[ "\u0013\u0011\t#.8\tב{", [ [ "Lib.NatMod.mk_nat_comm_monoid", 1, 2, 1, [ "@query" ], 0, "e0018e425cc2ec5bcd3c55de5faa83a5" ], [ "Lib.NatMod.pow", 1, 2, 1, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_ae567c2fb75be05905677af440075565_0", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_1", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "well-founded-ordering-on-nat" ], 0, "5c1d220150c15301750cd142314de0e1" ], [ "Lib.NatMod.lemma_pow0", 1, 2, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Lib.NatMod.pow.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_with_fuel_Lib.NatMod.pow.fuel_instrumented", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Equality", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "648609648f3b493a53c1c467c42c44f2" ], [ "Lib.NatMod.lemma_pow1", 1, 2, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Lib.NatMod.pow.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_with_fuel_Lib.NatMod.pow.fuel_instrumented", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Equality", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "typing_Lib.NatMod.pow" ], 0, "dfe55a5439bbc6934e1083dd032da25b" ], [ "Lib.NatMod.lemma_pow_unfold", 1, 2, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "73b818a05fbba6b11df2d7257e5ed7f9" ], [ "Lib.NatMod.lemma_pow_unfold", 2, 2, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Lib.NatMod.pow.fuel_instrumented", "@fuel_irrelevance_Lib.NatMod.pow.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Prims.nat", "equation_Prims.pos", "equation_with_fuel_Lib.NatMod.pow.fuel_instrumented", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "40ba22e845c0320f6ced814683b93b1f" ], [ "Lib.NatMod.lemma_pow_gt_zero", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_1", "binder_x_f26957a7e62b271a8736230b1e9c83c1_0", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Equality", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "well-founded-ordering-on-nat" ], 0, "765b2afe2a495f8497479334563e6dc4" ], [ "Lib.NatMod.lemma_pow_ge_zero", 1, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Lib.NatMod.pow.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_0", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_1", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "lemma_Lib.NatMod.lemma_pow_gt_zero", "primitive_Prims.op_Equality", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "well-founded-ordering-on-nat" ], 0, "e8fec876590bdbb5f6584d46280d43cc" ], [ "Lib.NatMod.lemma_pow_nat_is_pow", 1, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Lib.NatMod.pow.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_ae567c2fb75be05905677af440075565_0", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_1", "equation_Lib.Exponentiation.mul", "equation_Lib.Exponentiation.one", "equation_Lib.NatMod.mk_nat_comm_monoid", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "interpretation_Tm_abs_bdd1351fbdaffcab615fdbdd8ed277ef", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_mul", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_one", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_mul", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_one", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "token_correspondence_Lib.Exponentiation.mul", "token_correspondence_Lib.Exponentiation.one", "token_correspondence_Prims.op_Multiply", "well-founded-ordering-on-nat" ], 0, "d4929252408c6fe861c4004df809e9a9" ], [ "Lib.NatMod.lemma_pow_one", 1, 0, 0, [ "@query", "equation_Lib.Exponentiation.one", "equation_Lib.NatMod.mk_nat_comm_monoid", "interpretation_Tm_abs_bdd1351fbdaffcab615fdbdd8ed277ef", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_one", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_one", "token_correspondence_Lib.Exponentiation.one" ], 0, "1f464548f470eba1ccd3946490728f59" ], [ "Lib.NatMod.lemma_pow_add", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Addition", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "faf025a57066b809f9faa47f11035ee7" ], [ "Lib.NatMod.lemma_pow_add", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.Exponentiation.mul", "equation_Lib.NatMod.mk_nat_comm_monoid", "equation_Prims.nat", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "primitive_Prims.op_Addition", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_mul", "projection_inverse_BoxInt_proj_0", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_mul", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "token_correspondence_Lib.Exponentiation.mul", "token_correspondence_Prims.op_Multiply" ], 0, "9cf5134aed4afc758c4d038f6d6481b9" ], [ "Lib.NatMod.lemma_pow_mul", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "48acc29e7f13aa511c66b4f6bcddba32" ], [ "Lib.NatMod.lemma_pow_mul", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "389039409b109450a354a547a21d750d" ], [ "Lib.NatMod.lemma_pow_double", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "primitive_Prims.op_Addition", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "3439f301a6fcd0876450849bf602a7ac" ], [ "Lib.NatMod.lemma_pow_double", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.Exponentiation.mul", "equation_Lib.NatMod.mk_nat_comm_monoid", "equation_Prims.nat", "int_inversion", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "primitive_Prims.op_Addition", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_mul", "projection_inverse_BoxInt_proj_0", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_mul", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "token_correspondence_Lib.Exponentiation.mul", "token_correspondence_Prims.op_Multiply" ], 0, "2637765e4a96b944ae60aea112534d61" ], [ "Lib.NatMod.lemma_pow_mul_base", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.Exponentiation.mul", "equation_Lib.NatMod.mk_nat_comm_monoid", "int_inversion", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_mul", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_mul", "token_correspondence_Lib.Exponentiation.mul", "token_correspondence_Prims.op_Multiply" ], 0, "c602c0c4e1e0b7b4a2fe6db9e2dce0a0" ], [ "Lib.NatMod.lemma_pow_mod_base", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "096633149f1c7993fa9a9f1e38119719" ], [ "Lib.NatMod.lemma_pow_mod_base", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_f9f88af3b1e2dbc99e38f49301940025" ], 0, "6df963bab676eabc72c44b56c2960b02" ], [ "Lib.NatMod.lemma_pow_mod_base", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_ae567c2fb75be05905677af440075565_0", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_1", "binder_x_f26957a7e62b271a8736230b1e9c83c1_2", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "well-founded-ordering-on-nat" ], 0, "b718532f987e07275585e747596bc35e" ], [ "Lib.NatMod.one_mod", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "66bac7992b125b42144594b9ef03fa0d" ], [ "Lib.NatMod.mul_mod", 1, 2, 1, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "5a879c4d56ab2c67ae735caec921f5b7" ], [ "Lib.NatMod.add_mod", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "28342732fbcb6090d7ab493b0658bdf6" ], [ "Lib.NatMod.sub_mod", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "237c4188152eeccc923ed42fc7ba98aa" ], [ "Lib.NatMod.lemma_mul_mod_one", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.mul_mod", "equation_Lib.NatMod.nat_mod", "equation_Lib.NatMod.one_mod", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "typing_Lib.NatMod.mul_mod", "typing_Lib.NatMod.one_mod" ], 0, "8ba7a85208ba81f4af6dadd4fbbdcf1f" ], [ "Lib.NatMod.lemma_mul_mod_assoc", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.mul_mod", "equation_Lib.NatMod.nat_mod", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "06d3a30ec0c83903f6c5d4d92780f9e0" ], [ "Lib.NatMod.lemma_mul_mod_comm", 1, 0, 0, [ "@query", "equation_Lib.NatMod.mul_mod", "primitive_Prims.op_Multiply" ], 0, "713b0d797a6fdb1835e8ba3ce1edd2b0" ], [ "Lib.NatMod.pow_mod_", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_03a5d00a837dd83ad22cac00d90eeef8_0", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_2", "equation_Prims.nat", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_4fe9a5df27ca5859eef8add9fc6819fb", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "well-founded-ordering-on-nat" ], 0, "4008fea5c8253b818cc4dfb9b54d245a" ], [ "Lib.NatMod.lemma_pow_mod0", 1, 2, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Lib.NatMod.pow_mod_.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Lib.NatMod.pow_mod", "equation_Prims.nat", "equation_with_fuel_Lib.NatMod.pow_mod_.fuel_instrumented", "function_token_typing_Prims.__cache_version_number__", "int_typing", "primitive_Prims.op_Equality", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2" ], 0, "6f66150d2e5d6b2381fdc687fed7a6e9" ], [ "Lib.NatMod.lemma_pow_mod_unfold0", 1, 2, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_2e4eb0dfc8e927c366ec35a49feaf594", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "bb6d6b4c00a060db27742aa39f25cb69" ], [ "Lib.NatMod.lemma_pow_mod_unfold0", 2, 2, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Lib.NatMod.pow_mod_.fuel_instrumented", "@fuel_irrelevance_Lib.NatMod.pow_mod_.