// Copyright 2019 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. pub mod common; use self::core::core::hash::Hashed; use self::core::core::{Block, BlockHeader}; use self::core::libtx; use self::core::pow::Difficulty; use self::keychain::{ExtKeychain, Keychain}; use self::util::RwLock; use crate::common::ChainAdapter; use crate::common::*; use epic_core as core; use epic_keychain as keychain; use epic_util as util; use std::sync::Arc; #[test] fn test_transaction_pool_block_reconciliation() { let keychain: ExtKeychain = Keychain::from_random_seed(false).unwrap(); let db_root = ".epic_block_reconciliation".to_string(); clean_output_dir(db_root.clone()); { let chain = Arc::new(ChainAdapter::init(db_root.clone()).unwrap()); // Initialize a new pool with our chain adapter. let pool = RwLock::new(test_setup(chain.clone())); let header = { let height = 1; let key_id = ExtKeychain::derive_key_id(1, height as u32, 0, 0, 0); let reward = libtx::reward::output( &keychain, &libtx::ProofBuilder::new(&keychain), &key_id, 0, false, height, ) .unwrap(); let genesis = BlockHeader::default(); let mut block = Block::new(&genesis, vec![], Difficulty::min(), reward).unwrap(); // Set the prev_root to the prev hash for testing purposes (no MMR to obtain a root from). block.header.prev_root = genesis.hash(); chain.update_db_for_block(&block); block.header }; // Now create tx to spend that first coinbase (now matured). // Provides us with some useful outputs to test with. let initial_tx = test_transaction_spending_coinbase(&keychain, &header, vec![10, 20, 30, 40]); let block = { let key_id = ExtKeychain::derive_key_id(1, 2, 0, 0, 0); let fees = initial_tx.fee(); let reward = libtx::reward::output( &keychain, &libtx::ProofBuilder::new(&keychain), &key_id, fees, false, 1, ) .unwrap(); let mut block = Block::new(&header, vec![initial_tx], Difficulty::min(), reward).unwrap(); // Set the prev_root to the prev hash for testing purposes (no MMR to obtain a root from). block.header.prev_root = header.hash(); chain.update_db_for_block(&block); block }; let header = block.header; // Preparation: We will introduce three root pool transactions. // 1. A transaction that should be invalidated because it is exactly // contained in the block. // 2. A transaction that should be invalidated because the input is // consumed in the block, although it is not exactly consumed. // 3. A transaction that should remain after block reconciliation. let block_transaction = test_transaction(&keychain, vec![10], vec![8]); let conflict_transaction = test_transaction(&keychain, vec![20], vec![12, 6]); let valid_transaction = test_transaction(&keychain, vec![30], vec![13, 15]); // We will also introduce a few children: // 4. A transaction that descends from transaction 1, that is in // turn exactly contained in the block. let block_child = test_transaction(&keychain, vec![8], vec![5, 1]); // 5. A transaction that descends from transaction 4, that is not // contained in the block at all and should be valid after // reconciliation. let pool_child = test_transaction(&keychain, vec![5], vec![3]); // 6. A transaction that descends from transaction 2 that does not // conflict with anything in the block in any way, but should be // invalidated (orphaned). let conflict_child = test_transaction(&keychain, vec![12], vec![2]); // 7. A transaction that descends from transaction 2 that should be // valid due to its inputs being satisfied by the block. let conflict_valid_child = test_transaction(&keychain, vec![6], vec![4]); // 8. A transaction that descends from transaction 3 that should be // invalidated due to an output conflict. let valid_child_conflict = test_transaction(&keychain, vec![13], vec![9]); // 9. A transaction that descends from transaction 3 that should remain // valid after reconciliation. let valid_child_valid = test_transaction(&keychain, vec![15], vec![11]); // 10. A transaction that descends from both transaction 6 and // transaction 9 let mixed_child = test_transaction(&keychain, vec![2, 11], vec![7]); let txs_to_add = vec![ block_transaction, conflict_transaction, valid_transaction.clone(), block_child, pool_child.clone(), conflict_child, conflict_valid_child.clone(), valid_child_conflict.clone(), valid_child_valid.clone(), mixed_child, ]; // First we add the above transactions to the pool. // All should be accepted. { let mut write_pool = pool.write(); assert_eq!(write_pool.total_size(), 0); for tx in &txs_to_add { write_pool .add_to_pool(test_source(), tx.clone(), false, &header) .unwrap(); } assert_eq!(write_pool.total_size(), txs_to_add.len()); } // Now we prepare the block that will cause the above conditions to be met. // First, the transactions we want in the block: // - Copy of 1 let block_tx_1 = test_transaction(&keychain, vec![10], vec![8]); // - Conflict w/ 2, satisfies 7 let block_tx_2 = test_transaction(&keychain, vec![20], vec![6]); // - Copy of 4 let block_tx_3 = test_transaction(&keychain, vec![8], vec![5, 1]); // - Output conflict w/ 8 let block_tx_4 = test_transaction(&keychain, vec![40], vec![9, 31]); let block_txs = vec![block_tx_1, block_tx_2, block_tx_3, block_tx_4]; // Now apply this block. let block = { let key_id = ExtKeychain::derive_key_id(1, 3, 0, 0, 0); let fees = block_txs.iter().map(|tx| tx.fee()).sum(); let reward = libtx::reward::output( &keychain, &libtx::ProofBuilder::new(&keychain), &key_id, fees, false, 1, ) .unwrap(); let mut block = Block::new(&header, block_txs, Difficulty::min(), reward).unwrap(); // Set the prev_root to the prev hash for testing purposes (no MMR to obtain a root from). block.header.prev_root = header.hash(); chain.update_db_for_block(&block); block }; // Check the pool still contains everything we expect at this point. { let write_pool = pool.write(); assert_eq!(write_pool.total_size(), txs_to_add.len()); } // And reconcile the pool with this latest block. { let mut write_pool = pool.write(); write_pool.reconcile_block(&block).unwrap(); assert_eq!(write_pool.total_size(), 4); assert_eq!(write_pool.txpool.entries[0].tx, valid_transaction); assert_eq!(write_pool.txpool.entries[1].tx, pool_child); assert_eq!(write_pool.txpool.entries[2].tx, conflict_valid_child); assert_eq!(write_pool.txpool.entries[3].tx, valid_child_valid); } } // Cleanup db directory clean_output_dir(db_root.clone()); }