//! SPI loopback test //! //! Folowing pins are used: //! SCLK GPIO1 //! MISO GPIO2 //! MOSI GPIO3 //! CS 1 GPIO11 //! CS 2 GPIO12 //! CS 3 GPIO25 //! //! Depending on your target and the board you are using you have to change the //! pins. //! //! This example transfers data via SPI. //! Connect MISO and MOSI pins to see the outgoing data is read as incoming //! data. #![no_std] #![no_main] use core::cell::RefCell; use embedded_hal_1::spi::SpiDevice; use embedded_hal_bus::spi::RefCellDevice; use esp32h2_hal::{ clock::ClockControl, gpio::{self, IO}, peripherals::Peripherals, prelude::*, spi::{master::Spi, SpiMode}, Delay, }; use esp_backtrace as _; use esp_println::{print, println}; #[entry] fn main() -> ! { let peripherals = Peripherals::take(); let system = peripherals.SYSTEM.split(); let clocks = ClockControl::boot_defaults(system.clock_control).freeze(); let io = IO::new(peripherals.GPIO, peripherals.IO_MUX); let sclk = io.pins.gpio1; let miso = io.pins.gpio2; let mosi = io.pins.gpio3; let spi_bus = Spi::new(peripherals.SPI2, 1000u32.kHz(), SpiMode::Mode0, &clocks).with_pins( Some(sclk), Some(mosi), Some(miso), gpio::NO_PIN, ); let spi_bus = RefCell::new(spi_bus); let mut spi_device_1 = RefCellDevice::new_no_delay(&spi_bus, io.pins.gpio11.into_push_pull_output()); let mut spi_device_2 = RefCellDevice::new_no_delay(&spi_bus, io.pins.gpio12.into_push_pull_output()); let mut spi_device_3 = RefCellDevice::new_no_delay(&spi_bus, io.pins.gpio25.into_push_pull_output()); let mut delay = Delay::new(&clocks); println!("=== SPI example with embedded-hal-1 traits ==="); loop { // --- Symmetric transfer (Read as much as we write) --- print!("Starting symmetric transfer..."); let write = [0xde, 0xad, 0xbe, 0xef]; let mut read: [u8; 4] = [0x00u8; 4]; spi_device_1.transfer(&mut read[..], &write[..]).unwrap(); assert_eq!(write, read); spi_device_2.transfer(&mut read[..], &write[..]).unwrap(); spi_device_3.transfer(&mut read[..], &write[..]).unwrap(); println!(" SUCCESS"); delay.delay_ms(250u32); // --- Asymmetric transfer (Read more than we write) --- print!("Starting asymetric transfer (read > write)..."); let mut read: [u8; 4] = [0x00; 4]; spi_device_1 .transfer(&mut read[0..2], &write[..]) .expect("Asymmetric transfer failed"); assert_eq!(write[0], read[0]); assert_eq!(read[2], 0x00u8); spi_device_2 .transfer(&mut read[0..2], &write[..]) .expect("Asymmetric transfer failed"); spi_device_3 .transfer(&mut read[0..2], &write[..]) .expect("Asymmetric transfer failed"); println!(" SUCCESS"); delay.delay_ms(250u32); // --- Symmetric transfer with huge buffer --- // Only your RAM is the limit! print!("Starting huge transfer..."); let mut write = [0x55u8; 4096]; for byte in 0..write.len() { write[byte] = byte as u8; } let mut read = [0x00u8; 4096]; spi_device_1 .transfer(&mut read[..], &write[..]) .expect("Huge transfer failed"); assert_eq!(write, read); spi_device_2 .transfer(&mut read[..], &write[..]) .expect("Huge transfer failed"); spi_device_3 .transfer(&mut read[..], &write[..]) .expect("Huge transfer failed"); println!(" SUCCESS"); delay.delay_ms(250u32); // --- Symmetric transfer with huge buffer in-place (No additional allocation // needed) --- print!("Starting huge transfer (in-place)..."); let mut write = [0x55u8; 4096]; for byte in 0..write.len() { write[byte] = byte as u8; } spi_device_1 .transfer_in_place(&mut write[..]) .expect("Huge transfer failed"); for byte in 0..write.len() { assert_eq!(write[byte], byte as u8); } spi_device_2 .transfer_in_place(&mut write[..]) .expect("Huge transfer failed"); spi_device_3 .transfer_in_place(&mut write[..]) .expect("Huge transfer failed"); println!(" SUCCESS"); delay.delay_ms(250u32); } }