[ "ÀÉ4gØŽÛ¾žA.%3À\u000b\u001a", [ [ "Spec.P256.MontgomeryMultiplication.fromDomain_", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "equation_Spec.P256.Definitions.prime256", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "typing_Spec.P256.Definitions.prime256" ], 0, "e96dc93e9fb2b8bd9e3e91e41a213b0b" ], [ "Spec.P256.MontgomeryMultiplication.fromDomainPoint", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "projection_inverse_FStar.Pervasives.Native.Mktuple3__1", "projection_inverse_FStar.Pervasives.Native.Mktuple3__2", "projection_inverse_FStar.Pervasives.Native.Mktuple3__3", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "typing_Spec.P256.MontgomeryMultiplication.fromDomain_" ], 0, "24bf4fbc506df84151f865aeafdb19e7" ], [ "Spec.P256.MontgomeryMultiplication.toDomain_", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.pos", "primitive_Prims.op_Modulus", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5" ], 0, "df97ae7e529813140d2854c25c69ac5a" ], [ "Spec.P256.MontgomeryMultiplication.lemmaFromDomain", 1, 2, 1, [ "@query" ], 0, "bfbde47c8c3ef704215325c9001c8a3c" ], [ "Spec.P256.MontgomeryMultiplication.lemmaFromDomain", 2, 2, 1, [ "@query", "equation_Spec.P256.MontgomeryMultiplication.fromDomain_" ], 0, "4ef1f161f9c2326f523ac6a6b7ba5092" ], [ "Spec.P256.MontgomeryMultiplication.lemmaToDomain", 1, 2, 1, [ "@query" ], 0, "1b3b6e6626ef3658bd6c716d94931174" ], [ "Spec.P256.MontgomeryMultiplication.lemmaToDomain", 2, 2, 1, [ "@query", "equation_Spec.P256.MontgomeryMultiplication.toDomain_" ], 0, "57d7bcac4951b51078a55e36b838f244" ], [ "Spec.P256.MontgomeryMultiplication.lemmaToDomainAndBackIsTheSame", 1, 2, 1, [ "@query" ], 0, "ef2b608832efa5041fa3d59a162666df" ], [ "Spec.P256.MontgomeryMultiplication.lemmaToDomainAndBackIsTheSame", 2, 2, 1, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Spec.P256.Definitions.prime256", "equation_Spec.P256.MontgomeryMultiplication.prime", "int_inversion", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_7d84b8f3dff73d3cc195fbe597f5a194", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "typing_Spec.P256.Definitions.prime256" ], 0, "bbcfd2b94d8bd8d1722af8b2e10db78c" ], [ "Spec.P256.MontgomeryMultiplication.lemmaFromDomainToDomain", 1, 2, 1, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Spec.P256.Definitions.prime256", "equation_Spec.P256.MontgomeryMultiplication.prime", "int_inversion", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_7d84b8f3dff73d3cc195fbe597f5a194", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "typing_Spec.P256.Definitions.prime256" ], 0, "f60dac17ae6b26bf4f7bf11d7fcf6f34" ], [ "Spec.P256.MontgomeryMultiplication.lemmaFromDomainToDomainModuloPrime", 1, 2, 1, [ "@query" ], 0, "920093025b377298f55e62fc5c2ea209" ], [ "Spec.P256.MontgomeryMultiplication.lemmaFromDomainToDomainModuloPrime", 2, 2, 1, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Prims.pos", "equation_Spec.P256.Definitions.prime256", "equation_Spec.P256.MontgomeryMultiplication.fromDomain_", "equation_Spec.P256.MontgomeryMultiplication.toDomain_", "int_inversion", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_7d84b8f3dff73d3cc195fbe597f5a194", "typing_Spec.P256.Definitions.prime256" ], 0, "2ffb994ef76d79d19735c789c907937e" ], [ "Spec.P256.MontgomeryMultiplication.inDomain_mod_is_not_mod", 1, 2, 1, [ "@query" ], 0, "3005e80e2564bc588ad0e75041a4bf41" ], [ "Spec.P256.MontgomeryMultiplication.inDomain_mod_is_not_mod", 2, 2, 1, [ "@query", "equation_Spec.P256.MontgomeryMultiplication.toDomain_", "primitive_Prims.op_Modulus" ], 0, "08bb86bc934e8d3522aede63ca625bdd" ], [ "Spec.P256.MontgomeryMultiplication.multiplicationInDomainNat", 1, 4, 2, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@fuel_irrelevance_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.U32", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "equation_Spec.P256.Definitions.prime256", "equation_with_fuel_Prims.pow2.fuel_instrumented", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_bef91fb8f30c6ed368faf74b3be171fb" ], 0, "d9f13d2e0d7ddb0f34ee8ed6a76f6eb1" ], [ "Spec.P256.MontgomeryMultiplication.multiplicationInDomainNat", 2, 2, 1, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "equation_Prims.nat", "equation_Spec.P256.Definitions.prime256", "equation_Spec.P256.Lemmas.modp_inv2", "equation_Spec.P256.MontgomeryMultiplication.prime", "equation_Spec.P256.MontgomeryMultiplication.toDomain_", "int_inversion", "primitive_Prims.op_Multiply", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_7d84b8f3dff73d3cc195fbe597f5a194", "refinement_interpretation_Tm_refine_bef91fb8f30c6ed368faf74b3be171fb", "typing_Spec.P256.Definitions.prime256" ], 0, "41fdce854372352c39c825f651ed5ccf" ], [ "Spec.P256.MontgomeryMultiplication.additionInDomain", 1, 2, 1, [ "@query" ], 0, "e6625543791942e8abebe470b540f5c4" ], [ "Spec.P256.MontgomeryMultiplication.additionInDomain", 2, 2, 1, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@fuel_irrelevance_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.U32", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "equation_Prims.pos", "equation_Spec.P256.MontgomeryMultiplication.fromDomain_", "equation_Spec.P256.MontgomeryMultiplication.prime", "equation_Spec.P256.MontgomeryMultiplication.toDomain_", "equation_with_fuel_Prims.pow2.fuel_instrumented", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "token_correspondence_Prims.pow2.fuel_instrumented" ], 0, "fa29dd5a8a23c591fca9e91ba18271f3" ], [ "Spec.P256.MontgomeryMultiplication.substractionInDomain", 1, 2, 1, [ "@query" ], 0, "0b2d62e31398ba792a0e0aa16603d730" ], [ "Spec.P256.MontgomeryMultiplication.substractionInDomain", 2, 4, 2, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@fuel_irrelevance_Prims.pow2.fuel_instrumented", "@fuel_irrelevance_Spec.P256.Lemmas.exp.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "constructor_distinct_Lib.IntTypes.S16", "constructor_distinct_Lib.IntTypes.S8", "constructor_distinct_Lib.IntTypes.U32", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "equation_Prims.pos", "equation_Spec.P256.Definitions.prime256", "equation_Spec.P256.Lemmas.elem", "equation_Spec.P256.Lemmas.fmul", "equation_Spec.P256.Lemmas.modp_inv2", "equation_Spec.P256.Lemmas.modp_inv2_prime", "equation_Spec.P256.Lemmas.modp_inv_prime", "equation_Spec.P256.MontgomeryMultiplication.fromDomain_", "equation_Spec.P256.MontgomeryMultiplication.prime", "equation_Spec.P256.MontgomeryMultiplication.toDomain_", "equation_with_fuel_Prims.pow2.fuel_instrumented", "equation_with_fuel_Spec.P256.Lemmas.exp.fuel_instrumented", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_Equality", "primitive_Prims.op_Minus", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_7d84b8f3dff73d3cc195fbe597f5a194", "refinement_interpretation_Tm_refine_c1424615841f28cac7fc34e92b7ff33c", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "token_correspondence_Prims.pow2.fuel_instrumented", "typing_Prims.pow2", "typing_Spec.P256.Lemmas.fmul", "typing_Spec.P256.MontgomeryMultiplication.prime" ], 0, "f52117374cf0273fa7697e1549f04cb9" ], [ "Spec.P256.MontgomeryMultiplication.op_Star_Percent", 1, 0, 0, [ "@query" ], 0, "721d67bc075aaf57370dde6feb8c40fb" ], [ "Spec.P256.MontgomeryMultiplication.ith_bit_power", 1, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.S16", "constructor_distinct_Lib.IntTypes.S8", "constructor_distinct_Lib.IntTypes.U32", "constructor_distinct_Lib.IntTypes.U8", "equality_tok_Lib.IntTypes.U32@tok", "equality_tok_Lib.IntTypes.U8@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "typing_Lib.IntTypes.bits", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "7abdb8cebc223abf1a90e4fe8b004a5f" ], [ "Spec.P256.MontgomeryMultiplication.ith_bit_power", 2, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.U32", "equality_tok_Lib.IntTypes.U32@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "typing_Lib.IntTypes.bits", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "d47548da999329323be7385a82dfd278" ], [ "Spec.P256.MontgomeryMultiplication.ith_bit_power", 3, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.S16", "constructor_distinct_Lib.IntTypes.S32", "constructor_distinct_Lib.IntTypes.S8", "constructor_distinct_Lib.IntTypes.SEC", "constructor_distinct_Lib.IntTypes.U32", "constructor_distinct_Lib.IntTypes.U64", "constructor_distinct_Lib.IntTypes.U8", "disc_equation_Lib.IntTypes.SEC", "equality_tok_Lib.IntTypes.PUB@tok", "equality_tok_Lib.IntTypes.SEC@tok", "equality_tok_Lib.IntTypes.U32@tok", "equality_tok_Lib.IntTypes.U64@tok", "equality_tok_Lib.IntTypes.U8@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.maxint", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.op_At_Percent_Dot", "equation_Lib.IntTypes.range", "equation_Lib.IntTypes.uint8", "equation_Lib.IntTypes.unsigned", "equation_Lib.IntTypes.v", "equation_Lib.Sequence.length", "equation_Lib.Sequence.lseq", "equation_Lib.Sequence.seq", "equation_Prims.nat", "equation_Prims.pos", "function_token_typing_Lib.IntTypes.uint8", "int_inversion", "int_typing", "lemma_FStar.UInt.pow2_values", "lemma_Lib.IntTypes.shift_right_lemma", "lemma_Lib.IntTypes.v_mk_int", "primitive_Prims.op_Division", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_27dc038cce58e6a175dcb6195f80808a", "refinement_interpretation_Tm_refine_31c7d3d85d92cb942c95a78642e657c7", "refinement_interpretation_Tm_refine_4c82af8a46684f75d7fe12f75a0fb1a7", "refinement_interpretation_Tm_refine_4f1cffa40412af126565457cc49b8cca", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_55ad6dde98f777fb8caf2adfada0d12e", "refinement_interpretation_Tm_refine_756fcf1fd8e14d13d6d06129e86ad1d3", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_83845a86f2550cdf941eeb1d9b59602b", "refinement_interpretation_Tm_refine_8505facf9381abcc9efff183e73f44b0", "refinement_interpretation_Tm_refine_d8d83307254a8900dd20598654272e42", "typing_FStar.Seq.Base.length", "typing_Lib.IntTypes.bits", "typing_Lib.IntTypes.cast", "typing_Lib.IntTypes.op_At_Percent_Dot", "typing_Lib.IntTypes.v", "typing_Prims.pow2", "typing_tok_Lib.IntTypes.PUB@tok", "typing_tok_Lib.IntTypes.SEC@tok", "typing_tok_Lib.IntTypes.U32@tok", "typing_tok_Lib.IntTypes.U64@tok", "typing_tok_Lib.IntTypes.U8@tok" ], 0, "3035e0e9e175196308196eca55877558" ], [ "Spec.P256.MontgomeryMultiplication._pow_step0", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Spec.P256.Definitions.nat_prime", "equation_Spec.P256.Definitions.prime256", "equation_Spec.P256.MontgomeryMultiplication.op_Star_Percent", "equation_Spec.P256.MontgomeryMultiplication.prime", "int_inversion", "primitive_Prims.op_GreaterThan", "primitive_Prims.op_Modulus", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "typing_Spec.P256.Definitions.prime256" ], 0, "77fdbb0d1bbb1dbb19bba5dcb42e8348" ], [ "Spec.P256.MontgomeryMultiplication._pow_step1", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Spec.P256.Definitions.nat_prime", "equation_Spec.P256.Definitions.prime256", "equation_Spec.P256.MontgomeryMultiplication.op_Star_Percent", "equation_Spec.P256.MontgomeryMultiplication.prime", "int_inversion", "primitive_Prims.op_GreaterThan", "primitive_Prims.op_Modulus", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "typing_Spec.P256.Definitions.prime256" ], 0, "611ba05bd58d8b4f4f26cc7674f447f6" ], [ "Spec.P256.MontgomeryMultiplication.lemma_swaped_steps", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Spec.P256.Definitions.nat_prime", "equation_Spec.P256.MontgomeryMultiplication._pow_step0", "equation_Spec.P256.MontgomeryMultiplication._pow_step1", "equation_Spec.P256.MontgomeryMultiplication.op_Star_Percent", "equation_Spec.P256.MontgomeryMultiplication.swap", "int_inversion", "primitive_Prims.op_Multiply", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "projection_inverse_FStar.Pervasives.Native.Mktuple2__2", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1" ], 0, "939544168297abf9cf8c14015a9ae66d" ], [ "Spec.P256.MontgomeryMultiplication._pow_step", 1, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.U32", "equality_tok_Lib.IntTypes.U32@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "typing_Lib.IntTypes.bits", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "6e1130db111ede66b171a871eeb11a7f" ], [ "Spec.P256.MontgomeryMultiplication._pow_step", 2, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.U32", "equality_tok_Lib.IntTypes.U32@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "typing_Lib.IntTypes.bits", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "f46430e1dba2934a43724be528e4c391" ], [ "Spec.P256.MontgomeryMultiplication._pow_step", 3, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.U64", "constructor_distinct_Lib.IntTypes.U8", "equality_tok_Lib.IntTypes.U64@tok", "equality_tok_Lib.IntTypes.U8@tok", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "equation_Spec.P256.Definitions.prime256", "int_inversion", "primitive_Prims.op_LessThan", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_31c7d3d85d92cb942c95a78642e657c7", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "typing_Spec.P256.Definitions.prime256" ], 0, "c5f6837b2c088a133479faabbf8aae14" ], [ "Spec.P256.MontgomeryMultiplication.lemma_even", 1, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.S16", "constructor_distinct_Lib.IntTypes.S8", "constructor_distinct_Lib.IntTypes.U32", "constructor_distinct_Lib.IntTypes.U8", "equality_tok_Lib.IntTypes.U32@tok", "equality_tok_Lib.IntTypes.U8@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.unsigned", "equation_Lib.Sequence.length", "equation_Lib.Sequence.lseq", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Addition", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_4a52416196f24517191cb85af05387da", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_cf1b97833340cf7687e7b411efdb7198", "refinement_interpretation_Tm_refine_d8d83307254a8900dd20598654272e42", "typing_Lib.IntTypes.bits", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "f85fd223923b7c184ade72f388a29e5f" ], [ "Spec.P256.MontgomeryMultiplication.lemma_even", 2, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.S16", "constructor_distinct_Lib.IntTypes.S8", "constructor_distinct_Lib.IntTypes.U32", "equality_tok_Lib.IntTypes.U32@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_cf1b97833340cf7687e7b411efdb7198", "typing_Lib.IntTypes.bits", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "9043d6d3683f638764fe4a58d39a2dd5" ], [ "Spec.P256.MontgomeryMultiplication.lemma_even", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "constructor_distinct_Lib.IntTypes.U8", "equality_tok_Lib.IntTypes.SEC@tok", "equality_tok_Lib.IntTypes.U8@tok", "equation_FStar.Math.Lib.arithmetic_shift_right", "equation_FStar.Math.Lib.div", "equation_Lib.ByteSequence.nat_from_bytes_le", "equation_Lib.IntTypes.unsigned", "equation_Lib.Sequence.length", "equation_Lib.Sequence.lseq", "equation_Prims.nat", "equation_Prims.pos", "equation_Spec.P256.MontgomeryMultiplication.ith_bit_power", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_LessThan", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_31c7d3d85d92cb942c95a78642e657c7", "refinement_interpretation_Tm_refine_4a52416196f24517191cb85af05387da", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_5b69e90b97d8991e731f0f059afb1344", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_86bac8d7b801765697c794e57f270ab8", "refinement_interpretation_Tm_refine_cf1b97833340cf7687e7b411efdb7198", "refinement_interpretation_Tm_refine_d8d83307254a8900dd20598654272e42", "typing_Spec.P256.MontgomeryMultiplication.ith_bit_power" ], 