module Lib.IntTypes open FStar.Mul #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 20" // Other instances frollow from `FStar.UInt.pow2_values` which is in // scope of every module depending on Lib.IntTypes val pow2_2: n:nat -> Lemma (pow2 2 = 4) [SMTPat (pow2 n)] val pow2_3: n:nat -> Lemma (pow2 3 = 8) [SMTPat (pow2 n)] val pow2_4: n:nat -> Lemma (pow2 4 = 16) [SMTPat (pow2 n)] val pow2_127: n:nat -> Lemma (pow2 127 = 0x80000000000000000000000000000000) [SMTPat (pow2 n)] /// /// Definition of machine integer base types /// type inttype = | U1 | U8 | U16 | U32 | U64 | U128 | S8 | S16 | S32 | S64 | S128 [@(strict_on_arguments [0])] inline_for_extraction let unsigned = function | U1 | U8 | U16 | U32 | U64 | U128 -> true | _ -> false [@(strict_on_arguments [0])] inline_for_extraction let signed = function | S8 | S16 | S32 | S64 | S128 -> true | _ -> false /// /// Operations on the underlying machine integer base types /// [@(strict_on_arguments [0])] inline_for_extraction let numbytes = function | U1 -> 1 | U8 -> 1 | S8 -> 1 | U16 -> 2 | S16 -> 2 | U32 -> 4 | S32 -> 4 | U64 -> 8 | S64 -> 8 | U128 -> 16 | S128 -> 16 [@(strict_on_arguments [0])] inline_for_extraction let bits = function | U1 -> 1 | U8 -> 8 | S8 -> 8 | U16 -> 16 | S16 -> 16 | U32 -> 32 | S32 -> 32 | U64 -> 64 | S64 -> 64 | U128 -> 128 | S128 -> 128 val bits_numbytes: t:inttype{~(U1? t)} -> Lemma (bits t == 8 * numbytes t) // [SMTPat [bits t; numbytes t]] unfold let modulus (t:inttype) = pow2 (bits t) [@(strict_on_arguments [0])] unfold let maxint (t:inttype) = if unsigned t then pow2 (bits t) - 1 else pow2 (bits t - 1) - 1 [@(strict_on_arguments [0])] unfold let minint (t:inttype) = if unsigned t then 0 else -(pow2 (bits t - 1)) let range (n:int) (t:inttype) : Type0 = minint t <= n /\ n <= maxint t unfold type range_t (t:inttype) = x:int{range x t} /// /// PUBLIC Machine Integers /// inline_for_extraction let pub_int_t = function | U1 -> n:UInt8.t{UInt8.v n < 2} | U8 -> UInt8.t | U16 -> UInt16.t | U32 -> UInt32.t | U64 -> UInt64.t | U128 -> UInt128.t | S8 -> Int8.t | S16 -> Int16.t | S32 -> Int32.t | S64 -> Int64.t | S128 -> Int128.t [@(strict_on_arguments [0])] unfold let pub_int_v #t (x:pub_int_t t) : range_t t = match t with | U1 -> UInt8.v x | U8 -> UInt8.v x | U16 -> UInt16.v x | U32 -> UInt32.v x | U64 -> UInt64.v x | U128 -> UInt128.v x | S8 -> Int8.v x | S16 -> Int16.v x | S32 -> Int32.v x | S64 -> Int64.v x | S128 -> Int128.v x /// /// SECRET Machine Integers /// type secrecy_level = | SEC | PUB inline_for_extraction val sec_int_t: inttype -> Type0 val sec_int_v: #t:inttype -> sec_int_t t -> range_t t /// /// GENERIC Machine Integers /// inline_for_extraction let int_t (t:inttype) (l:secrecy_level) = match l with | PUB -> pub_int_t t | SEC -> sec_int_t t [@(strict_on_arguments [1])] let v #t #l (u:int_t t l) : range_t t = match l with | PUB -> pub_int_v #t u | SEC -> sec_int_v #t u unfold let uint_t (t:inttype{unsigned t}) (l:secrecy_level) = int_t t l unfold let sint_t (t:inttype{signed t}) (l:secrecy_level) = int_t t l unfold let uint_v #t #l (u:uint_t t l) = v u unfold let sint_v #t #l (u:sint_t t l) = v u unfold type uint1 = uint_t U1 SEC unfold type uint8 = uint_t U8 SEC unfold type int8 = sint_t S8 SEC unfold type uint16 = uint_t U16 SEC unfold type int16 = sint_t S16 SEC unfold type uint32 = uint_t U32 SEC unfold type int32 = sint_t S32 SEC unfold type uint64 = uint_t U64 SEC unfold type int64 = sint_t S64 SEC unfold type uint128 = uint_t U128 SEC unfold type int128 = sint_t S128 SEC unfold type bit_t = uint_t U1 PUB unfold type byte_t = uint_t U8 PUB unfold type size_t = uint_t U32 PUB // 2019.7.19: Used only by experimental Blake2b; remove? unfold type size128_t = uint_t U128 PUB unfold type pub_uint8 = uint_t U8 PUB unfold type pub_int8 = sint_t S8 PUB unfold type pub_uint16 = uint_t