// Copyright 2019 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. pub mod common; use self::core::core::{transaction, Block, BlockHeader, Weighting}; use self::core::libtx; use self::core::pow::Difficulty; use self::keychain::{ExtKeychain, Keychain}; use self::pool::TxSource; use self::util::RwLock; use crate::common::*; use epic_core as core; use epic_keychain as keychain; use epic_pool as pool; use epic_util as util; use std::sync::Arc; /// Test we can add some txs to the pool (both stempool and txpool). #[test] fn test_the_transaction_pool() { let keychain: ExtKeychain = Keychain::from_random_seed(false).unwrap(); let db_root = ".epic_transaction_pool".to_string(); clean_output_dir(db_root.clone()); let chain = Arc::new(ChainAdapter::init(db_root.clone()).unwrap()); // Initialize a new pool with our chain adapter. let pool = RwLock::new(test_setup(chain.clone())); let header = { let height = 1; let key_id = ExtKeychain::derive_key_id(1, height as u32, 0, 0, 0); let reward = libtx::reward::output( &keychain, &libtx::ProofBuilder::new(&keychain), &key_id, 0, false, height, ) .unwrap(); let block = Block::new(&BlockHeader::default(), vec![], Difficulty::min(), reward).unwrap(); chain.update_db_for_block(&block); block.header }; // Now create tx to spend a coinbase, giving us some useful outputs for testing // with. let initial_tx = { test_transaction_spending_coinbase( &keychain, &header, vec![500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400], ) }; // Add this tx to the pool (stem=false, direct to txpool). { let mut write_pool = pool.write(); write_pool .add_to_pool(test_source(), initial_tx, false, &header) .unwrap(); assert_eq!(write_pool.total_size(), 1); } // Test adding a tx that "double spends" an output currently spent by a tx // already in the txpool. In this case we attempt to spend the original coinbase twice. { let tx = test_transaction_spending_coinbase(&keychain, &header, vec![501]); let mut write_pool = pool.write(); assert!(write_pool .add_to_pool(test_source(), tx, false, &header) .is_err()); } // tx1 spends some outputs from the initial test tx. let tx1 = test_transaction(&keychain, vec![500, 600], vec![499, 599]); // tx2 spends some outputs from both tx1 and the initial test tx. let tx2 = test_transaction(&keychain, vec![499, 700], vec![498]); // Take a write lock and add a couple of tx entries to the pool. { let mut write_pool = pool.write(); // Check we have a single initial tx in the pool. assert_eq!(write_pool.total_size(), 1); // First, add a simple tx directly to the txpool (stem = false). write_pool .add_to_pool(test_source(), tx1.clone(), false, &header) .unwrap(); assert_eq!(write_pool.total_size(), 2); // Add another tx spending outputs from the previous tx. write_pool .add_to_pool(test_source(), tx2.clone(), false, &header) .unwrap(); assert_eq!(write_pool.total_size(), 3); } // Test adding the exact same tx multiple times (same kernel signature). // This will fail for stem=false during tx aggregation due to duplicate // outputs and duplicate kernels. { let mut write_pool = pool.write(); assert!(write_pool .add_to_pool(test_source(), tx1.clone(), false, &header) .is_err()); } // Test adding a duplicate tx with the same input and outputs. // Note: not the *same* tx, just same underlying inputs/outputs. { let tx1a = test_transaction(&keychain, vec![500, 600], vec![499, 599]); let mut write_pool = pool.write(); assert!(write_pool .add_to_pool(test_source(), tx1a, false, &header) .is_err()); } // Test adding a tx attempting to spend a non-existent output. { let bad_tx = test_transaction(&keychain, vec![10_001], vec![10_000]); let mut write_pool = pool.write(); assert!(write_pool .add_to_pool(test_source(), bad_tx, false, &header) .is_err()); } // Test adding a tx that would result in a duplicate output (conflicts with // output from tx2). For reasons of security all outputs in the UTXO set must // be unique. Otherwise spending one will almost certainly cause the other // to be immediately stolen via a "replay" tx. { let tx = test_transaction(&keychain, vec![900], vec![498]); let mut write_pool = pool.write(); assert!(write_pool .add_to_pool(test_source(), tx, false, &header) .is_err()); } // Confirm the tx pool correctly identifies an invalid tx (already spent). { let mut write_pool = pool.write(); let tx3 = test_transaction(&keychain, vec![500], vec![497]); assert!(write_pool .add_to_pool(test_source(), tx3, false, &header) .is_err()); assert_eq!