0, "91ba5229e268964fcf97c1d9c195f555" ], [ "Spec.P256.MontgomeryMultiplication.lemma_odd", 1, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.S16", "constructor_distinct_Lib.IntTypes.S8", "constructor_distinct_Lib.IntTypes.U32", "constructor_distinct_Lib.IntTypes.U64", "constructor_distinct_Lib.IntTypes.U8", "equality_tok_Lib.IntTypes.SEC@tok", "equality_tok_Lib.IntTypes.U32@tok", "equality_tok_Lib.IntTypes.U64@tok", "equality_tok_Lib.IntTypes.U8@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.unsigned", "equation_Lib.IntTypes.v", "equation_Lib.Sequence.length", "equation_Lib.Sequence.lseq", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Addition", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_c8d3b6d970d248eb6dafcd4c7349c311", "refinement_interpretation_Tm_refine_cf1b97833340cf7687e7b411efdb7198", "refinement_interpretation_Tm_refine_d8d83307254a8900dd20598654272e42", "typing_Lib.IntTypes.bits", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "068a0fd6785d5de4f3a56ca103768283" ], [ "Spec.P256.MontgomeryMultiplication.lemma_odd", 2, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.S16", "constructor_distinct_Lib.IntTypes.S8", "constructor_distinct_Lib.IntTypes.U32", "constructor_distinct_Lib.IntTypes.U64", "equality_tok_Lib.IntTypes.U32@tok", "equality_tok_Lib.IntTypes.U64@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "equation_Prims.pos", "int_inversion", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_cf1b97833340cf7687e7b411efdb7198", "typing_Lib.IntTypes.bits", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "3fce9cc1b569b652c43665752fa9193e" ], [ "Spec.P256.MontgomeryMultiplication.lemma_odd", 3, 0, 0, [ "@MaxIFuel_assumption", "@query", "constructor_distinct_Lib.IntTypes.U64", "constructor_distinct_Lib.IntTypes.U8", "equality_tok_Lib.IntTypes.SEC@tok", "equality_tok_Lib.IntTypes.U8@tok", "equation_FStar.Math.Lib.arithmetic_shift_right", "equation_FStar.Math.Lib.div", "equation_Lib.ByteSequence.nat_from_bytes_le", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Lib.Sequence.length", "equation_Lib.Sequence.lseq", "equation_Prims.nat", "equation_Prims.pos", "equation_Spec.P256.MontgomeryMultiplication.ith_bit_power", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_LessThan", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_31c7d3d85d92cb942c95a78642e657c7", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_5b69e90b97d8991e731f0f059afb1344", "refinement_interpretation_Tm_refine_774ba3f728d91ead8ef40be66c9802e5", "refinement_interpretation_Tm_refine_86bac8d7b801765697c794e57f270ab8", "refinement_interpretation_Tm_refine_c8d3b6d970d248eb6dafcd4c7349c311", "refinement_interpretation_Tm_refine_cf1b97833340cf7687e7b411efdb7198", "refinement_interpretation_Tm_refine_d8d83307254a8900dd20598654272e42", "typing_Spec.P256.MontgomeryMultiplication.ith_bit_power" ], 0, "e2cf30146f11c2ddcc51ca9291cd6701" ], [ "Spec.P256.MontgomeryMultiplication.lemma_exponen_spec", 1, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.S16", "constructor_distinct_Lib.IntTypes.S8", "constructor_distinct_Lib.IntTypes.U32", "constructor_distinct_Lib.IntTypes.U8", "equality_tok_Lib.IntTypes.U32@tok", "equality_tok_Lib.IntTypes.U8@tok", "equation_FStar.Math.Lib.arithmetic_shift_right", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Lib.Sequence.length", "equation_Lib.Sequence.lseq", "equation_Prims.nat", "equation_Spec.P256.Definitions.nat_prime", "equation_Spec.P256.Definitions.prime256", "int_inversion", "int_typing", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Addition", "primitive_Prims.op_GreaterThan", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_2a75ac9e9041407930877285ccf479d9", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_5b69e90b97d8991e731f0f059afb1344", "refinement_interpretation_Tm_refine_d131d4ef716432e3a8862dae7df47aab", "refinement_interpretation_Tm_refine_d8d83307254a8900dd20598654272e42", "refinement_interpretation_Tm_refine_fbbde07faf72deea9119918469301c23", "typing_FStar.Math.Lib.div", "typing_Lib.IntTypes.bits", "typing_Prims.pow2", "typing_Spec.P256.Definitions.prime256", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "483679f12f6506d1597b40278002b199" ], [ "Spec.P256.MontgomeryMultiplication.lemma_exponen_spec_0", 1, 1, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@fuel_irrelevance_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.S16", "constructor_distinct_Lib.IntTypes.S8", "constructor_distinct_Lib.IntTypes.U32", "constructor_distinct_Lib.IntTypes.U8", "equality_tok_Lib.IntTypes.U32@tok", "equality_tok_Lib.IntTypes.U8@tok", "equation_FStar.Math.Lib.arithmetic_shift_right", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Lib.Sequence.length", "equation_Lib.Sequence.lseq", "equation_Prims.nat", "equation_Spec.P256.Definitions.nat_prime", "equation_Spec.P256.Definitions.prime256", "int_typing", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Addition", "primitive_Prims.op_GreaterThan", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_2a75ac9e9041407930877285ccf479d9", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_5b69e90b97d8991e731f0f059afb1344", "refinement_interpretation_Tm_refine_d8d83307254a8900dd20598654272e42", "refinement_interpretation_Tm_refine_fbbde07faf72deea9119918469301c23", "typing_FStar.Math.Lib.div", "typing_Lib.IntTypes.bits", "typing_Prims.pow2", "typing_Spec.P256.Definitions.prime256", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "7cc93fc9a27bc61ebe59a504b3970a39" ], [ "Spec.P256.MontgomeryMultiplication.lemma_exponen_spec_0", 2, 1, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@fuel_irrelevance_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.U32", "equality_tok_Lib.IntTypes.U32@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "typing_Lib.IntTypes.bits", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "0060438beed857db38093af4ee909190" ], [ "Spec.P256.MontgomeryMultiplication.lemma_exponen_spec_0", 3, 1, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@fuel_correspondence_Spec.P256.Lemmas.pow.fuel_instrumented", "@fuel_irrelevance_Spec.P256.Lemmas.pow.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "constructor_distinct_Lib.IntTypes.U8", "equality_tok_Lib.IntTypes.U8@tok", "equation_FStar.Math.Lib.arithmetic_shift_right", "equation_FStar.Math.Lib.div", "equation_Lib.IntTypes.unsigned", "equation_Lib.Sequence.length", "equation_Lib.Sequence.lseq", "equation_Prims.nat", "equation_Spec.P256.Definitions.nat_prime", "equation_Spec.P256.Definitions.prime256", "equation_with_fuel_Prims.pow2.fuel_instrumented", "equation_with_fuel_Spec.P256.Lemmas.pow.fuel_instrumented", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Equality", "primitive_Prims.op_GreaterThan", "primitive_Prims.op_LessThan", "primitive_Prims.op_Modulus", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "projection_inverse_FStar.Pervasives.Native.Mktuple2__2", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_2a75ac9e9041407930877285ccf479d9", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_5b69e90b97d8991e731f0f059afb1344", "refinement_interpretation_Tm_refine_d8d83307254a8900dd20598654272e42", "refinement_interpretation_Tm_refine_fbbde07faf72deea9119918469301c23", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "typing_FStar.Math.Lib.div", "typing_Prims.pow2", "typing_Spec.P256.Definitions.prime256", "typing_Spec.P256.Lemmas.pow" ], 