U16 PUB unfold type pub_int16 = sint_t S16 PUB unfold type pub_uint32 = uint_t U32 PUB unfold type pub_int32 = sint_t S32 PUB unfold type pub_uint64 = uint_t U64 PUB unfold type pub_int64 = sint_t S64 PUB unfold type pub_uint128 = uint_t U128 PUB unfold type pub_int128 = sint_t S128 PUB /// /// Casts between mathematical and machine integers /// inline_for_extraction val secret: #t:inttype -> x:int_t t PUB -> y:int_t t SEC{v x == v y} [@(strict_on_arguments [0])] inline_for_extraction val mk_int: #t:inttype -> #l:secrecy_level -> n:range_t t -> u:int_t t l{v u == n} unfold let uint (#t:inttype{unsigned t}) (#l:secrecy_level) (n:range_t t) = mk_int #t #l n unfold let sint (#t:inttype{signed t}) (#l:secrecy_level) (n:range_t t) = mk_int #t #l n val v_injective: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (mk_int (v #t #l a) == a) [SMTPat (v #t #l a)] val v_mk_int: #t:inttype -> #l:secrecy_level -> n:range_t t -> Lemma (v #t #l (mk_int #t #l n) == n) [SMTPat (v #t #l (mk_int #t #l n))] unfold let u1 (n:range_t U1) : u:uint1{v u == n} = uint #U1 #SEC n unfold let u8 (n:range_t U8) : u:uint8{v u == n} = uint #U8 #SEC n unfold let i8 (n:range_t S8) : u:int8{v u == n} = sint #S8 #SEC n unfold let u16 (n:range_t U16) : u:uint16{v u == n} = uint #U16 #SEC n unfold let i16 (n:range_t S16) : u:int16{v u == n} = sint #S16 #SEC n unfold let u32 (n:range_t U32) : u:uint32{v u == n} = uint #U32 #SEC n unfold let i32 (n:range_t S32) : u:int32{v u == n} = sint #S32 #SEC n unfold let u64 (n:range_t U64) : u:uint64{v u == n} = uint #U64 #SEC n unfold let i64 (n:range_t S64) : u:int64{v u == n} = sint #S64 #SEC n (* We only support 64-bit literals, hence the unexpected upper limit *) inline_for_extraction val u128: n:range_t U64 -> u:uint128{v #U128 u == n} inline_for_extraction val i128 (n:range_t S64) : u:int128{v #S128 u == n} unfold let max_size_t = maxint U32 unfold type size_nat = n:nat{n <= max_size_t} unfold type size_pos = n:pos{n <= max_size_t} unfold let size (n:size_nat) : size_t = uint #U32 #PUB n unfold let size_v (s:size_t) = v s unfold let byte (n:nat{n < 256}) : b:byte_t{v b == n} = uint #U8 #PUB n unfold let byte_v (s:byte_t) : n:size_nat{v s == n} = v s inline_for_extraction val size_to_uint32: s:size_t -> u:uint32{u == u32 (v s)} inline_for_extraction val size_to_uint64: s:size_t -> u:uint64{u == u64 (v s)} inline_for_extraction val byte_to_uint8: s:byte_t -> u:uint8{u == u8 (v s)} [@(strict_on_arguments [0])] inline_for_extraction let op_At_Percent_Dot x t = if unsigned t then x % modulus t else FStar.Int.(x @% modulus t) // Casting a value to a signed type is implementation-defined when the value can't // be represented in the new type; e.g. (int8_t)128UL is implementation-defined // We rule out this case in the type of `u1` // See 6.3.1.3 in http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf [@(strict_on_arguments [0;2])] inline_for_extraction val cast: #t:inttype -> #l:secrecy_level -> t':inttype -> l':secrecy_level{PUB? l \/ SEC? l'} -> u1:int_t t l{unsigned t' \/ range (v u1) t'} -> u2:int_t t' l'{v u2 == v u1 @%. t'} [@(strict_on_arguments [0])] unfold let to_u1 #t #l u : uint1 = cast #t #l U1 SEC u [@(strict_on_arguments [0])] unfold let to_u8 #t #l u : uint8 = cast #t #l U8 SEC u [@(strict_on_arguments [0])] unfold let to_i8 #t #l u : int8 = cast #t #l S8 SEC u [@(strict_on_arguments [0])] unfold let to_u16 #t #l u : uint16 = cast #t #l U16 SEC u [@(strict_on_arguments [0])] unfold let to_i16 #t #l u : int16 = cast #t #l S16 SEC u [@(strict_on_arguments [0])] unfold let to_u32 #t #l u : uint32 = cast #t #l U32 SEC u [@(strict_on_arguments [0])] unfold let to_i32 #t #l u : int32 = cast #t #l S32 SEC u [@(strict_on_arguments [0])] unfold let to_u64 #t #l u : uint64 = cast #t #l U64 SEC u [@(strict_on_arguments [0])] unfold let to_i64 #t #l u : int64 = cast #t #l S64 SEC u [@(strict_on_arguments [0])] unfold let to_u128 #t #l u : uint128 = cast #t #l U128 SEC u [@(strict_on_arguments [0])] unfold let to_i128 #t #l u : int128 = cast #t #l S128 SEC u /// /// Bitwise operators for all machine integers /// [@(strict_on_arguments [0])] inline_for_extraction let ones_v (t:inttype) = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> maxint t | S8 | S16 | S32 | S64 | S128 -> -1 [@(strict_on_arguments [0])] inline_for_extraction val ones: t:inttype -> l:secrecy_level -> n:int_t t l{v n = ones_v t} inline_for_extraction val zeros: t:inttype -> l:secrecy_level -> n:int_t t l{v n = 0} [@(strict_on_arguments [0])] inline_for_extraction val add_mod: #t:inttype{unsigned t} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l val add_mod_lemma: #t:inttype{unsigned t} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (add_mod a b) == (v a + v b) @%. t) [SMTPat (v #t #l (add_mod #t #l a b))] [@(strict_on_arguments [0])] inline_for_extraction val add: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a + v b) t} -> int_t t l val add_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a + v b) t} -> Lemma (v #t #l (add #t #l a b) == v a + v b) [SMTPat (v #t #l (add #t #l a b))] [@(strict_on_arguments [0])] inline_for_extraction val incr: #t:inttype -> #l:secrecy_level -> a:int_t t l{v a < maxint t} -> int_t t l val incr_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l{v a < maxint t} -> Lemma (v (incr a) == v a + 1) [@(strict_on_arguments [0])] inline_for_extraction val mul_mod: #t:inttype{unsigned t /\ ~(U128? t)} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l val mul_mod_lemma: #t:inttype{unsigned t /\ ~(U128? t)} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (mul_mod a b) == (v a * v b) @%. t) [SMTPat (v #t #l (mul_mod #t #l a b))] [@(strict_on_arguments [0])] inline_for_extraction val mul: #t:inttype{~(U128? t) /\ ~(S128? t)} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a * v b) t} -> int_t t l val mul_lemma: #t:inttype{~(U128? t) /\ ~(S128? t)} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a * v b) t} -> Lemma (v #t #l (mul #t #l a b) == v a * v b) [SMTPat (v #t #l (mul #t #l a b))] inline_for_extraction val mul64_wide: uint64 -> uint64 -> uint128 val mul64_wide_lemma: a:uint64 -> b:uint64 -> Lemma (v (mul64_wide a b) == v a * v b) [SMTPat (v (mul64_wide a b))] // KB: I'd prefer // v (mul64_wide a b) = (pow2 (bits t) + v a - v b) % pow2 (bits t) inline_for_extraction val mul_s64_wide: int64 -> int64 -> int128 val mul_s64_wide_lemma: a:int64 -> b:int64 -> Lemma (v (mul_s64_wide a b) == v a * v b) [SMTPat (v (mul_s64_wide a b))] [@(strict_on_arguments [0])] inline_for_extraction val sub_mod: #t:inttype{unsigned t} -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l val sub_mod_lemma: #t:inttype{unsigned t} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (sub_mod a b) == (v a - v b) @%. t) [SMTPat (v #t #l (sub_mod #t #l a b))] [@(strict_on_arguments [0])] inline_for_extraction val sub: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a - v b) t} -> int_t t l val sub_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l{range (v a - v b) t} -> Lemma (v (sub a b) == v a - v b) [SMTPat (v #t #l (sub #t #l a b))] [@(strict_on_arguments [0])] inline_for_extraction val decr: #t:inttype -> #l:secrecy_level -> a:int_t t l{minint t < v a} -> int_t t l val decr_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l{minint t < v a} -> Lemma (v (decr a) == v a - 1) [@(strict_on_arguments [0])] inline_for_extraction val logxor: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l val logxor_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (a `logxor` (a `logxor` b) == b /\ a `logxor` (b `logxor` a) == b /\ a `logxor` (mk_int #t #l 0) == a) val