/* * FIPS-202 compliant SHA3 implementation * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later */ /* * The SHA-3 Secure Hash Standard was published by NIST in 2015. * * https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.202.pdf */ #include "common.h" #if defined(MBEDTLS_SHA3_C) /* * These macros select manually unrolled implementations of parts of the main permutation function. * * Unrolling has a major impact on both performance and code size. gcc performance benefits a lot * from manually unrolling at higher optimisation levels. * * Depending on your size/perf priorities, compiler and target, it may be beneficial to adjust * these; the defaults here should give sensible trade-offs for gcc and clang on aarch64 and * x86-64. */ #if !defined(MBEDTLS_SHA3_THETA_UNROLL) #define MBEDTLS_SHA3_THETA_UNROLL 0 //no-check-names #endif #if !defined(MBEDTLS_SHA3_CHI_UNROLL) #if defined(__OPTIMIZE_SIZE__) #define MBEDTLS_SHA3_CHI_UNROLL 0 //no-check-names #else #define MBEDTLS_SHA3_CHI_UNROLL 1 //no-check-names #endif #endif #if !defined(MBEDTLS_SHA3_PI_UNROLL) #define MBEDTLS_SHA3_PI_UNROLL 1 //no-check-names #endif #if !defined(MBEDTLS_SHA3_RHO_UNROLL) #define MBEDTLS_SHA3_RHO_UNROLL 1 //no-check-names #endif #include "mbedtls/sha3.h" #include "mbedtls/platform_util.h" #include "mbedtls/error.h" #include #if defined(MBEDTLS_SELF_TEST) #include "mbedtls/platform.h" #endif /* MBEDTLS_SELF_TEST */ #define XOR_BYTE 0x6 /* Precomputed masks for the iota transform. * * Each round uses a 64-bit mask value. In each mask values, only * bits whose position is of the form 2^k-1 can be set, thus only * 7 of 64 bits of the mask need to be known for each mask value. * * We use a compressed encoding of the mask where bits 63, 31 and 15 * are moved to bits 4-6. This allows us to make each mask value * 1 byte rather than 8 bytes, saving 7*24 = 168 bytes of data (with * perhaps a little variation due to alignment). Decompressing this * requires a little code, but much less than the savings on the table. * * The impact on performance depends on the platform and compiler. * There's a bit more computation, but less memory bandwidth. A quick * benchmark on x86_64 shows a 7% speed improvement with GCC and a * 5% speed penalty with Clang, compared to the naive uint64_t[24] table. * YMMV. */ /* Helper macro to set the values of the higher bits in unused low positions */ #define H(b63, b31, b15) (b63 << 6 | b31 << 5 | b15 << 4) static const uint8_t iota_r_packed[24] = { H(0, 0, 0) | 0x01, H(0, 0, 1) | 0x82, H(1, 0, 1) | 0x8a, H(1, 1, 1) | 0x00, H(0, 0, 