[ "\u0016ÄeYÀ´lÔ\u001ekƒòñÔK0", [ [ "Lib.Exponentiation.__proj__Mkcomm_monoid__item__lemma_one", 1, 2, 1, [ "@query", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_mul", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_one", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_mul", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_one", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul" ], 0, "31c50e9487e0da164f5db5556a17f4da" ], [ "Lib.Exponentiation.__proj__Mkcomm_monoid__item__lemma_mul_assoc", 1, 2, 1, [ "@query", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_mul", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_mul", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul" ], 0, "4ed1d9f5135937a441266fd7d382e8be" ], [ "Lib.Exponentiation.__proj__Mkcomm_monoid__item__lemma_mul_comm", 1, 2, 1, [ "@query", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_mul", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_mul", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul" ], 0, "3525f2a349054011d146cbcb827ef5e7" ], [ "Lib.Exponentiation.pow", 1, 2, 1, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_4", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "well-founded-ordering-on-nat" ], 0, "8814d8d6b628d6bf28a160a90752287d" ], [ "Lib.Exponentiation.lemma_pow0", 1, 2, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Lib.Exponentiation.pow.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_with_fuel_Lib.Exponentiation.pow.fuel_instrumented", "fuel_guarded_inversion_Lib.Exponentiation.exp", "function_token_typing_Prims.__cache_version_number__", "int_typing", "primitive_Prims.op_Equality", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "9b70410cc0dab3d99a50a32eb295d075" ], [ "Lib.Exponentiation.lemma_pow1", 1, 2, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Lib.Exponentiation.pow.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Lib.Exponentiation.mul", "equation_Lib.Exponentiation.one", "equation_Prims.nat", "equation_with_fuel_Lib.Exponentiation.pow.fuel_instrumented", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_typing", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "interpretation_Tm_abs_bdd1351fbdaffcab615fdbdd8ed277ef", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "token_correspondence_Lib.Exponentiation.mul", "token_correspondence_Lib.Exponentiation.one" ], 0, "a76457f8291870d40e34300e08f3f943" ], [ "Lib.Exponentiation.lemma_pow_unfold", 1, 2, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "bdb2255f81c57b70e1db5e80777de2ef" ], [ "Lib.Exponentiation.lemma_pow_unfold", 2, 2, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Lib.Exponentiation.pow.fuel_instrumented", "@fuel_irrelevance_Lib.Exponentiation.pow.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_Prims.pos", "equation_with_fuel_Lib.Exponentiation.pow.fuel_instrumented", "fuel_guarded_inversion_Lib.Exponentiation.exp", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "05c8c7fb8ca487c139b4a58a9802a354" ], [ "Lib.Exponentiation.lemma_pow_one", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_3", "equation_Lib.Exponentiation.mul", "equation_Lib.Exponentiation.one", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "interpretation_Tm_abs_bdd1351fbdaffcab615fdbdd8ed277ef", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "token_correspondence_Lib.Exponentiation.mul", "token_correspondence_Lib.Exponentiation.one", "well-founded-ordering-on-nat" ], 0, "6786cef7755d51ed3b71c8363b9c2e7e" ], [ "Lib.Exponentiation.lemma_pow_add", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Addition", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "7511acb2da09fab5086b14de6be1f5f1" ], [ "Lib.Exponentiation.lemma_pow_add", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Addition", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_169b4b33fcc12f44fb5aba05255bc03c", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "6ab7d1246b2bd308e8f0d8ff69b3a67c" ], [ "Lib.Exponentiation.lemma_pow_add", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_4", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_5", "equation_Lib.Exponentiation.mul", "equation_Lib.Exponentiation.one", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "interpretation_Tm_abs_bdd1351fbdaffcab615fdbdd8ed277ef", "primitive_Prims.op_Addition", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "token_correspondence_Lib.Exponentiation.mul", "token_correspondence_Lib.Exponentiation.one", "well-founded-ordering-on-nat" ], 0, "539b146c2c351f891ede29179ad482d9" ], [ "Lib.Exponentiation.lemma_pow_mul", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "961b6e33e28b9f060bdf8cff7d24a4ea" ], [ "Lib.Exponentiation.lemma_pow_mul", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_b4e2063d49c0040e40aa7dfaeaaaa72a" ], 0, "1e91efad8cbc5683ba795963382993ae" ], [ "Lib.Exponentiation.lemma_pow_mul", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_4", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_5", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Equality", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "well-founded-ordering-on-nat" ], 0, "c535cbccbae0044301488afaaa2bf314" ], [ "Lib.Exponentiation.lemma_pow_mul_base", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_5", "equation_Lib.Exponentiation.mul", "equation_Lib.Exponentiation.one", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "interpretation_Tm_abs_bdd1351fbdaffcab615fdbdd8ed277ef", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "token_correspondence_Lib.Exponentiation.mul", "token_correspondence_Lib.Exponentiation.one", "well-founded-ordering-on-nat" ], 0, "8345e729fde38feaf24413a3e2b4202d" ], [ "Lib.Exponentiation.lemma_pow_double", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Addition", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "c10c309a1dd6b3f9805e6b75b5f533d5" ], [ "Lib.Exponentiation.lemma_pow_double", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Addition", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_4d33cff7bbfa21b83d27c62b07d4bee4", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "119b6b93f363c6ab8e24cdf3351cf4bd" ], [ "Lib.Exponentiation.get_ith_bit", 1, 0, 0, [ "@query" ], 0, "2e183b9ee2a53331e259756b90ff3fdf" ], [ "Lib.Exponentiation.lemma_b_mod_pow2i", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_07295705544891065e7a01d318c0ba51", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "518b9f7dab1230edba3e2d777d09a6f6" ], [ "Lib.Exponentiation.lemma_b_mod_pow2i", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_07295705544891065e7a01d318c0ba51", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "d2d068b9f0b6a5cca635ef9b4b17aa56" ], [ "Lib.Exponentiation.lemma_b_div_pow2ki", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_651e159d06da4faaf0ac76003178a45c", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "24ca202183a586fd07df39bea0044c54" ], [ "Lib.Exponentiation.lemma_b_div_pow2ki", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_3a7a92b76e025adc54d4fe5425e224f9", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "e5df569c7fd32c68e924a157756f5100" ], [ "Lib.Exponentiation.lemma_b_div_pow2ki", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_651e159d06da4faaf0ac76003178a45c", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "a58ce5a22cada69cde51fc01821496b9" ], [ "Lib.Exponentiation.lemma_b_div_pow2i", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Addition", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_07295705544891065e7a01d318c0ba51", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "bc2a88d1a4f90fa1388c2dbd7e16c605" ], [ "Lib.Exponentiation.lemma_b_div_pow2i", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_07295705544891065e7a01d318c0ba51", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "8531a59000a4c608238326440a0d2465" ], [ "Lib.Exponentiation.exp_rl_lemma_loop", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.nonzero", "int_inversion", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_0766302b68bb44ab7aff8c4d8be0b46f", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_7e0b9b2dbca36eab00de093c1b701c6d", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "3cc84695340715a6f621d60879b91d41" ], [ "Lib.Exponentiation.exp_rl_lemma_loop", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nonzero", "int_inversion", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_0766302b68bb44ab7aff8c4d8be0b46f", "refinement_interpretation_Tm_refine_7e0b9b2dbca36eab00de093c1b701c6d" ], 0, "8c9376826a562b2e1966c4f8c538a73a" ], [ "Lib.Exponentiation.exp_rl_lemma_loop", 3, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_2bc0fb8d8a51e866ade9581ab1e5467d_4", "binder_x_4f329304922437b173cc2e3513266851_5", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_3", "equation_Lib.Exponentiation.exp_rl_f", "equation_Lib.Exponentiation.get_ith_bit", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Addition", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "projection_inverse_FStar.Pervasives.Native.Mktuple2__2", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_7cf6c7b7035f118b819e8c348d99ce16", "refinement_interpretation_Tm_refine_b54a7e11fa6671063df70e2336bad7ce", "typing_Prims.pow2", "unit_inversion", "unit_typing", "well-founded-ordering-on-nat" ], 0, "66fe018c5130f095bb1b063c9ef3507d" ], [ "Lib.Exponentiation.exp_rl_lemma", 1, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "equation_Lib.Exponentiation.exp_rl", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "typing_Prims.pow2" ], 0, "89dc45ec26c40c6544e9f3f527ef6274" ], [ "Lib.Exponentiation.exp_lr_f", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "int_inversion", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "83e695ebdd351012860ed108cb3a74a9" ], [ "Lib.Exponentiation.exp_lr_lemma_step", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "f90c7cf396d0a3446d56674542f07dcf" ], [ "Lib.Exponentiation.exp_lr_lemma_step", 2, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Lib.Exponentiation.exp_lr_f", "equation_Lib.Exponentiation.get_ith_bit", "equation_Prims.nat", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "30c7c8739345f27a436f6ee6e24fa94b" ], [ "Lib.Exponentiation.exp_lr_lemma_loop", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_7e0b9b2dbca36eab00de093c1b701c6d", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "50204ad64c88f2d675512b76c3914783" ], [ "Lib.Exponentiation.exp_lr_lemma_loop", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_453c18718ea73c72480fbdc598493810", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "a4b7eb2d4a777a64c3943b2204642589" ], [ "Lib.Exponentiation.exp_lr_lemma_loop", 3, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_4", "binder_x_c6e3d0cb66a71f4e0f2412da70e01cb5_5", "binder_x_fa6b328f1b02cd5c04ee237d30efad9f_6", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_60da758b1aceb0a55eaa4155854cadc8", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_a88e718c21917332ba102776dc71214f", "typing_Prims.pow2", "well-founded-ordering-on-nat" ], 0, "aeb80c25938acbb3104fe6f5f7c1a951" ], [ "Lib.Exponentiation.exp_lr_lemma", 1, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "equation_Lib.Exponentiation.exp_lr", "equation_Prims.nat", "equation_Prims.nonzero", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.exp", "int_inversion", "int_typing", "primitive_Prims.op_Division", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_0766302b68bb44ab7aff8c4d8be0b46f", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "typing_Prims.pow2" ], 0, "001282a6a3c19b11c724ed77ce9c5fb3" ], [ "Lib.Exponentiation.exp_mont_ladder_f", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "int_inversion", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "ec20fc5a0271b622db86cb3f834baff8" ], [ "Lib.Exponentiation.exp_mont_ladder_lemma_step", 1, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "f69c46b5a59f9f55a851adf2e44f82aa" ], [ "Lib.Exponentiation.exp_mont_ladder_lemma_step", 2, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "equation_Lib.Exponentiation.exp_mont_ladder_f", "equation_Lib.Exponentiation.get_ith_bit", "equation_Lib.Exponentiation.mul", "equation_Prims.nat", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "int_inversion", "int_typing", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "projection_inverse_FStar.Pervasives.Native.Mktuple2__2", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "token_correspondence_Lib.Exponentiation.mul", "typing_Prims.pow2" ], 