbs; } static void exp_mod_precompute_window(const mbedtls_mpi_uint *A, const mbedtls_mpi_uint *N, size_t AN_limbs, mbedtls_mpi_uint mm, const mbedtls_mpi_uint *RR, size_t welem, mbedtls_mpi_uint *Wtable, mbedtls_mpi_uint *temp) { /* W[0] = 1 (in Montgomery presentation) */ memset(Wtable, 0, AN_limbs * ciL); Wtable[0] = 1; mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp); /* W[1] = A (already in Montgomery presentation) */ mbedtls_mpi_uint *W1 = Wtable + AN_limbs; memcpy(W1, A, AN_limbs * ciL); /* W[i+1] = W[i] * W[1], i >= 2 */ mbedtls_mpi_uint *Wprev = W1; for (size_t i = 2; i < welem; i++) { mbedtls_mpi_uint *Wcur = Wprev + AN_limbs; mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp); Wprev = Wcur; } } /* Exponentiation: X := A^E mod N. * * A must already be in Montgomery form. * * As in other bignum functions, assume that AN_limbs and E_limbs are nonzero. * * RR must contain 2^{2*biL} mod N. * * The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82 * (The difference is that the body in our loop processes a single bit instead * of a full window.) */ void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X, const mbedtls_mpi_uint *A, const mbedtls_mpi_uint *N, size_t AN_limbs, const mbedtls_mpi_uint *E, size_t E_limbs, const mbedtls_mpi_uint *RR, mbedtls_mpi_uint *T) { const size_t wsize = exp_mod_get_window_size(E_limbs * biL); const size_t welem = ((size_t) 1) << wsize; /* This is how we will use the temporary storage T, which must have space * for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */ const size_t table_limbs = welem * AN_limbs; const size_t select_limbs = AN_limbs; /* Pointers to specific parts of the temporary working memory pool */ mbedtls_mpi_uint *const Wtable = T; mbedtls_mpi_uint *const Wselect = Wtable + table_limbs; mbedtls_mpi_uint *const temp = Wselect + select_limbs; /* * Window precomputation */ const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N); /* Set Wtable[i] = A^(2^i) (in Montgomery representation) */ exp_mod_precompute_window(A, N, AN_limbs, mm, RR, welem, Wtable, temp); /* * Fixed window exponentiation */ /* X = 1 (in Montgomery presentation) initially */ memcpy(X, Wtable, AN_limbs * ciL); /* We'll process the bits of E from most significant * (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant * (limb_index=0, E_bit_index=0). */ size_t E_limb_index = E_limbs; size_t E_bit_index = 0; /* At any given time, window contains window_bits bits from E. * window_bits can go up to wsize. */ size_t window_bits = 0; mbedtls_mpi_uint window = 0; do { /* Square */ mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp); /* Move to the next bit of the exponent */ if (E_bit_index == 0) { --E_limb_index; E_bit_index = biL - 1; } else { --E_bit_index; } /* Insert next exponent bit into window */ ++window_bits; window <<= 1; window |= (E[E_limb_index] >> E_bit_index) & 1; /* Clear window if it's full. Also clear the window at the end, * when we've finished processing the exponent. */ if (window_bits == wsize || (E_bit_index == 0 && E_limb_index == 0)) { /* Select Wtable[window] without leaking window through * memory access patterns. */ mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable, AN_limbs, welem, window); /* Multiply X by the selected element. */ mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm, temp); window = 0; window_bits = 0; } } while (!(E_bit_index == 0 && E_limb_index == 0)); } mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X, const mbedtls_mpi_uint *A, mbedtls_mpi_uint c, /* doubles as carry */ size_t limbs) { for (size_t i = 0; i < limbs; i++) { mbedtls_mpi_uint s = A[i]; mbedtls_mpi_uint t = s - c; c = (t > s); X[i] = t; } return c; } mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A, size_t limbs) { volatile const mbedtls_mpi_uint *force_read_A = A; mbedtls_mpi_uint bits = 0; for (size_t i = 0; i < limbs; i++) { bits |= force_read_A[i]; } return mbedtls_ct_bool(bits); } void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X, const mbedtls_mpi_uint *A, const mbedtls_mpi_uint *N, size_t AN_limbs, mbedtls_mpi_uint mm, const mbedtls_mpi_uint *rr, mbedtls_mpi_uint *T) { mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T); } void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X, const mbedtls_mpi_uint *A, const mbedtls_mpi_uint *N, size_t AN_limbs, mbedtls_mpi_uint mm, mbedtls_mpi_uint *T) { const mbedtls_mpi_uint Rinv = 1; /* 1/R in Mont. rep => 1 */ mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T); } #endif /* MBEDTLS_BIGNUM_C */