logxor_lemma1: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires range (v a) U1 /\ range (v b) U1) (ensures range (v (a `logxor` b)) U1) let logxor_v (#t:inttype) (a:range_t t) (b:range_t t) : range_t t = match t with | S8 | S16 | S32 | S64 | S128 -> Int.logxor #(bits t) a b | _ -> UInt.logxor #(bits t) a b val logxor_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` b) == v a `logxor_v` v b) [@(strict_on_arguments [0])] inline_for_extraction val logand: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l val logand_zeros: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (a `logand` zeros t l) == 0) val logand_ones: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (a `logand` ones t l) == v a) // For backwards compatibility val logand_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = 0 then v (a `logand` b) == 0 else v (a `logand` b) == v b)) let logand_v (#t:inttype) (a:range_t t) (b:range_t t) : range_t t = match t with | S8 | S16 | S32 | S64 | S128 -> Int.logand #(bits t) a b | _ -> UInt.logand #(bits t) a b val logand_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logand` b) == v a `logand_v` v b) //[SMTPat (v (a `logand` b))] val logand_le:#t:inttype{unsigned t} -> #l:secrecy_level -> a:uint_t t l -> b:uint_t t l -> Lemma (requires True) (ensures v (logand a b) <= v a /\ v (logand a b) <= v b) val logand_mask: #t:inttype{unsigned t} -> #l:secrecy_level -> a:uint_t t l -> b:uint_t t l -> m:pos{m < bits t} -> Lemma (requires v b == pow2 m - 1) (ensures v (logand #t #l a b) == v a % pow2 m) [@(strict_on_arguments [0])] inline_for_extraction val logor: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l -> int_t t l val logor_disjoint: #t:inttype{unsigned t} -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> m:nat{m < bits t} -> Lemma (requires 0 <= v a /\ v a < pow2 m /\ v b % pow2 m == 0) (ensures v (a `logor` b) == v a + v b) //[SMTPat (v (a `logor` b))] val logor_zeros: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (v (a `logor` zeros t l) == v a) val logor_ones: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (v (a `logor` ones t l) == ones_v t) // For backwards compatibility val logor_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = ones_v t then v (a `logor` b) == ones_v t else v (a `logor` b) == v b)) let logor_v (#t:inttype) (a:range_t t) (b:range_t t) : range_t t = match t with | S8 | S16 | S32 | S64 | S128 -> Int.logor #(bits t) a b | _ -> UInt.logor #(bits t) a b val logor_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logor` b) == v a `logor_v` v b) [@(strict_on_arguments [0])] inline_for_extraction val lognot: #t:inttype -> #l:secrecy_level -> int_t t l -> int_t t l val lognot_lemma: #t: inttype -> #l: secrecy_level -> a: int_t t l -> Lemma (requires v a = 0 \/ v a = ones_v t) (ensures (if v a = ones_v t then v (lognot a) == 0 else v (lognot a) == ones_v t)) let lognot_v (#t:inttype) (a:range_t t) : range_t t = match t with | S8 | S16 | S32 | S64 | S128 -> Int.lognot #(bits t) a | _ -> UInt.lognot #(bits t) a val lognot_spec: #t:inttype -> #l:secrecy_level -> a:int_t t l -> Lemma (v (lognot a) == lognot_v (v a)) inline_for_extraction type shiftval (t:inttype) = u:size_t{v u < bits t} inline_for_extraction type rotval (t:inttype) = u:size_t{0 < v u /\ v u < bits t} [@(strict_on_arguments [0])] inline_for_extraction val shift_right: #t:inttype -> #l:secrecy_level -> int_t t l -> shiftval t -> int_t t l val shift_right_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:shiftval t -> Lemma (v (shift_right a b) == v a / pow2 (v b)) [SMTPat (v #t #l (shift_right #t #l a b))] [@(strict_on_arguments [0])] inline_for_extraction val shift_left: #t:inttype -> #l:secrecy_level -> a:int_t t l -> s:shiftval t -> Pure (int_t t l) (requires unsigned t \/ (0 <= v a /\ v a * pow2 (v s) <= maxint t)) (ensures fun _ -> True) val