1) | 0x8b, H(0, 1, 0) | 0x01, H(1, 1, 1) | 0x81, H(1, 0, 1) | 0x09, H(0, 0, 0) | 0x8a, H(0, 0, 0) | 0x88, H(0, 1, 1) | 0x09, H(0, 1, 0) | 0x0a, H(0, 1, 1) | 0x8b, H(1, 0, 0) | 0x8b, H(1, 0, 1) | 0x89, H(1, 0, 1) | 0x03, H(1, 0, 1) | 0x02, H(1, 0, 0) | 0x80, H(0, 0, 1) | 0x0a, H(1, 1, 0) | 0x0a, H(1, 1, 1) | 0x81, H(1, 0, 1) | 0x80, H(0, 1, 0) | 0x01, H(1, 1, 1) | 0x08, }; #undef H static const uint32_t rho[6] = { 0x3f022425, 0x1c143a09, 0x2c3d3615, 0x27191713, 0x312b382e, 0x3e030832 }; static const uint32_t pi[6] = { 0x110b070a, 0x10050312, 0x04181508, 0x0d13170f, 0x0e14020c, 0x01060916 }; #define ROTR64(x, y) (((x) << (64U - (y))) | ((x) >> (y))) // 64-bit rotate right #define ABSORB(ctx, idx, v) do { ctx->state[(idx) >> 3] ^= ((uint64_t) (v)) << (((idx) & 0x7) << 3); \ } while (0) #define SQUEEZE(ctx, idx) ((uint8_t) (ctx->state[(idx) >> 3] >> (((idx) & 0x7) << 3))) #define SWAP(x, y) do { uint64_t tmp = (x); (x) = (y); (y) = tmp; } while (0) /* The permutation function. */ static void keccak_f1600(mbedtls_sha3_context *ctx) { uint64_t lane[5]; uint64_t *s = ctx->state; int i; for (int round = 0; round < 24; round++) { uint64_t t; /* Theta */ #if MBEDTLS_SHA3_THETA_UNROLL == 0 //no-check-names for (i = 0; i < 5; i++) { lane[i] = s[i] ^ s[i + 5] ^ s[i + 10] ^ s[i + 15] ^ s[i + 20]; } for (i = 0; i < 5; i++) { t = lane[(i + 4) % 5] ^ ROTR64(lane[(i + 1) % 5], 63); s[i] ^= t; s[i + 5] ^= t; s[i + 10] ^= t; s[i + 15] ^= t; s[i + 20] ^= t; } #else lane[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; lane[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; lane[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; lane[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; lane[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; t = lane[4] ^ ROTR64(lane[1], 63); s[0] ^= t; s[5] ^= t; s[10] ^= t; s[15] ^= t; s[20] ^= t; t = lane[0] ^ ROTR64(lane[2], 63); s[1] ^= t; s[6] ^= t; s[11] ^= t; s[16] ^= t; s[21] ^= t; t = lane[1] ^ ROTR64(lane[3], 63); s[2] ^= t; s[7] ^= t; s[12] ^= t; s[17] ^= t; s[22] ^= t; t = lane[2] ^ ROTR64(lane[4], 63); s[3] ^= t; s[8] ^= t; s[13] ^= t; s[18] ^= t; s[23] ^= t; t = lane[3] ^ ROTR64(lane[0], 63); s[4] ^= t; s[9] ^= t; s[14] ^= t; s[19] ^= t; s[24] ^= t; #endif /* Rho */ for (i = 1; i < 25; i += 4) { uint32_t r = rho[(i - 1) >> 2]; #if MBEDTLS_SHA3_RHO_UNROLL == 0 for (int j = i; j < i + 4; j++) { uint8_t r8 = (uint8_t) (r >> 24); r <<= 8; s[j] = ROTR64(s[j], r8); } #else s[i + 0] = ROTR64(s[i + 0], MBEDTLS_BYTE_3(r)); s[i + 1] = ROTR64(s[i + 1], MBEDTLS_BYTE_2(r)); s[i + 2] = ROTR64(s[i + 