0, "de6229561ac90a45e5e73773503e657a" ], [ "Lib.Exponentiation.exp_mont_ladder_lemma_loop", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_7e0b9b2dbca36eab00de093c1b701c6d", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "aed64857e1ee4973724f549259a458e2" ], [ "Lib.Exponentiation.exp_mont_ladder_lemma_loop", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_de23ae50fbc44759af2c4875be2963c7" ], 0, "4b4c4d2de3f1c203186bcfe445d0d95c" ], [ "Lib.Exponentiation.exp_mont_ladder_lemma_loop", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_2bc0fb8d8a51e866ade9581ab1e5467d_4", "binder_x_4f329304922437b173cc2e3513266851_6", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_3", "equation_Lib.Exponentiation.mul", "equation_Lib.Exponentiation.one", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "interpretation_Tm_abs_bdd1351fbdaffcab615fdbdd8ed277ef", "primitive_Prims.op_Addition", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "projection_inverse_FStar.Pervasives.Native.Mktuple2__2", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_7cf6c7b7035f118b819e8c348d99ce16", "refinement_interpretation_Tm_refine_b54a7e11fa6671063df70e2336bad7ce", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "token_correspondence_Lib.Exponentiation.mul", "token_correspondence_Lib.Exponentiation.one", "well-founded-ordering-on-nat" ], 0, "6754a43730b2d5c783aab6686b191976" ], [ "Lib.Exponentiation.exp_mont_ladder_lemma", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.Exponentiation.exp_mont_ladder", "equation_Prims.nat", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "ac25d968259a98d82409351e646dc898" ], [ "Lib.Exponentiation.exp_mont_ladder_swap2_f", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.Exponentiation.get_ith_bit", "equation_Prims.nat", "int_inversion", "primitive_Prims.op_Modulus", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "9ba3deb85d68a176a6ed298a8be2dcb1" ], [ "Lib.Exponentiation.exp_mont_ladder_swap2_lemma_loop", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "refinement_interpretation_Tm_refine_7e0b9b2dbca36eab00de093c1b701c6d" ], 0, "fb399badfd20d56941e77263ed12bb7a" ], [ "Lib.Exponentiation.exp_mont_ladder_swap2_lemma_loop", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "refinement_interpretation_Tm_refine_236afac821e0462343954e7131d1ff99" ], 0, "f88a5b0a5f6916e34c83b72f2f387464" ], [ "Lib.Exponentiation.exp_mont_ladder_swap2_lemma_loop", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "Lib.Exponentiation_interpretation_Tm_arrow_104dbe8a149bed4ccb5d78b76ea2f45f", "Lib.LoopCombinators_interpretation_Tm_arrow_c3cac0eaa5a8b41e6eb23c42c4532cc2", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_4", "binder_x_c6e3d0cb66a71f4e0f2412da70e01cb5_5", "binder_x_e09860b75d8922ab497a3e5bc9347578_3", "binder_x_fa6b328f1b02cd5c04ee237d30efad9f_6", "binder_x_fe28d8bcde588226b4e538b35321de05_1", "data_typing_intro_FStar.Pervasives.Native.Mktuple2@tok", "equation_Lib.Exponentiation.cswap", "equation_Lib.Exponentiation.exp_mont_ladder_f", "equation_Lib.Exponentiation.exp_mont_ladder_swap2_f", "equation_Lib.Exponentiation.get_ith_bit", "equation_Lib.Exponentiation.one", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "fuel_guarded_inversion_FStar.Pervasives.Native.tuple2", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "interpretation_Tm_abs_bdd1351fbdaffcab615fdbdd8ed277ef", "kinding_FStar.Pervasives.Native.tuple2@tok", "primitive_Prims.op_Addition", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "projection_inverse_FStar.Pervasives.Native.Mktuple2__2", "refinement_interpretation_Tm_refine_2222d473fdfb1786e1348252e177bef0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_60da758b1aceb0a55eaa4155854cadc8", "refinement_interpretation_Tm_refine_a88e718c21917332ba102776dc71214f", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "token_correspondence_Lib.Exponentiation.one", "typing_Lib.Exponentiation.