(write_pool.total_size(), 3); } // Now add a couple of txs to the stempool (stem = true). { let mut write_pool = pool.write(); let tx = test_transaction(&keychain, vec![599], vec![598]); write_pool .add_to_pool(test_source(), tx, true, &header) .unwrap(); let tx2 = test_transaction(&keychain, vec![598], vec![597]); write_pool .add_to_pool(test_source(), tx2, true, &header) .unwrap(); assert_eq!(write_pool.total_size(), 3); assert_eq!(write_pool.stempool.size(), 2); } // Check we can take some entries from the stempool and "fluff" them into the // txpool. This also exercises multi-kernel txs. { let mut write_pool = pool.write(); let agg_tx = write_pool .stempool .all_transactions_aggregate() .unwrap() .unwrap(); assert_eq!(agg_tx.kernels().len(), 2); write_pool .add_to_pool(test_source(), agg_tx, false, &header) .unwrap(); assert_eq!(write_pool.total_size(), 4); assert!(write_pool.stempool.is_empty()); } // Adding a duplicate tx to the stempool will result in it being fluffed. // This handles the case of the stem path having a cycle in it. { let mut write_pool = pool.write(); let tx = test_transaction(&keychain, vec![597], vec![596]); write_pool .add_to_pool(test_source(), tx.clone(), true, &header) .unwrap(); assert_eq!(write_pool.total_size(), 4); assert_eq!(write_pool.stempool.size(), 1); // Duplicate stem tx so fluff, adding it to txpool and removing it from stempool. write_pool .add_to_pool(test_source(), tx.clone(), true, &header) .unwrap(); assert_eq!(write_pool.total_size(), 5); assert!(write_pool.stempool.is_empty()); } // Now check we can correctly deaggregate a multi-kernel tx based on current // contents of the txpool. // We will do this be adding a new tx to the pool // that is a superset of a tx already in the pool. { let mut write_pool = pool.write(); let tx4 = test_transaction(&keychain, vec![800], vec![799]); // tx1 and tx2 are already in the txpool (in aggregated form) // tx4 is the "new" part of this aggregated tx that we care about let agg_tx = transaction::aggregate(vec![tx1.clone(), tx2.clone(), tx4]).unwrap(); agg_tx.validate(Weighting::AsTransaction).unwrap(); write_pool .add_to_pool(test_source(), agg_tx, false, &header) .unwrap(); assert_eq!(write_pool.total_size(), 6); let entry = write_pool.txpool.entries.last().unwrap(); assert_eq!(entry.tx.kernels().len(), 1); assert_eq!(entry.src, TxSource::Deaggregate); } // Check we cannot "double spend" an output spent in a previous block. // We use the initial coinbase output here for convenience. { let chain = Arc::new(ChainAdapter::init(db_root.clone()).unwrap()); // Initialize a new pool with our chain adapter. let pool = RwLock::new(test_setup(chain.clone())); let header = { let height = 1; let key_id = ExtKeychain::derive_key_id(1, height as u32, 0, 0, 0); let reward = libtx::reward::output( &keychain, &libtx::ProofBuilder::new(&keychain), &key_id, 0, false, height, ) .unwrap(); let block = Block::new(&BlockHeader::default(), vec![], Difficulty::min(), reward).unwrap(); chain.update_db_for_block(&block); block.header }; // Now create tx to spend a coinbase, giving us some useful outputs for testing // with. let initial_tx = { test_transaction_spending_coinbase( &keychain, &header, vec![500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400], ) }; // Add this tx to the pool (stem=false, direct to txpool). { let mut write_pool = pool.write(); write_pool .add_to_pool(test_source(), initial_tx, false, &header) .unwrap(); assert_eq!(write_pool.total_size(), 1); } // Test adding a tx that "double spends" an output currently spent by a tx // already in the txpool. In this case we attempt to spend the original coinbase twice. { let tx = test_transaction_spending_coinbase(&keychain, &header, vec![501]); let mut write_pool = pool.write(); assert!(write_pool .add_to_pool(test_source(), tx, false, &header) .is_err()); } // tx1 spends some outputs from the initial test tx. let tx1 = test_transaction(&keychain, vec![500, 600], vec![499, 599]); // tx2 spends some outputs from both tx1 and the initial test tx. let tx2 = test_transaction(&keychain, vec![499, 700], vec![498]); // Take a write lock and add a couple of tx entries to the pool. { let mut write_pool = pool.write(); // Check we have a single initial tx in the pool. assert_eq!(write_pool.total_size(), 1); // First, add a simple tx directly to the txpool (stem = false). write_pool .add_to_pool(test_source(), tx1.clone(), false, &header) .unwrap(); assert_eq!(write_pool.total_size(), 2); // Add another tx spending outputs from the previous tx. write_pool .add_to_pool(test_source(), tx2.clone(), false, &header) .unwrap(); assert_eq!