2], MBEDTLS_BYTE_1(r)); s[i + 3] = ROTR64(s[i + 3], MBEDTLS_BYTE_0(r)); #endif } /* Pi */ t = s[1]; #if MBEDTLS_SHA3_PI_UNROLL == 0 for (i = 0; i < 24; i += 4) { uint32_t p = pi[i >> 2]; for (unsigned j = 0; j < 4; j++) { SWAP(s[p & 0xff], t); p >>= 8; } } #else uint32_t p = pi[0]; SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t); SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t); p = pi[1]; SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t); SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t); p = pi[2]; SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t); SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t); p = pi[3]; SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t); SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t); p = pi[4]; SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t); SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t); p = pi[5]; SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t); SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t); #endif /* Chi */ #if MBEDTLS_SHA3_CHI_UNROLL == 0 //no-check-names for (i = 0; i <= 20; i += 5) { lane[0] = s[i]; lane[1] = s[i + 1]; lane[2] = s[i + 2]; lane[3] = s[i + 3]; lane[4] = s[i + 4]; s[i + 0] ^= (~lane[1]) & lane[2]; s[i + 1] ^= (~lane[2]) & lane[3]; s[i + 2] ^= (~lane[3]) & lane[4]; s[i + 3] ^= (~lane[4]) & lane[0]; s[i + 4] ^= (~lane[0]) & lane[1]; } #else lane[0] = s[0]; lane[1] = s[1]; lane[2] = s[2]; lane[3] = s[3]; lane[4] = s[4]; s[0] ^= (~lane[1]) & lane[2]; s[1] ^= (~lane[2]) & lane[3]; s[2] ^= (~lane[3]) & lane[4]; s[3] ^= (~lane[4]) & lane[0]; s[4] ^= (~lane[0]) & lane[1]; lane[0] = s[5]; lane[1] = s[6]; lane[2] = s[7]; lane[3] = s[8]; lane[4] = s[9]; s[5] ^= (~lane[1]) & lane[2]; s[6] ^= (~lane[2]) & lane[3]; s[7] ^= (~lane[3]) & lane[4]; s[8] ^= (~lane[4]) & lane[0]; s[9] ^= (~lane[0]) & lane[1]; lane[0] = s[10]; lane[1] = s[11]; lane[2] = s[12]; lane[3] = s[13]; lane[4] = s[14]; s[10] ^= (~lane[1]) & lane[2]; s[11] ^= (~lane[2]) & lane[3]; s[12] ^= (~lane[3]) & lane[4]; s[13] ^= (~lane[4]) & lane[0]; s[14] ^= (~lane[0]) & lane[1]; lane[0] = s[15]; lane[1] = s[16]; lane[2] = s[17]; lane[3] = s[18]; lane[4] = s[19]; s[15] ^= (~lane[1]) & lane[2]; s[16] ^= (~lane[2]) & lane[3]; s[17] ^= (~lane[3]) & lane[4]; s[18] ^= (~lane[4]) & lane[0]; s[19] ^= (~lane[0]) & lane[1]; lane[0] = s[20]; lane[1] = s[21]; lane[2] = s[22]; lane[3] = s[23]; lane[4] = s[24]; s[20] ^= (~lane[1]) & lane[2]; s[21] ^= (~lane[2]) & lane[3]; s[22] ^= (~lane[3]) & lane[4]; s[23] ^= (~lane[4]) & lane[0]; s[24] ^= (~lane[0]) & lane[1]; #endif /* Iota */ /* Decompress the round masks (see definition of rc) */ s[0] ^= ((iota_r_packed[round] & 0x40ull) << 57 | (iota_r_packed[round] & 0x20ull) << 26 | (iota_r_packed[round] & 0x10ull) << 11 | (iota_r_packed[round] & 0x8f)); } } void mbedtls_sha3_init(mbedtls_sha3_context *ctx) { memset(ctx, 0, sizeof(mbedtls_sha3_context)); } void mbedtls_sha3_free(mbedtls_sha3_context *ctx) { if (ctx == NULL) { return; } mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha3_context)); } void mbedtls_sha3_clone(mbedtls_sha3_context *dst, const mbedtls_sha3_context *src) { *dst = *src; } /* * SHA-3 context setup */ int mbedtls_sha3_starts(mbedtls_sha3_context *ctx, mbedtls_sha3_id id) { switch (id) { case MBEDTLS_SHA3_224: ctx->olen = 224 / 8; ctx->max_block_size = 1152 / 8; break; case MBEDTLS_SHA3_256: ctx->olen = 256 / 8; ctx->max_block_size = 1088 / 8; break; case MBEDTLS_SHA3_384: ctx->olen = 384 / 8; ctx->max_block_size = 832 / 8; break; case MBEDTLS_SHA3_512: ctx->olen = 512 / 8; ctx->max_block_size = 576 / 8; break; default: return MBEDTLS_ERR_SHA3_BAD_INPUT_DATA; } memset(ctx->state, 0, sizeof(ctx->state)); ctx->index = 0; return 0; } /* * SHA-3 process buffer */ int mbedtls_sha3_update(mbedtls_sha3_context *ctx, const uint8_t *input, size_t ilen) { if (ilen >= 8) { // 8-byte align index int align_bytes = 8 - (ctx->index % 8); if (align_bytes) { for (; align_bytes > 0; align_bytes--) { ABSORB(ctx, ctx->index, *input++); ilen--; ctx->index++; } if ((ctx->index = ctx->index % ctx->max_block_size) == 0) { keccak_f1600(ctx); } } // process input in 8-byte chunks while (ilen >= 8) { ABSORB(ctx, ctx->index, MBEDTLS_GET_UINT64_LE(input, 0)); input += 8; ilen -= 8; if ((ctx->index = (ctx->index + 8) % ctx->max_block_size) == 0) { keccak_f1600(ctx); } } } // handle remaining bytes while (ilen-- > 0) { ABSORB(ctx, ctx->index, *input++); if ((ctx->index = (ctx->index + 1) % ctx->max_block_size) == 0) { keccak_f1600(ctx); } } return 0; } int mbedtls_sha3_finish(mbedtls_sha3_context *ctx, uint8_t *output, size_t olen) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; /* Catch SHA-3 families, with fixed output length */ if (ctx->olen > 0) { if (ctx->olen > olen) { ret = MBEDTLS_ERR_SHA3_BAD_INPUT_DATA; goto exit; } olen = ctx->olen; } ABSORB(ctx, ctx->index, XOR_BYTE); ABSORB(ctx, ctx->max_block_size - 1, 0x80); keccak_f1600(ctx); ctx->index = 0; while (olen-- > 0) { *output++ = SQUEEZE(ctx, ctx->index); if ((ctx->index = (ctx->index + 1) % ctx->max_block_size) == 0) { keccak_f1600(ctx); } } ret = 0; exit: mbedtls_sha3_free(ctx); return