module Hacl.Impl.Ed25519.Pow2_252m2 open FStar.HyperStack.All module ST = FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module SC = Spec.Curve25519 module CI = Hacl.Spec.Curve25519.Finv #set-options "--z3rlimit 500 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract val crecip_1: out:felem -> buf:lbuffer uint64 20ul -> z:felem -> Stack unit (requires fun h -> live h out /\ live h buf /\ live h z /\ disjoint buf z /\ disjoint out z /\ disjoint out buf /\ F51.mul_inv_t h z) (ensures fun h0 _ h1 -> modifies (loc buf) h0 h1 /\ F51.mul_inv_t h1 (gsub buf 10ul 5ul) /\ F51.felem_fits h1 (gsub buf 5ul 5ul) (1, 2, 1, 1, 1) /\ F51.fevalh h1 (gsub buf 5ul 5ul) == CI.pow (F51.fevalh h0 z) 1267650600228228275596796362752 /\ F51.fevalh h1 (gsub buf 10ul 5ul) == CI.pow (F51.fevalh h0 z) 1125899906842623 ) let crecip_1 out buf z = let a = sub buf 0ul 5ul in let t0 = sub buf 5ul 5ul in let b = sub buf 10ul 5ul in let c = sub buf 15ul 5ul in (**) let h0 = ST.get() in fsquare_times a z 1ul; // a = z ** (2 ** 1) == z ** 2 (**) assert_norm (pow2 1 == 2); fsquare_times t0 a 2ul; // t0 == a ** (2 ** 2) == (z ** 2) ** 4 == z ** 8 (**) CI.lemma_pow_mul (F51.fevalh h0 z) 2 4; (**) assert_norm (pow2 2 == 4); fmul b t0 z; // b == z0 ** 9 (**) CI.lemma_pow_one (F51.fevalh h0 z); (**) CI.lemma_pow_add (F51.fevalh h0 z) 8 1; fmul a b a; // a == b * a == z ** 11 (**) CI.lemma_pow_add (F51.fevalh h0 z) 9 2; fsquare_times t0 a 1ul; // t0 == a ** 2 == z ** 22 (**) CI.lemma_pow_mul (F51.fevalh h0 z) 11 2; fmul b t0 b; // b == z ** 31 (**) CI.lemma_pow_add (F51.fevalh h0 z) 22 9; fsquare_times t0 b 5ul; // t0 == b ** (2 ** 5) == z ** 992 (**) assert_norm (pow2 5 == 32); (**) CI.lemma_pow_mul (F51.fevalh h0 z) 31 32; fmul b t0 b; // b == t0 * b == z ** 1023 (**) CI.lemma_pow_add (F51.fevalh h0 z) 992 31; fsquare_times t0 b 10ul; // t0 = b ** (2 ** 1024) == z ** 1047552 (**) assert_norm (pow2 10 == 1024); (**) CI.lemma_pow_mul (F51.fevalh h0 z) 1023 1024; fmul c t0 b; // c == z ** 1048575 (**) CI.lemma_pow_add (F51.fevalh h0 z) 1047552 1023; fsquare_times t0 c 20ul; // t0 == c ** (2 ** 20) == 1099510579200 (**) assert_norm (pow2 20 == 1048576); (**) CI.lemma_pow_mul (F51.fevalh h0 z) 1048575 1048576; fmul t0 t0 c; // t0 == z ** 1099511627775 (**) CI.lemma_pow_add (F51.fevalh h0 z) 1099510579200 1048575; fsquare_times_inplace t0 10ul; // t0 == z ** 1125899906841600 (**) CI.lemma_pow_mul (F51.fevalh h0 z) 1099511627775 1024; fmul b t0 b; // b == z ** 1125899906842623 (**) CI.lemma_pow_add (F51.fevalh h0 z) 1125899906841600 1023; fsquare_times t0 b 50ul; // t0 == z ** 1267650600228228275596796362752; (**) assert_norm (pow2 50 = 1125899906842624); (**) CI.lemma_pow_mul (F51.fevalh h0 z) 1125899906842623 1125899906842624 inline_for_extraction noextract val crecip_2: out:felem -> buf:lbuffer uint64 20ul -> z:felem -> Stack unit (requires fun h -> live h out /\ live h buf /\ live h z /\ disjoint buf z /\ disjoint out z /\ disjoint out buf /\ F51.mul_inv_t h (gsub buf 10ul 5ul) /\ F51.felem_fits h (gsub buf 5ul 5ul) (1, 2, 1, 1, 1) /\ F51.fevalh h (gsub buf 5ul 5ul) == CI.pow (F51.fevalh h z) 1267650600228228275596796362752 /\ F51.fevalh h (gsub buf 10ul 5ul) == CI.pow (F51.fevalh h z) 1125899906842623 /\ F51.mul_inv_t h z) (ensures fun h0 _ h1 -> modifies (loc buf |+| loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == CI.pow (F51.fevalh h0 z) 7237005577332262213973186563042994240829374041602535252466099000494570602494 ) let crecip_2 out buf z = let a = sub buf 0ul 5ul in let t0 = sub buf 5ul 5ul in let b = sub buf 10ul 5ul in let c = sub buf 15ul 5ul in let h0 = ST.get() in (**) assert_norm (pow2 1 == 2); fsquare_times a z 1ul; // a == z ** 2; fmul c t0 b; // c == z ** 1267650600228229401496703205375 (**) CI.lemma_pow_add (F51.fevalh h0 z) 1267650600228228275596796362752 1125899906842623; fsquare_times t0 c 100ul; // t0 == z ** 1606938044258990275541962092339894951921974764381296132096000 (**) assert_norm (pow2 100 = 1267650600228229401496703205376); (**) CI.lemma_pow_mul (F51.fevalh h0 z) 1267650600228229401496703205375 1267650600228229401496703205376; fmul t0 t0 c; // t0 == z ** 1606938044258990275541962092341162602522202993782792835301375 (**) CI.lemma_pow_add (F51.fevalh h0 z) 1606938044258990275541962092339894951921974764381296132096000 1267650600228229401496703205375; (**) assert_norm (pow2 50 == 1125899906842624); fsquare_times_inplace t0 50ul; // t0 == z ** 1809251394333065553493296640760748560207343510400633813116523624223735808000 (**) CI.lemma_pow_mul (F51.fevalh h0 z) 1606938044258990275541962092341162602522202993782792835301375 1125899906842624; fmul t0 t0 b; // t0 == z ** 1809251394333065553493296640760748560207343510400633813116524750123642650623 (**) CI.lemma_pow_add (F51.fevalh h0 z) 1809251394333065553493296640760748560207343510400633813116523624223735808000 1125899906842623; (**) assert_norm (pow2 2 == 4); fsquare_times_inplace t0 2ul; // t0 == z ** 7237005577332262213973186563042994240829374041602535252466099000494570602492 (**) CI.lemma_pow_mul (F51.fevalh h0 z) 1809251394333065553493296640760748560207343510400633813116524750123642650623 4; fmul out t0 a; (**) CI.lemma_pow_add (F51.fevalh h0 z) 7237005577332262213973186563042994240829374041602535252466099000494570602492 2 val pow2_252m2: out:felem -> z:felem -> Stack unit (requires fun h -> live h out /\ live h z /\ disjoint out z /\ F51.mul_inv_t h z) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == F51.fevalh h0 z `SC.fpow` ((SC.prime + 3) / 8) ) [@CInline] let pow2_252m2 out z = push_frame(); let buf = create 20ul (u64 0) in let h0 = ST.get() in crecip_1 out buf z; crecip_2 out buf z; CI.lemma_fpow_is_pow (F51.fevalh h0 z) 7237005577332262213973186563042994240829374041602535252466099000494570602494; assert_norm (7237005577332262213973186563042994240829374041602535252466099000494570602494 == (SC.prime + 3) / 8); pop_frame()