(write_pool.total_size(), 3); } // Test adding the exact same tx multiple times (same kernel signature). // This will fail for stem=false during tx aggregation due to duplicate // outputs and duplicate kernels. { let mut write_pool = pool.write(); assert!(write_pool .add_to_pool(test_source(), tx1.clone(), false, &header) .is_err()); } // Test adding a duplicate tx with the same input and outputs. // Note: not the *same* tx, just same underlying inputs/outputs. { let tx1a = test_transaction(&keychain, vec![500, 600], vec![499, 599]); let mut write_pool = pool.write(); assert!(write_pool .add_to_pool(test_source(), tx1a, false, &header) .is_err()); } // Test adding a tx attempting to spend a non-existent output. { let bad_tx = test_transaction(&keychain, vec![10_001], vec![10_000]); let mut write_pool = pool.write(); assert!(write_pool .add_to_pool(test_source(), bad_tx, false, &header) .is_err()); } // Test adding a tx that would result in a duplicate output (conflicts with // output from tx2). For reasons of security all outputs in the UTXO set must // be unique. Otherwise spending one will almost certainly cause the other // to be immediately stolen via a "replay" tx. { let tx = test_transaction(&keychain, vec![900], vec![498]); let mut write_pool = pool.write(); assert!(write_pool .add_to_pool(test_source(), tx, false, &header) .is_err()); } // Confirm the tx pool correctly identifies an invalid tx (already spent). { let mut write_pool = pool.write(); let tx3 = test_transaction(&keychain, vec![500], vec![497]); assert!(write_pool .add_to_pool(test_source(), tx3, false, &header) .is_err()); assert_eq!(write_pool.total_size(), 3); } // Now add a couple of txs to the stempool (stem = true). { let mut write_pool = pool.write(); let tx = test_transaction(&keychain, vec![599], vec![598]); write_pool .add_to_pool(test_source(), tx, true, &header) .unwrap(); let tx2 = test_transaction(&keychain, vec![598], vec![597]); write_pool .add_to_pool(test_source(), tx2, true, &header) .unwrap(); assert_eq!(write_pool.total_size(), 3); assert_eq!(write_pool.stempool.size(), 2); } // Check we can take some entries from the stempool and "fluff" them into the // txpool. This also exercises multi-kernel txs. { let mut write_pool = pool.write(); let agg_tx = write_pool .stempool .all_transactions_aggregate() .unwrap() .unwrap(); assert_eq!(agg_tx.kernels().len(), 2); write_pool .add_to_pool(test_source(), agg_tx, false, &header) .unwrap(); assert_eq!(write_pool.total_size(), 4); assert!(write_pool.stempool.is_empty()); } // Adding a duplicate tx to the stempool will result in it being fluffed. // This handles the case of the stem path having a cycle in it. { let mut write_pool = pool.write(); let tx = test_transaction(&keychain, vec![597], vec![596]); write_pool .add_to_pool(test_source(), tx.clone(), true, &header) .unwrap(); assert_eq!(write_pool.total_size(), 4); assert_eq!(write_pool.stempool.size(), 1); // Duplicate stem tx so fluff, adding it to txpool and removing it from stempool. write_pool .add_to_pool(test_source(), tx.clone(), true, &header) .unwrap(); assert_eq!(write_pool.total_size(), 5); assert!(write_pool.stempool.is_empty()); } // Now check we can correctly deaggregate a multi-kernel tx based on current // contents of the txpool. // We will do this be adding a new tx to the pool // that is a superset of a tx already in the pool. { let mut write_pool = pool.write(); let tx4 = test_transaction(&keychain, vec![800], vec![799]); // tx1 and tx2 are already in the txpool (in aggregated form) // tx4 is the "new" part of this aggregated tx that we care about let agg_tx = transaction::aggregate(vec![tx1.clone(), tx2.clone(), tx4]).unwrap(); agg_tx.validate(Weighting::AsTransaction).unwrap(); write_pool .add_to_pool(test_source(), agg_tx, false, &header) .unwrap(); assert_eq!(write_pool.total_size(), 6); let entry = write_pool.txpool.entries.last().unwrap(); assert_eq!(entry.tx.kernels().len(), 1); assert_eq!(entry.src, TxSource::Deaggregate); } // Check we cannot "double spend" an output spent in a previous block. // We use the initial coinbase output here for convenience. { let mut write_pool = pool.write(); let double_spend_tx = { test_transaction_spending_coinbase(&keychain, &header, vec![1000]) }; // check we cannot add a double spend to the stempool assert!(write_pool .add_to_pool(test_source(), double_spend_tx.clone(), true, &header) .is_err()); // check we cannot add a double spend to the txpool assert!(write_pool .add_to_pool(test_source(), double_spend_tx.clone(), false, &header) .is_err()); } } // Cleanup db directory clean_output_dir(db_root.clone()); }