ret; } /* * output = SHA-3( input buffer ) */ int mbedtls_sha3(mbedtls_sha3_id id, const uint8_t *input, size_t ilen, uint8_t *output, size_t olen) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_sha3_context ctx; mbedtls_sha3_init(&ctx); /* Sanity checks are performed in every mbedtls_sha3_xxx() */ if ((ret = mbedtls_sha3_starts(&ctx, id)) != 0) { goto exit; } if ((ret = mbedtls_sha3_update(&ctx, input, ilen)) != 0) { goto exit; } if ((ret = mbedtls_sha3_finish(&ctx, output, olen)) != 0) { goto exit; } exit: mbedtls_sha3_free(&ctx); return ret; } /**************** Self-tests ****************/ #if defined(MBEDTLS_SELF_TEST) static const unsigned char test_data[2][4] = { "", "abc", }; static const size_t test_data_len[2] = { 0, /* "" */ 3 /* "abc" */ }; static const unsigned char test_hash_sha3_224[2][28] = { { /* "" */ 0x6B, 0x4E, 0x03, 0x42, 0x36, 0x67, 0xDB, 0xB7, 0x3B, 0x6E, 0x15, 0x45, 0x4F, 0x0E, 0xB1, 0xAB, 0xD4, 0x59, 0x7F, 0x9A, 0x1B, 0x07, 0x8E, 0x3F, 0x5B, 0x5A, 0x6B, 0xC7 }, { /* "abc" */ 0xE6, 0x42, 0x82, 0x4C, 0x3F, 0x8C, 0xF2, 0x4A, 0xD0, 0x92, 0x34, 0xEE, 0x7D, 0x3C, 0x76, 0x6F, 0xC9, 0xA3, 0xA5, 0x16, 0x8D, 0x0C, 0x94, 0xAD, 0x73, 0xB4, 0x6F, 0xDF } }; static const unsigned char test_hash_sha3_256[2][32] = { { /* "" */ 0xA7, 0xFF, 0xC6, 0xF8, 0xBF, 0x1E, 0xD7, 0x66, 0x51, 0xC1, 0x47, 0x56, 0xA0, 0x61, 0xD6, 0x62, 0xF5, 0x80, 0xFF, 0x4D, 0xE4, 0x3B, 0x49, 0xFA, 0x82, 0xD8, 0x0A, 0x4B, 0x80, 0xF8, 0x43, 0x4A }, { /* "abc" */ 0x3A, 0x98, 0x5D, 0xA7, 0x4F, 0xE2, 0x25, 0xB2, 0x04, 0x5C, 0x17, 0x2D, 0x6B, 0xD3, 0x90, 0xBD, 0x85, 0x5F, 0x08, 0x6E, 0x3E, 0x9D, 0x52, 0x5B, 0x46, 0xBF, 0xE2, 0x45, 0x11, 0x43, 0x15, 0x32 } }; static const unsigned char test_hash_sha3_384[2][48] = { { /* "" */ 0x0C, 0x63, 0xA7, 0x5B, 0x84, 0x5E, 0x4F, 0x7D, 0x01, 0x10, 0x7D, 0x85, 0x2E, 0x4C, 0x24, 0x85, 0xC5, 0x1A, 0x50, 0xAA, 0xAA, 0x94, 0xFC, 0x61, 0x99, 0x5E, 0x71, 0xBB, 0xEE, 0x98, 0x3A, 0x2A, 0xC3, 0x71, 0x38, 0x31, 0x26, 0x4A, 0xDB, 0x47, 0xFB, 0x6B, 0xD1, 0xE0, 0x58, 0xD5, 0xF0, 0x04 }, { /* "abc" */ 0xEC, 0x01, 0x49, 0x82, 0x88, 0x51, 0x6F, 0xC9, 0x26, 0x45, 0x9F, 0x58, 0xE2, 0xC6, 0xAD, 0x8D, 0xF9, 0xB4, 0x73, 0xCB, 0x0F, 0xC0, 0x8C, 0x25, 0x96, 0xDA, 0x7C, 0xF0, 0xE4, 0x9B, 0xE4, 0xB2, 0x98, 0xD8, 0x8C, 0xEA, 0x92, 0x7A, 0xC7, 0xF5, 0x39, 0xF1, 0xED, 0xF2, 0x28, 0x37, 0x6D, 0x25 } }; static const unsigned char test_hash_sha3_512[2][64] = { { /* "" */ 0xA6, 0x9F, 0x73, 0xCC, 0xA2, 0x3A, 0x9A, 0xC5, 0xC8, 0xB5, 0x67, 0xDC, 0x18, 0x5A, 0x75, 0x6E, 0x97, 0xC9, 0x82, 0x16, 0x4F, 0xE2, 0x58, 0x59, 0xE0, 0xD1, 0xDC, 0xC1, 0x47, 0x5C, 0x80, 0xA6, 