0, "f74ba44becbf29667e8b320d1248471c" ], [ "Spec.P256.MontgomeryMultiplication.lemma_exponen_spec", 2, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.S16", "constructor_distinct_Lib.IntTypes.S8", "constructor_distinct_Lib.IntTypes.U32", "equality_tok_Lib.IntTypes.U32@tok", "equation_FStar.Math.Lib.arithmetic_shift_right", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.unsigned", "equation_Lib.Sequence.length", "equation_Lib.Sequence.lseq", "equation_Prims.nat", "equation_Spec.P256.Definitions.nat_prime", "int_inversion", "int_typing", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Addition", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "refinement_interpretation_Tm_refine_2a75ac9e9041407930877285ccf479d9", "refinement_interpretation_Tm_refine_40d7c819dddf5fa24ab551a99ef61b53", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_5b69e90b97d8991e731f0f059afb1344", "refinement_interpretation_Tm_refine_d8d83307254a8900dd20598654272e42", "refinement_interpretation_Tm_refine_fbbde07faf72deea9119918469301c23", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "typing_FStar.Math.Lib.div", "typing_Lib.IntTypes.bits", "typing_Prims.pow2", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "4ab584961eacad68d8bb759d3a11202a" ], [ "Spec.P256.MontgomeryMultiplication.lemma_exponen_spec", 3, 0, 0, [ "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "Prims_pretyping_ae567c2fb75be05905677af440075565", "binder_x_04c65e5061064a6641b678085a12f5eb_0", "binder_x_1efb0e89ea25f58465eaf8e8ea325655_2", "binder_x_d4dc8f86fef1c34b03ed83433a133c23_1", "constructor_distinct_Lib.IntTypes.U64", "constructor_distinct_Lib.IntTypes.U8", "equality_tok_Lib.IntTypes.SEC@tok", "equality_tok_Lib.IntTypes.U64@tok", "equality_tok_Lib.IntTypes.U8@tok", "equation_FStar.Math.Lib.arithmetic_shift_right", "equation_Lib.ByteSequence.nat_from_bytes_le", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Lib.IntTypes.v", "equation_Lib.Sequence.length", "equation_Lib.Sequence.lseq", "equation_Prims.nat", "equation_Prims.op_Equals_Equals_Equals", "equation_Spec.P256.Definitions.nat_prime", "equation_Spec.P256.Definitions.prime256", "equation_Spec.P256.MontgomeryMultiplication._pow_step", "equation_Spec.P256.MontgomeryMultiplication._pow_step0", "equation_Spec.P256.MontgomeryMultiplication._pow_step1", "equation_Spec.P256.MontgomeryMultiplication.ith_bit_power", "equation_Spec.P256.MontgomeryMultiplication.op_Star_Percent", "equation_Spec.P256.MontgomeryMultiplication.prime", "function_token_typing_Prims.__cache_version_number__", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Equality", "primitive_Prims.op_LessThan", "primitive_Prims.op_Multiply", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "projection_inverse_FStar.Pervasives.Native.Mktuple2__2", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_2a75ac9e9041407930877285ccf479d9", "refinement_interpretation_Tm_refine_31c7d3d85d92cb942c95a78642e657c7", "refinement_interpretation_Tm_refine_387e6d282145573240ab7b8a4b94cce5", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_86bac8d7b801765697c794e57f270ab8", "refinement_interpretation_Tm_refine_9f8f6290ae5c5057ec2ec3d3fc190a93", "refinement_interpretation_Tm_refine_ab3a3d81ac8671ea932e607c31c24256", "refinement_interpretation_Tm_refine_d131d4ef716432e3a8862dae7df47aab", "refinement_interpretation_Tm_refine_d8d83307254a8900dd20598654272e42", "refinement_interpretation_Tm_refine_f69cd9e64c7c87b398cfced2167229ae", "refinement_interpretation_Tm_refine_fbbde07faf72deea9119918469301c23", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "typing_FStar.Math.Lib.div", "typing_Lib.RawIntTypes.uint_to_nat", "typing_Prims.pow2", "typing_Spec.P256.Definitions.prime256", "typing_Spec.P256.MontgomeryMultiplication.ith_bit_power", "typing_tok_Lib.IntTypes.SEC@tok", "typing_tok_Lib.IntTypes.U64@tok", "unit_inversion", "unit_typing", "well-founded-ordering-on-nat" ], 