[ "\\vXb|‡:M¨JžåÊ\u001bQL", [ [ "Lib.Exponentiation.__proj__Mkcomm_monoid__item__lemma_one", 1, 0, 0, [ "@query", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_mul", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_one", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_mul", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_one", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul" ], 0, "54d2be367be892c4050c38edcfa8e1cf" ], [ "Lib.Exponentiation.__proj__Mkcomm_monoid__item__lemma_mul_assoc", 1, 0, 0, [ "@query", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_mul", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_mul", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul" ], 0, "bd1699840ee9240bb0e9730e994099fa" ], [ "Lib.Exponentiation.__proj__Mkcomm_monoid__item__lemma_mul_comm", 1, 0, 0, [ "@query", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_mul", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_mul", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul" ], 0, "b5b71254df27acc3075621705e332f89" ], [ "Lib.Exponentiation.pow", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "binder_x_92d49888d341afe6a0559d2c8f12b419_2", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_4", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "fuel_guarded_inversion_Lib.Exponentiation.comm_monoid", "int_inversion", "int_typing", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "well-founded-ordering-on-nat" ], 0, "0bd4cf90ac1296f65c6b0b3c401f7d30" ], [ "Lib.Exponentiation.lemma_pow_unfold", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "3ce300d967e5f397c0faf20880877775" ], [ "Lib.Exponentiation.lemma_pow_add", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Addition", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "8e0976bcbf48cfb4e379383fe075fa5d" ], [ "Lib.Exponentiation.lemma_pow_mul", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "d14a44bb606d57ed836e78e41a33603f" ], [ "Lib.Exponentiation.lemma_pow_double", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Addition", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "ed608d89717cea7ed965d2e0b73bfde1" ], [ "Lib.Exponentiation.get_ith_bit", 1, 0, 0, [ "@query" ], 0, "0debb67fcebf31fd3226414f9019c79f" ], [ "Lib.Exponentiation.exp_lr_f", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "int_inversion", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "5e8cec49595ecc98a97ea44f7b98fd94" ], [ "Lib.Exponentiation.exp_mont_ladder_f", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "int_inversion", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "6997d61992bb8a0c40bec7422dd14187" ], [ "Lib.Exponentiation.exp_mont_ladder_swap2_f", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.Exponentiation.get_ith_bit", "equation_Prims.nat", "int_inversion", "primitive_Prims.op_Modulus", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "6097cf7ba83e5189000d646c06fc1342" ], [ "Lib.Exponentiation.exp_mont_ladder_swap_f", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.Exponentiation.get_ith_bit", "equation_Prims.nat", "int_inversion", "primitive_Prims.op_Modulus", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "1f2f0a9ed36dba99780c07c83c0a4cdb" ], [ "Lib.Exponentiation.exp_pow2_lemma", 1, 0, 0, [ "@query" ], 0, "b9e326e6982dd10db5c17db83b5d16b4" ], [ "Lib.Exponentiation.get_ith_lbits", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "83aaab5d01abe0279ffc7dbfebf43929" ], [ "Lib.Exponentiation.get_bits_l", 1, 0, 0, [ "@query" ], 0, "a6436cb6e321fa3d99af5497131c32f1" ], [ "Lib.Exponentiation.get_bits_l", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.Exponentiation.get_ith_lbits", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "refinement_interpretation_Tm_refine_bb0b8197bb42e9a1aaebe59e97685233", "typing_Prims.pow2" ], 0, "5a300adf2f83aa9608387821fd311d4f" ], [ "Lib.Exponentiation.mul_acc_pow_a_bits_l", 1, 0, 0, [ "@query" ], 0, "647f59aa1d7814ddafd5e54890cbc2b7" ], [ "Lib.Exponentiation.mul_acc_pow_a_bits_l", 2, 0, 0, [ "@query" ], 0, "79af5734ec3eaaa85980503737077954" ], [ "Lib.Exponentiation.exp_fw_f", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "35079697d1624895477a742bdcc14c7b" ], [ "Lib.Exponentiation.exp_fw_f", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_24d3b7fdfacec0302f73f39e03b90503", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "5dacd576e54f896749b57269c0e701cd" ], [ "Lib.Exponentiation.exp_fw_acc0", 1, 0, 0, [ "@query" ], 0, "e05604e812ad2b6c48492b961d595202" ], [ "Lib.Exponentiation.exp_fw_acc0", 2, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "equation_Lib.Exponentiation.get_ith_lbits", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_54490d2ea58144a1cc3df5883baeec33", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_baba3c4ff195e8afc82d572a0bec0709", "typing_Prims.pow2" ], 0, "7f01c72b120b200ac5cc9ea0beac76cf" ], [ "Lib.Exponentiation.exp_fw", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "e0d7b1bff172ba1891a283d069b862da" ], [ "Lib.Exponentiation.exp_double_fw_f", 1, 0, 0, [ "@query" ], 0, "6c0d5e76e49c7d612db2fe7a8cfab77b" ], [ "Lib.Exponentiation.exp_double_fw_acc0", 1, 0, 0, [ "@query" ], 0, "a1709a331cc045f48a407102f389d6d6" ], [ "Lib.Exponentiation.exp_double_fw", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "95d57464ede760550aacf6bb6bf6e9a3" ] ] ]