0x15, 0xB2, 0x12, 0x3A, 0xF1, 0xF5, 0xF9, 0x4C, 0x11, 0xE3, 0xE9, 0x40, 0x2C, 0x3A, 0xC5, 0x58, 0xF5, 0x00, 0x19, 0x9D, 0x95, 0xB6, 0xD3, 0xE3, 0x01, 0x75, 0x85, 0x86, 0x28, 0x1D, 0xCD, 0x26 }, { /* "abc" */ 0xB7, 0x51, 0x85, 0x0B, 0x1A, 0x57, 0x16, 0x8A, 0x56, 0x93, 0xCD, 0x92, 0x4B, 0x6B, 0x09, 0x6E, 0x08, 0xF6, 0x21, 0x82, 0x74, 0x44, 0xF7, 0x0D, 0x88, 0x4F, 0x5D, 0x02, 0x40, 0xD2, 0x71, 0x2E, 0x10, 0xE1, 0x16, 0xE9, 0x19, 0x2A, 0xF3, 0xC9, 0x1A, 0x7E, 0xC5, 0x76, 0x47, 0xE3, 0x93, 0x40, 0x57, 0x34, 0x0B, 0x4C, 0xF4, 0x08, 0xD5, 0xA5, 0x65, 0x92, 0xF8, 0x27, 0x4E, 0xEC, 0x53, 0xF0 } }; static const unsigned char long_kat_hash_sha3_224[28] = { 0xD6, 0x93, 0x35, 0xB9, 0x33, 0x25, 0x19, 0x2E, 0x51, 0x6A, 0x91, 0x2E, 0x6D, 0x19, 0xA1, 0x5C, 0xB5, 0x1C, 0x6E, 0xD5, 0xC1, 0x52, 0x43, 0xE7, 0xA7, 0xFD, 0x65, 0x3C }; static const unsigned char long_kat_hash_sha3_256[32] = { 0x5C, 0x88, 0x75, 0xAE, 0x47, 0x4A, 0x36, 0x34, 0xBA, 0x4F, 0xD5, 0x5E, 0xC8, 0x5B, 0xFF, 0xD6, 0x61, 0xF3, 0x2A, 0xCA, 0x75, 0xC6, 0xD6, 0x99, 0xD0, 0xCD, 0xCB, 0x6C, 0x11, 0x58, 0x91, 0xC1 }; static const unsigned char long_kat_hash_sha3_384[48] = { 0xEE, 0xE9, 0xE2, 0x4D, 0x78, 0xC1, 0x85, 0x53, 0x37, 0x98, 0x34, 0x51, 0xDF, 0x97, 0xC8, 0xAD, 0x9E, 0xED, 0xF2, 0x56, 0xC6, 0x33, 0x4F, 0x8E, 0x94, 0x8D, 0x25, 0x2D, 0x5E, 0x0E, 0x76, 0x84, 0x7A, 0xA0, 0x77, 0x4D, 0xDB, 0x90, 0xA8, 0x42, 0x19, 0x0D, 0x2C, 0x55, 0x8B, 0x4B, 0x83, 0x40 }; static const unsigned char long_kat_hash_sha3_512[64] = { 0x3C, 0x3A, 0x87, 0x6D, 0xA1, 0x40, 0x34, 0xAB, 0x60, 0x62, 0x7C, 0x07, 0x7B, 0xB9, 0x8F, 0x7E, 0x12, 0x0A, 0x2A, 0x53, 0x70, 0x21, 0x2D, 0xFF, 0xB3, 0x38, 0x5A, 0x18, 0xD4, 0xF3, 0x88, 0x59, 0xED, 0x31, 0x1D, 0x0A, 0x9D, 0x51, 0x41, 0xCE, 0x9C, 0xC5, 0xC6, 0x6E, 0xE6, 0x89, 0xB2, 0x66, 0xA8, 0xAA, 0x18, 0xAC, 0xE8, 0x28, 0x2A, 0x0E, 0x0D, 0xB5, 0x96, 0xC9, 0x0B, 0x0A, 0x7B, 0x87 }; static int mbedtls_sha3_kat_test(int verbose, const char *type_name, mbedtls_sha3_id id, int test_num) { uint8_t hash[64]; int result; result = mbedtls_sha3(id, test_data[test_num], test_data_len[test_num], hash, sizeof(hash)); if (result != 0) { if (verbose != 0) { mbedtls_printf(" %s test %d error code: %d\n", type_name, test_num, result); } return result; } switch (id) { case MBEDTLS_SHA3_224: result = memcmp(hash, test_hash_sha3_224[test_num], 28); break; case MBEDTLS_SHA3_256: result = memcmp(hash, test_hash_sha3_256[test_num], 32); break; case MBEDTLS_SHA3_384: result = memcmp(hash, test_hash_sha3_384[test_num], 48); break; case MBEDTLS_SHA3_512: result = memcmp(hash, test_hash_sha3_512[test_num], 