0, "5b372c6ff8f188f5bd7b44642712994a" ], [ "Spec.P256.MontgomeryMultiplication.pow_spec", 1, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.S16", "constructor_distinct_Lib.IntTypes.S8", "constructor_distinct_Lib.IntTypes.U32", "equality_tok_Lib.IntTypes.U32@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "typing_Lib.IntTypes.bits", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "73e3295422cd78758e30e459910847a6" ], [ "Spec.P256.MontgomeryMultiplication.pow_spec", 2, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "constructor_distinct_Lib.IntTypes.U32", "equality_tok_Lib.IntTypes.U32@tok", "equation_Lib.IntTypes.bits", "equation_Lib.IntTypes.minint", "equation_Lib.IntTypes.unsigned", "equation_Prims.nat", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Subtraction", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "typing_Lib.IntTypes.bits", "typing_tok_Lib.IntTypes.U32@tok" ], 0, "81f287b49134521422b3d9d9c8de3e54" ], [ "Spec.P256.MontgomeryMultiplication.pow_spec", 3, 0, 0, [ "@MaxFuel_assumption", "@MaxIFuel_assumption", "@fuel_correspondence_Prims.pow2.fuel_instrumented", "@query", "equality_tok_Lib.IntTypes.SEC@tok", "equation_FStar.Math.Lib.arithmetic_shift_right", "equation_FStar.Math.Lib.div", "equation_Lib.ByteSequence.nat_from_bytes_le", "equation_Lib.Sequence.lseq", "equation_Prims.nat", "equation_Spec.P256.Definitions.nat_prime", "equation_Spec.P256.Definitions.prime256", "int_inversion", "int_typing", "lemma_FStar.UInt.pow2_values", "primitive_Prims.op_Division", "primitive_Prims.op_LessThan", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "projection_inverse_FStar.Pervasives.Native.Mktuple2__1", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_2a75ac9e9041407930877285ccf479d9", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_b980dd096af896d3c53bb79f2279e581", "refinement_interpretation_Tm_refine_d8d83307254a8900dd20598654272e42", "typing_FStar.Math.Lib.div", "typing_Lib.ByteSequence.nat_from_bytes_le", "typing_Prims.pow2", "typing_Spec.P256.Definitions.prime256", "typing_tok_Lib.IntTypes.SEC@tok" ], 0, "986e92d58a63daf05868f79fc3b66ab4" ], [ "Spec.P256.MontgomeryMultiplication.sq_root_spec", 1, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Spec.P256.Definitions.nat_prime", "equation_Spec.P256.Definitions.prime256", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_GreaterThan", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "typing_Spec.P256.Definitions.prime256" ], 0, "f7fc7725c69cac90b3ddfcda38c0f74a" ], [ "Spec.P256.MontgomeryMultiplication.sq_root_spec", 2, 0, 0, [ "@MaxIFuel_assumption", "@query", "equation_Prims.nat", "equation_Spec.P256.Definitions.nat_prime", "equation_Spec.P256.Definitions.prime256", "int_inversion", "int_typing", "primitive_Prims.op_Addition", "primitive_Prims.op_Division", "primitive_Prims.op_GreaterThan", "primitive_Prims.op_Modulus", "primitive_Prims.op_Subtraction", "projection_inverse_BoxBool_proj_0", "projection_inverse_BoxInt_proj_0", "refinement_interpretation_Tm_refine_0c4926e33a4dc1c024a6bb2210141ee1", "refinement_interpretation_Tm_refine_542f9d4f129664613f2483a6c88bc7c2", "refinement_interpretation_Tm_refine_ff2b90c8f94db4f4bcfea92159681cf1", "typing_Spec.P256.Definitions.prime256" ], 0, "a7f10a6ed2e61429f56b22bba98bec9a" ] ] ]