[![EO principles respected here](https://www.elegantobjects.org/badge.svg)](https://www.elegantobjects.org) [![We recommend IntelliJ IDEA](https://www.elegantobjects.org/intellij-idea.svg)](https://www.jetbrains.com/idea/) [![make](https://github.com/yegor256/eoc/actions/workflows/cargo.yml/badge.svg)](https://github.com/yegor256/eoc/actions/workflows/cargo.yml) [![crates.io](https://img.shields.io/crates/v/eoc.svg)](https://crates.io/crates/eoc) [![PDD status](http://www.0pdd.com/svg?name=yegor256/eoc)](http://www.0pdd.com/p?name=yegor256/eoc) [![Hits-of-Code](https://hitsofcode.com/github/yegor256/eoc)](https://hitsofcode.com/view/github/yegor256/eoc) ![Lines of code](https://img.shields.io/tokei/lines/github/yegor256/eoc) [![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/yegor256/eoc/blob/master/LICENSE.txt) It's an experimental compiler of [EO](https://www.eolang.org) to binaries. To build it, install [Rust](https://www.rust-lang.org/tools/install) and then: ```bash $ cargo build --release ``` If everything goes well, an executable binary will be in `target/release/fibonacci`: ```bash $ target/release/fibonacci 7 40 ``` This will calculate the 7th Fibonacci number 40 times. Don't try to play with much larger numbers, this binary code is very slow. It's just an experiment. To compile your own program instead of this primitive recursive Fibonacci calculator, you have to convert EO code into [𝜑-calculus](https://arxiv.org/abs/2111.13384) terms and then pass them to `Emu` struct like this: ```rust use eoc::emu::Emu; pub fn main() { let emu: Emu = " ν0 ↦ ⟦ φ ↦ ν3 ⟧ ν1 ↦ ⟦ Δ ↦ 0x002A ⟧ ν2 ↦ ⟦ λ ↦ int-add, ρ ↦ ξ.𝛼0, 𝛼0 ↦ ξ.𝛼1 ⟧ ν3 ↦ ⟦ φ ↦ ν2(ξ), 𝛼0 ↦ ν1, 𝛼1 ↦ ν1 ⟧ ν5 ↦ ⟦ φ ↦ ν3(ξ) ⟧ ".parse().unwrap(); print!("The result is: {}", emu.cycle()); } ``` This code is equivalent to the following EO code: ```text [] > foo 42 > x x.add x > @ ``` But in a more "functional" way: ```text [] > foo 42 > x int-add > @ x x ``` More tests are in `src/emu.rs` file.