// Envoy snapshot of Chromium URL path normalization, see README.md. // NOLINT(namespace-envoy) // Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef URL_URL_CANON_INTERNAL_H_ #define URL_URL_CANON_INTERNAL_H_ // This file is intended to be included in another C++ file where the character // types are defined. This allows us to write mostly generic code, but not have // template bloat because everything is inlined when anybody calls any of our // functions. #include #include #include "common/chromium_url/envoy_shim.h" #include "common/chromium_url/url_canon.h" namespace chromium_url { // Character type handling ----------------------------------------------------- // Bits that identify different character types. These types identify different // bits that are set for each 8-bit character in the kSharedCharTypeTable. enum SharedCharTypes { // Characters that do not require escaping in queries. Characters that do // not have this flag will be escaped; see url_canon_query.cc CHAR_QUERY = 1, // Valid in the username/password field. CHAR_USERINFO = 2, // Valid in a IPv4 address (digits plus dot and 'x' for hex). CHAR_IPV4 = 4, // Valid in an ASCII-representation of a hex digit (as in %-escaped). CHAR_HEX = 8, // Valid in an ASCII-representation of a decimal digit. CHAR_DEC = 16, // Valid in an ASCII-representation of an octal digit. CHAR_OCT = 32, // Characters that do not require escaping in encodeURIComponent. Characters // that do not have this flag will be escaped; see url_util.cc. CHAR_COMPONENT = 64, }; // This table contains the flags in SharedCharTypes for each 8-bit character. // Some canonicalization functions have their own specialized lookup table. // For those with simple requirements, we have collected the flags in one // place so there are fewer lookup tables to load into the CPU cache. // // Using an unsigned char type has a small but measurable performance benefit // over using a 32-bit number. extern const unsigned char kSharedCharTypeTable[0x100]; // More readable wrappers around the character type lookup table. inline bool IsCharOfType(unsigned char c, SharedCharTypes type) { return !!(kSharedCharTypeTable[c] & type); } inline bool IsQueryChar(unsigned char c) { return IsCharOfType(c, CHAR_QUERY); } inline bool IsIPv4Char(unsigned char c) { return IsCharOfType(c, CHAR_IPV4); } inline bool IsHexChar(unsigned char c) { return IsCharOfType(c, CHAR_HEX); } inline bool IsComponentChar(unsigned char c) { return IsCharOfType(c, CHAR_COMPONENT); } // Maps the hex numerical values 0x0 to 0xf to the corresponding ASCII digit // that will be used to represent it. COMPONENT_EXPORT(URL) extern const char kHexCharLookup[0x10]; // This lookup table allows fast conversion between ASCII hex letters and their // corresponding numerical value. The 8-bit range is divided up into 8 // regions of 0x20 characters each. Each of the three character types (numbers, // uppercase, lowercase) falls into different regions of this range. The table // contains the amount to subtract from characters in that range to get at // the corresponding numerical value. // // See HexDigitToValue for the lookup. extern const char kCharToHexLookup[8]; // Assumes the input is a valid hex digit! Call IsHexChar before using this. inline unsigned char HexCharToValue(unsigned char c) { return c - kCharToHexLookup[c / 0x20]; } // Indicates if the given character is a dot or dot equivalent, returning the // number of characters taken by it. This will be one for a literal dot, 3 for // an escaped dot. If the character is not a dot, this will return 0. template inline int IsDot(const CHAR* spec, int offset, int end) { if (spec[offset] == '.') { return 1; } else if (spec[offset] == '%' && offset + 3 <= end && spec[offset + 1] == '2' && (spec[offset + 2] == 'e' || spec[offset + 2] == 'E')) { // Found "%2e" return 3; } return 0; } // Write a single character, escaped, to the output. This always escapes: it // does no checking that thee character requires escaping. // Escaping makes sense only 8 bit chars, so code works in all cases of // input parameters (8/16bit). template inline void AppendEscapedChar(UINCHAR ch, CanonOutputT* output) { output->push_back('%'); output->push_back(kHexCharLookup[(ch >> 4) & 0xf]); output->push_back(kHexCharLookup[ch & 0xf]); } // UTF-8 functions ------------------------------------------------------------ // Generic To-UTF-8 converter. This will call the given append method for each // character that should be appended, with the given output method. Wrappers // are provided below for escaped and non-escaped versions of this. // // The char_value must have already been checked that it's a valid Unicode // character. template inline void DoAppendUTF8(unsigned char_value, Output* output) { if (char_value <= 0x7f) { Appender(static_cast(char_value), output); } else if (char_value <= 0x7ff) { // 110xxxxx 10xxxxxx Appender(static_cast(0xC0 | (char_value >> 6)), output); Appender(static_cast(0x80 | (char_value & 0x3f)), output); } else if (char_value <= 0xffff) { // 1110xxxx 10xxxxxx 10xxxxxx Appender(static_cast(0xe0 | (char_value >> 12)), output); Appender(static_cast(0x80 | ((char_value >> 6) & 0x3f)), output); Appender(static_cast(0x80 | (char_value & 0x3f)), output); } else if (char_value <= 0x10FFFF) { // Max Unicode code point. // 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx Appender(static_cast(0xf0 | (char_value >> 18)), output); Appender(static_cast(0x80 | ((char_value >> 12) & 0x3f)), output); Appender(static_cast(0x80 | ((char_value >> 6) & 0x3f)), output); Appender(static_cast(0x80 | (char_value & 0x3f)), output); } else { // Invalid UTF-8 character (>20 bits). NOTREACHED(); } } // Helper used by AppendUTF8Value below. We use an unsigned parameter so there // are no funny sign problems with the input, but then have to convert it to // a regular char for appending. inline void AppendCharToOutput(unsigned char ch, CanonOutput* output) { output->push_back(static_cast(ch)); } // Writes the given character to the output as UTF-8. This does NO checking // of the validity of the Unicode characters; the caller should ensure that // the value it is appending is valid to append. inline void AppendUTF8Value(unsigned char_value, CanonOutput* output) { DoAppendUTF8(char_value, output); } // Writes the given character to the output as UTF-8, escaping ALL // characters (even when they are ASCII). This does NO checking of the // validity of the Unicode characters; the caller should ensure that the value // it is appending is valid to append. inline void AppendUTF8EscapedValue(unsigned char_value, CanonOutput* output) { DoAppendUTF8(char_value, output); } // Given a '%' character at |*begin| in the string |spec|, this will decode // the escaped value and put it into |*unescaped_value| on success (returns // true). On failure, this will return false, and will not write into // |*unescaped_value|. // // |*begin| will be updated to point to the last character of the escape // sequence so that when called with the index of a for loop, the next time // through it will point to the next character to be considered. On failure, // |*begin| will be unchanged. inline bool Is8BitChar(char /*c*/) { return true; // this case is specialized to avoid a warning } template inline bool DecodeEscaped(const CHAR* spec, int* begin, int end, unsigned char* unescaped_value) { if (*begin + 3 > end || !Is8BitChar(spec[*begin + 1]) || !Is8BitChar(spec[*begin + 2])) { // Invalid escape sequence because there's not enough room, or the // digits are not ASCII. return false; } unsigned char first = static_cast(spec[*begin + 1]); unsigned char second = static_cast(spec[*begin + 2]); if (!IsHexChar(first) || !IsHexChar(second)) { // Invalid hex digits, fail. return false; } // Valid escape sequence. *unescaped_value = (HexCharToValue(first) << 4) + HexCharToValue(second); *begin += 2; return true; } } // namespace chromium_url #endif // URL_URL_CANON_INTERNAL_H_