64); break; default: break; } if (0 != result) { if (verbose != 0) { mbedtls_printf(" %s test %d failed\n", type_name, test_num); } return -1; } if (verbose != 0) { mbedtls_printf(" %s test %d passed\n", type_name, test_num); } return 0; } static int mbedtls_sha3_long_kat_test(int verbose, const char *type_name, mbedtls_sha3_id id) { mbedtls_sha3_context ctx; unsigned char buffer[1000]; unsigned char hash[64]; int result = 0; memset(buffer, 'a', 1000); if (verbose != 0) { mbedtls_printf(" %s long KAT test ", type_name); } mbedtls_sha3_init(&ctx); result = mbedtls_sha3_starts(&ctx, id); if (result != 0) { if (verbose != 0) { mbedtls_printf("setup failed\n "); } } /* Process 1,000,000 (one million) 'a' characters */ for (int i = 0; i < 1000; i++) { result = mbedtls_sha3_update(&ctx, buffer, 1000); if (result != 0) { if (verbose != 0) { mbedtls_printf("update error code: %i\n", result); } goto cleanup; } } result = mbedtls_sha3_finish(&ctx, hash, sizeof(hash)); if (result != 0) { if (verbose != 0) { mbedtls_printf("finish error code: %d\n", result); } goto cleanup; } switch (id) { case MBEDTLS_SHA3_224: result = memcmp(hash, long_kat_hash_sha3_224, 28); break; case MBEDTLS_SHA3_256: result = memcmp(hash, long_kat_hash_sha3_256, 32); break; case MBEDTLS_SHA3_384: result = memcmp(hash, long_kat_hash_sha3_384, 48); break; case MBEDTLS_SHA3_512: result = memcmp(hash, long_kat_hash_sha3_512, 64); break; default: break; } if (result != 0) { if (verbose != 0) { mbedtls_printf("failed\n"); } } if (verbose != 0) { mbedtls_printf("passed\n"); } cleanup: mbedtls_sha3_free(&ctx); return result; } int mbedtls_sha3_self_test(int verbose) { int i; /* SHA-3 Known Answer Tests (KAT) */ for (i = 0; i < 2; i++) { if (0 != mbedtls_sha3_kat_test(verbose, "SHA3-224", MBEDTLS_SHA3_224, i)) { return 1; } if (0 != mbedtls_sha3_kat_test(verbose, "SHA3-256", MBEDTLS_SHA3_256, i)) { return 1; } if (0 != mbedtls_sha3_kat_test(verbose, "SHA3-384", MBEDTLS_SHA3_384, i)) { return 1; } if (0 != mbedtls_sha3_kat_test(verbose, "SHA3-512", MBEDTLS_SHA3_512, i)) { return 1; } } /* SHA-3 long KAT tests */ if (0 != mbedtls_sha3_long_kat_test(verbose, "SHA3-224", MBEDTLS_SHA3_224)) { return 1; } if (0 != mbedtls_sha3_long_kat_test(verbose, "SHA3-256", MBEDTLS_SHA3_256)) { return 1; } if (0 != mbedtls_sha3_long_kat_test(verbose, "SHA3-384", MBEDTLS_SHA3_384)) { return 1; } if (0 != mbedtls_sha3_long_kat_test(verbose, "SHA3-512", MBEDTLS_SHA3_512)) { return 1; } if (verbose != 0) { mbedtls_printf("\n"); } return 0; } #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_SHA3_C */