__proj__Mkcomm_monoid__item__one", "typing_Lib.LoopCombinators.repeati", "well-founded-ordering-on-nat" ], 0, "ad67a5a5a6144c5e54a47f21ab768e9a" ], [ "Lib.Exponentiation.exp_mont_ladder_swap2_lemma", 1, 0, 0, [ "@query", "equation_Lib.Exponentiation.exp_mont_ladder", "equation_Lib.Exponentiation.exp_mont_ladder_swap2" ], 0, "1bdc1744dea867b1df701d4ccd6f2053" ], [ "Lib.Exponentiation.exp_mont_ladder_swap_f", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.Exponentiation.get_ith_bit", "equation_Prims.nat", "int_inversion", "primitive_Prims.op_Modulus", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "0af99d7cbd91d1b35b424e66b634642f" ], [ "Lib.Exponentiation.exp_mont_ladder_swap_lemma_loop", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_7e0b9b2dbca36eab00de093c1b701c6d" ], 0, "e9d9a4c5328a5b4d1aeb9380deccc5c8" ], [ "Lib.Exponentiation.exp_mont_ladder_swap_lemma_loop", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "int_inversion", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_7e0b9b2dbca36eab00de093c1b701c6d", "refinement_interpretation_Tm_refine_aa64bce61191644d6312a5ed528e56d8", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_f0d0742c19ee7ee38e52ea47df9510d1" ], 0, "4c2fecfe3775668135cea7b35809d611" ], [ "Lib.Exponentiation.exp_mont_ladder_swap_lemma_loop", 3, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_0354285c14fdd90dfe48f1a430c548b7_6", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_4", "binder_x_c6e3d0cb66a71f4e0f2412da70e01cb5_5", "binder_x_e09860b75d8922ab497a3e5bc9347578_3", "binder_x_fa6b328f1b02cd5c04ee237d30efad9f_7", "binder_x_fe28d8bcde588226b4e538b35321de05_1", "equation_Lib.Exponentiation.cswap", "equation_Lib.Exponentiation.exp_mont_ladder_f", "equation_Lib.Exponentiation.exp_mont_ladder_swap_f", "equation_Lib.Exponentiation.get_ith_bit", "equation_Lib.Exponentiation.one", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "fuel_guarded_inversion_FStar.Pervasives.Native.tuple2", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "interpretation_Tm_abs_bdd1351fbdaffcab615fdbdd8ed277ef", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "projection_inverse_FStar.Pervasives.Native.Mktuple2__2", "projection_inverse_FStar.Pervasives.Native.Mktuple3__1", "projection_inverse_FStar.Pervasives.Native.Mktuple3__2", "projection_inverse_FStar.Pervasives.Native.Mktuple3__3", "refinement_interpretation_Tm_refine_527915a5b99af7cafa43164a7b65f275", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_60da758b1aceb0a55eaa4155854cadc8", "refinement_interpretation_Tm_refine_a88e718c21917332ba102776dc71214f", "token_correspondence_Lib.Exponentiation.one", "typing_Lib.Exponentiation.__proj__Mkcomm_monoid__item__one", "typing_Lib.Exponentiation.cswap", "well-founded-ordering-on-nat" ], 0, "d1eb37cadd9bb661150b4e6a8e0bb166" ], [ "Lib.Exponentiation.exp_mont_ladder_swap_lemma", 1, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Lib.Exponentiation.cswap", "equation_Lib.Exponentiation.exp_mont_ladder", "equation_Lib.Exponentiation.exp_mont_ladder_swap", "equation_Prims.nat", "fuel_guarded_inversion_Lib.Exponentiation.exp", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "283c4875fa95ff9e5891f708a5d080cd" ], [ "Lib.Exponentiation.exp_pow2_loop_lemma", 1, 0, 0, [ "@query" ], 0, "0788ec406fc8d1c6316031b8a5ccdeef" ], [ "Lib.Exponentiation.exp_pow2_loop_lemma", 2, 0, 0, [ "@query" ], 0, "8c30b815c2507e727d7994b41f587ff2" ], [ "Lib.Exponentiation.exp_pow2_loop_lemma", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_4", "binder_x_fa6b328f1b02cd5c04ee237d30efad9f_5", "equation_Lib.Exponentiation.sqr", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_60da758b1aceb0a55eaa4155854cadc8", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "well-founded-ordering-on-nat" ], 0, "ef4a2ba7ec63488cb64d93276bab76bf" ], [ "Lib.Exponentiation.exp_pow2_lemma", 1, 0, 0, [ "@query" ], 0, "cc15008569146be9b5574f32e677fa42" ], [ "Lib.Exponentiation.exp_pow2_lemma", 2, 0, 0, [ "@query", "equation_Lib.Exponentiation.exp_pow2" ], 0, "6d63ca47d70bfd376a6a9aa29f442be7" ], [ "Lib.Exponentiation.get_ith_lbits", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "5dfee12ff096920e5efc673e1e79a550" ], [ "Lib.Exponentiation.get_bits_l", 1, 0, 0, [ "@query" ], 0, "01c37eee4c548bafac374d66f0629966" ], [ "Lib.Exponentiation.get_bits_l", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.Exponentiation.get_ith_lbits", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_bb0b8197bb42e9a1aaebe59e97685233", "typing_Prims.pow2" ], 