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Lib.NatMod.pow_mod", "equation_Prims.nat", "equation_Prims.pos", "equation_with_fuel_Lib.NatMod.pow_mod_.fuel_instrumented", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "projection_inverse_BoxBool_proj_0", "refinement_interpretation_Tm_refine_2e4eb0dfc8e927c366ec35a49feaf594", "refinement_interpretation_Tm_refine_4fe9a5df27ca5859eef8add9fc6819fb", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "473a84a3edd400fb44a82470ba7a8962" ], [ "Lib.NatMod.lemma_pow_mod_unfold1", 1, 2, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_951246198cead7debc9ffd1c9af03d7b" ], 0, "0cc275d89860209c4ee7092dd09c717a" ], [ "Lib.NatMod.lemma_pow_mod_unfold1", 2, 2, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Lib.NatMod.pow_mod_.fuel_instrumented", "@fuel_irrelevance_Lib.NatMod.pow_mod_.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "equation_Lib.NatMod.pow_mod", "equation_Prims.nat", "equation_Prims.pos", "equation_with_fuel_Lib.NatMod.pow_mod_.fuel_instrumented", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_4fe9a5df27ca5859eef8add9fc6819fb", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_951246198cead7debc9ffd1c9af03d7b" ], 0, "7c37f799168bbf8d37953d2916b9f405" ], [ "Lib.NatMod.lemma_pow_mod_", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "8303156a4848fddc75633971920ed8b5" ], [ "Lib.NatMod.lemma_pow_mod_", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_6092045e3746216d4a7e28a7890a43dd", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "825b8b138e781011cac5d095b0f1f0c6" ], [ "Lib.NatMod.lemma_pow_mod_", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_03a5d00a837dd83ad22cac00d90eeef8_0", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_2", "binder_x_cbdc2d3d67eb1d9b86cdf331a98a2d14_1", "equation_Lib.NatMod.mul_mod", "equation_Lib.NatMod.nat_mod", "equation_Prims.nat", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_4fe9a5df27ca5859eef8add9fc6819fb", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "unit_inversion", "unit_typing", "well-founded-ordering-on-nat" ], 0, "bd970ae2023daca25f3bf8705d9c7b99" ], [ "Lib.NatMod.lemma_pow_mod", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "50d76bd1499588d43c3f014dfae753f5" ], [ "Lib.NatMod.lemma_pow_mod", 2, 0, 0, [ "@query" ], 0, "1046a541b5f06364f004ed60b56b5fda" ], [ "Lib.NatMod.lemma_pow_nat_mod_is_pow", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "2f0d1151326f3b0d3656ddf8a0cb769d" ], [ "Lib.NatMod.lemma_pow_nat_mod_is_pow", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_9940fd5216d1969f95f956276466686b" ], 0, "6e0d7842fd843c17dafadddcd90e983b" ], [ "Lib.NatMod.lemma_pow_nat_mod_is_pow", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_03a5d00a837dd83ad22cac00d90eeef8_0", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_2", "binder_x_cbdc2d3d67eb1d9b86cdf331a98a2d14_1", "equation_Lib.Exponentiation.mul", "equation_Lib.Exponentiation.one", "equation_Lib.NatMod.mk_nat_mod_comm_monoid", "equation_Lib.NatMod.mul_mod", "equation_Lib.NatMod.nat_mod", "equation_Lib.NatMod.one_mod", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "equation_Prims.pos", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "interpretation_Tm_abs_767452e6211eb45132bb0ad477208a19", "interpretation_Tm_abs_bdd1351fbdaffcab615fdbdd8ed277ef", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_mul", "proj_equation_Lib.Exponentiation.Mkcomm_monoid_one", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_mul", "projection_inverse_Lib.Exponentiation.Mkcomm_monoid_one", "refinement_interpretation_Tm_refine_4fe9a5df27ca5859eef8add9fc6819fb", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "token_correspondence_Lib.Exponentiation.__proj__Mkcomm_monoid__item__mul", "token_correspondence_Lib.Exponentiation.mul", "token_correspondence_Lib.Exponentiation.one", "token_correspondence_Lib.NatMod.mul_mod", "well-founded-ordering-on-nat" ], 0, "376e77179ddbb9c18c1cec7cbedb87ed" ], [ "Lib.NatMod.lemma_add_mod_one", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "0ee4066a9764304ee8fc2388402347fa" ], [ "Lib.NatMod.lemma_add_mod_one", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.add_mod", "equation_Lib.NatMod.nat_mod", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Addition", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "47d441f27a97cce78dd2bbc4094ef4ef" ], [ "Lib.NatMod.lemma_add_mod_assoc", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.add_mod", "equation_Lib.NatMod.nat_mod", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Addition", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c" ], 0, "60f51ae96991b690d119db2e0d79de68" ], [ "Lib.NatMod.lemma_add_mod_comm", 1, 0, 0, [ "@query", "equation_Lib.NatMod.add_mod", "primitive_Prims.op_Addition" ], 0, "30e377d59f3fd85dae7664e4a193793a" ], [ "Lib.NatMod.lemma_mod_distributivity_add_right", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.add_mod", "equation_Lib.NatMod.mul_mod", "equation_Lib.NatMod.nat_mod", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "typing_Lib.NatMod.add_mod", "typing_Lib.NatMod.mul_mod" ], 0, "e3f66f7758d84146f40ce6c3c09dcab3" ], [ "Lib.NatMod.lemma_mod_distributivity_add_left", 1, 0, 0, [ "@query", "equation_Lib.NatMod.add_mod", "equation_Lib.NatMod.mul_mod", "primitive_Prims.op_Multiply" ], 0, "c4d79e259fa87ab4606f55128251d61e" ], [ "Lib.NatMod.lemma_mod_distributivity_sub_right", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.mul_mod", "equation_Lib.NatMod.nat_mod", "equation_Lib.NatMod.sub_mod", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Addition", "primitive_Prims.op_Minus", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "typing_Lib.NatMod.mul_mod", "typing_Lib.NatMod.sub_mod" ], 0, "8032366e0c5f9d20a7d790216743a8b5" ], [ "Lib.NatMod.lemma_mod_distributivity_sub_left", 1, 0, 0, [ "@query", "equation_Lib.NatMod.mul_mod", "equation_Lib.NatMod.sub_mod", "primitive_Prims.op_Multiply" ], 0, "8bf3521ff76a6e5a689e5c809c623d8d" ], [ "Lib.NatMod.inv_mod", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.prime", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_c94e6d54c545297365221a2bcc484b9a" ], 0, "db3bc281f8d6b2005197def278517e99" ], [ "Lib.NatMod.lemma_inv_mod_both", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.inv_mod", "equation_Lib.NatMod.mul_mod", "equation_Lib.NatMod.nat_mod", "equation_Lib.NatMod.prime", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "primitive_Prims.op_Modulus", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "refinement_interpretation_Tm_refine_c94e6d54c545297365221a2bcc484b9a" ], 0, "ed2db478459b7418bb75bab495a09fab" ], [ "Lib.NatMod.pow_eq", 1, 1, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_FStar.Math.Fermat.pow.fuel_instrumented", "@fuel_correspondence_Lib.NatMod.pow.fuel_instrumented", "@fuel_irrelevance_FStar.Math.Fermat.pow.fuel_instrumented", "@fuel_irrelevance_Lib.NatMod.pow.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_0", "binder_x_bb4e1c9af0265270f8e7a5f250f730e2_1", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "equation_with_fuel_FStar.Math.Fermat.pow.fuel_instrumented", "equation_with_fuel_Lib.NatMod.pow.fuel_instrumented", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Equality", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "well-founded-ordering-on-nat" ], 0, "2669f16e70d05ae8140904a1c92a18b2" ], [ "Lib.NatMod.lemma_div_mod_prime", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.div_mod", "equation_Lib.NatMod.inv_mod", "equation_Lib.NatMod.mul_mod", "equation_Lib.NatMod.nat_mod", "equation_Lib.NatMod.prime", "equation_Prims.pos", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_828958215008c7ce6253d89a707fd615", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "refinement_interpretation_Tm_refine_c94e6d54c545297365221a2bcc484b9a" ], 0, "3736aa14419b48f1623220729f1a140d" ], [ "Lib.NatMod.lemma_div_mod_prime_one", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.prime", "refinement_interpretation_Tm_refine_c94e6d54c545297365221a2bcc484b9a" ], 0, "9c8166f0dfee2b6111793daf70a0a2b2" ], [ "Lib.NatMod.lemma_div_mod_prime_one", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.div_mod", "equation_Lib.NatMod.inv_mod", "equation_Lib.NatMod.mul_mod", "equation_Lib.NatMod.nat_mod", "equation_Lib.NatMod.prime", "equation_Prims.nat", "int_inversion", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "refinement_interpretation_Tm_refine_c94e6d54c545297365221a2bcc484b9a" ], 0, "db048d6778aab57b78ccd0a8bb1c8d05" ], [ "Lib.NatMod.lemma_div_mod_prime_cancel", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.div_mod", "equation_Lib.NatMod.mul_mod", "equation_Lib.NatMod.nat_mod", "equation_Lib.NatMod.prime", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "int_typing", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_828958215008c7ce6253d89a707fd615", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "refinement_interpretation_Tm_refine_c94e6d54c545297365221a2bcc484b9a" ], 0, "bed9a9fdca04785a5af91cea8260e251" ], [ "Lib.NatMod.lemma_div_mod_prime_to_one_denominator", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Lib.NatMod.div_mod", "equation_Lib.NatMod.nat_mod", "equation_Lib.NatMod.prime", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_828958215008c7ce6253d89a707fd615", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "refinement_interpretation_Tm_refine_c94e6d54c545297365221a2bcc484b9a" ], 0, "8d9d6d508149aa1410228cc38d9d58a2" ] ] ]