0, "a0eb9d201dd045b19c34fbae34517b3b" ], [ "Lib.Exponentiation.mul_acc_pow_a_bits_l", 1, 0, 0, [ "@query" ], 0, "7251fbf8f7e88fdd20f0aafc0143df2f" ], [ "Lib.Exponentiation.mul_acc_pow_a_bits_l", 2, 0, 0, [ "@query" ], 0, "06ebd409299cf2a9ff5ec6ee19ca3c35" ], [ "Lib.Exponentiation.exp_fw_f", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "dab69a0d621cef8731d3e0c1cc608cdf" ], [ "Lib.Exponentiation.exp_fw_f", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_24d3b7fdfacec0302f73f39e03b90503", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "c1e05ca5b0db4a68ceafc507986c866d" ], [ "Lib.Exponentiation.exp_fw_acc0", 1, 0, 0, [ "@query" ], 0, "921c2ee7f6dd519a07c87e206f9bef0d" ], [ "Lib.Exponentiation.exp_fw_acc0", 2, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "equation_Lib.Exponentiation.get_ith_lbits", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_54490d2ea58144a1cc3df5883baeec33", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "typing_Prims.pow2" ], 0, "28d5cf7827ac03096fc3b251332cef6c" ], [ "Lib.Exponentiation.exp_fw", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "a1b2d1e4e8ebd0aa0dccfdc98db627c2" ], [ "Lib.Exponentiation.exp_fw_lemma_step", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_237f1e6e602969b36a28d55b6d4e6cb5", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "5683426909dd95b1ccb8f3c73f3cfbc2" ], [ "Lib.Exponentiation.exp_fw_lemma_step", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "45cd4dc246aeb78d7329a11ca31de81f" ], [ "Lib.Exponentiation.exp_fw_lemma_step", 3, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "equation_Lib.Exponentiation.exp_fw_f", "equation_Lib.Exponentiation.get_bits_l", "equation_Lib.Exponentiation.get_ith_lbits", "equation_Lib.Exponentiation.mul", "equation_Lib.Exponentiation.mul_acc_pow_a_bits_l", "equation_Prims.nat", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "int_inversion", "int_typing", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_237f1e6e602969b36a28d55b6d4e6cb5", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_bb0b8197bb42e9a1aaebe59e97685233", "token_correspondence_Lib.Exponentiation.mul", "typing_Lib.Exponentiation.get_bits_l", "typing_Prims.pow2" ], 0, "cc0734afdcad9e651bdf51f02a7fc25c" ], [ "Lib.Exponentiation.exp_fw_lemma_loop", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_46a3488d9284b64cf49bf6e16f2d7517", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "3c0c02f126465b3973652e5c2e1a3621" ], [ "Lib.Exponentiation.exp_fw_lemma_loop", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_46a3488d9284b64cf49bf6e16f2d7517", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_a0483a02d734b7604dbc11a978d93020", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "9d63d8c6221a6d70332ddf2f726f2339" ], [ "Lib.Exponentiation.exp_fw_lemma_loop", 3, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_a4a35f904c2fa1275d1227a7d05d19c4_7", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_4", "binder_x_c6e3d0cb66a71f4e0f2412da70e01cb5_5", "binder_x_f26957a7e62b271a8736230b1e9c83c1_6", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_71f2c9c40b4144a04c2ce9dc0d9b1b29", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_a88e718c21917332ba102776dc71214f", "typing_Prims.pow2", "well-founded-ordering-on-nat" ], 0, "c383f826cc7cc0093971855a5cf53d72" ], [ "Lib.Exponentiation.exp_fw_acc0_lemma", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_54490d2ea58144a1cc3df5883baeec33", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "c18371262d2fea8417684d1a4dbc594c" ], [ "Lib.Exponentiation.exp_fw_acc0_lemma", 2, 0, 0, [ "@query" ], 0, "4be48061fcdc54d6b125bd194662a2d1" ], [ "Lib.Exponentiation.exp_fw_acc0_lemma", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.Exponentiation.exp_fw_acc0", "equation_Lib.Exponentiation.get_ith_lbits", "equation_Prims.nat", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_54490d2ea58144a1cc3df5883baeec33", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "typing_Prims.pow2" ], 0, "299629d8ba16f2b744845cc9126fbc94" ], [ "Lib.Exponentiation.exp_fw_acc0_aux_lemma", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "f467743e2946fa62a0bf31ba6f41fb19" ], [ "Lib.Exponentiation.exp_fw_acc0_aux_lemma", 2, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "typing_Prims.pow2" ], 0, "2a4b6f21e55299da8253517bfb6cdb4e" ], [ "Lib.Exponentiation.exp_fw_lemma", 1, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Lib.Exponentiation.exp_fw", "equation_Prims.nat", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.exp", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "262534cba7294ea293f16705f97857bc" ], [ "Lib.Exponentiation.exp_double_fw_f", 1, 0, 0, [ "@query" ], 0, "6c52362642d1aa146cda987d89ff7912" ], [ "Lib.Exponentiation.exp_double_fw_acc0", 1, 0, 0, [ "@query" ], 0, "46488d32e5ac3d0f425925ec17258400" ], [ "Lib.Exponentiation.exp_double_fw", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "512ae8995bc0fd6c6be31b395e81d189" ], [ "Lib.Exponentiation.exp_double_fw_lemma_step", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_237f1e6e602969b36a28d55b6d4e6cb5", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "c39e321ed32b053d2ca1e17e04a16146" ], [ "Lib.Exponentiation.exp_double_fw_lemma_step", 2, 0, 0, [ "@query" ], 0, "2df97e3857c1d93488bc3e859dbf8626" ], [ "Lib.Exponentiation.exp_double_fw_lemma_step", 3, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "equation_Lib.Exponentiation.exp_double_fw_f", "equation_Lib.Exponentiation.exp_fw_f", "equation_Lib.Exponentiation.get_bits_l", "equation_Lib.Exponentiation.get_ith_lbits", "equation_Lib.Exponentiation.mul", "equation_Lib.Exponentiation.mul_acc_pow_a_bits_l", "equation_Prims.nat", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "int_inversion", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_237f1e6e602969b36a28d55b6d4e6cb5", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "token_correspondence_Lib.Exponentiation.mul" ], 0, "4a1ebd04934ec75d30a4a65747583921" ], [ "Lib.Exponentiation.exp_double_fw_lemma_loop", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_46a3488d9284b64cf49bf6e16f2d7517", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "a8ad35902077b70d529273e718b9381c" ], [ "Lib.Exponentiation.exp_double_fw_lemma_loop", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_0dcdc46bebbe890c3111dd980047adfb", "refinement_interpretation_Tm_refine_46a3488d9284b64cf49bf6e16f2d7517", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "34ccfd71c2180e8cfa03ddb573002516" ], [ "Lib.Exponentiation.exp_double_fw_lemma_loop", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_b7fd2c89104732e5dc08053ae6c85c63_9", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_4", "binder_x_c6e3d0cb66a71f4e0f2412da70e01cb5_5", "binder_x_c6e3d0cb66a71f4e0f2412da70e01cb5_7", "binder_x_f26957a7e62b271a8736230b1e9c83c1_8", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_4b97ea0c13934bd5e766fc451264f1e0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_a88e718c21917332ba102776dc71214f", "well-founded-ordering-on-nat" ], 0, "0b6bab4a19a5a6479271452c6c2dfb81" ], [ "Lib.Exponentiation.exp_double_fw_acc0_lemma", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709" ], 0, "96850a20d13d1cdd453e7087ee0f695f" ], [ "Lib.Exponentiation.exp_double_fw_acc0_lemma", 2, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Lib.Exponentiation.exp_double_fw_acc0", "equation_Lib.Exponentiation.mul", "equation_Lib.Exponentiation.one", "equation_Prims.nat", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "interpretation_Tm_abs_bdd1351fbdaffcab615fdbdd8ed277ef", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "token_correspondence_Lib.Exponentiation.mul", "token_correspondence_Lib.Exponentiation.one", "typing_Prims.pow2" ], 0, "71b8691cea9e5795aba40ec57e7da822" ], [ "Lib.Exponentiation.exp_double_fw_lemma", 1, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Lib.Exponentiation.exp_double_fw", "equation_Lib.Exponentiation.mul", "equation_Prims.nat", "equation_Prims.pos", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "function_token_typing_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "token_correspondence_Lib.Exponentiation.mul", "typing_Prims.pow2" ], 0, "fe2593c17e60bc98b8fe1e34a6b59d82" ] ] ]