shift_left_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l{unsigned t \/ 0 <= v a} -> s:shiftval t{unsigned t \/ (0 <= v a /\ v a * pow2 (v s) <= maxint t)} -> Lemma (v (shift_left a s) == (v a * pow2 (v s)) @%. t) [SMTPat (v #t #l (shift_left #t #l a s))] [@(strict_on_arguments [0])] inline_for_extraction val rotate_right: #t:inttype -> #l:secrecy_level -> a:int_t t l{unsigned t} -> rotval t -> int_t t l [@(strict_on_arguments [0])] inline_for_extraction val rotate_left: #t:inttype -> #l:secrecy_level -> a:int_t t l{unsigned t} -> rotval t -> int_t t l inline_for_extraction let shift_right_i (#t:inttype) (#l:secrecy_level) (s:shiftval t{unsigned t}) (u:uint_t t l) : uint_t t l = shift_right u s inline_for_extraction let shift_left_i (#t:inttype) (#l:secrecy_level) (s:shiftval t{unsigned t}) (u:uint_t t l) : uint_t t l = shift_left u s inline_for_extraction let rotate_right_i (#t:inttype) (#l:secrecy_level) (s:rotval t{unsigned t}) (u:uint_t t l) : uint_t t l = rotate_right u s inline_for_extraction let rotate_left_i (#t:inttype) (#l:secrecy_level) (s:rotval t{unsigned t}) (u:uint_t t l) : uint_t t l = rotate_left u s [@(strict_on_arguments [0])] inline_for_extraction val ct_abs: #t:inttype{signed t /\ ~(S128? t)} -> #l:secrecy_level -> a:int_t t l{minint t < v a} -> b:int_t t l{v b == abs (v a)} /// /// Masking operators for all machine integers /// [@(strict_on_arguments [0])] inline_for_extraction val eq_mask: #t:inttype{~(S128? t)} -> int_t t SEC -> int_t t SEC -> int_t t SEC val eq_mask_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) [SMTPat (eq_mask #t a b)] val eq_mask_logand_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> c:int_t t SEC -> Lemma (if v a = v b then v (c `logand` eq_mask a b) == v c else v (c `logand` eq_mask a b) == 0) [SMTPat (c `logand` eq_mask a b)] [@(strict_on_arguments [0])] inline_for_extraction val neq_mask: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> int_t t SEC val neq_mask_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (neq_mask a b) == 0 else v (neq_mask a b) == ones_v t) [SMTPat (neq_mask #t a b)] [@(strict_on_arguments [0])] inline_for_extraction val gte_mask: #t:inttype{unsigned t} -> int_t t SEC -> b:int_t t SEC -> int_t t SEC val gte_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a >= v b then v (gte_mask a b) == ones_v t else v (gte_mask a b) == 0) [SMTPat (gte_mask #t a b)] val gte_mask_logand_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> c:int_t t SEC -> Lemma (if v a >= v b then v (c `logand` gte_mask a b) == v c else v (c `logand` gte_mask a b) == 0) [SMTPat (c `logand` gte_mask a b)] [@(strict_on_arguments [0])] inline_for_extraction val lt_mask: #t:inttype{unsigned t} -> int_t t SEC -> int_t t SEC -> int_t t SEC val lt_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a < v b then v (lt_mask a b) == ones_v t else v (lt_mask a b) == 0) [SMTPat (lt_mask #t a b)] [@(strict_on_arguments [0])] inline_for_extraction val gt_mask: #t:inttype{unsigned t} -> int_t t SEC -> b:int_t t SEC -> int_t t SEC val gt_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a > v b then v (gt_mask a b) == ones_v t else v (gt_mask a b) == 0) [SMTPat (gt_mask #t a b)] [@(strict_on_arguments [0])] inline_for_extraction val lte_mask: #t:inttype{unsigned t} -> int_t t SEC -> int_t t SEC -> int_t t SEC val lte_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a <= v b then v (lte_mask a b) == ones_v t else v (lte_mask a b) == 0) [SMTPat (lte_mask #t a b)] #push-options "--max_fuel 1" [@(strict_on_arguments [0])] inline_for_extraction let mod_mask (#t:inttype) (#l:secrecy_level) (m:shiftval t{pow2 (uint_v m) <= maxint t}) : int_t t l = shift_left_lemma #t #l (mk_int 1) m; (mk_int 1 `shift_left` m) `sub` mk_int 1 #pop-options val mod_mask_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (a `logand` mod_mask m) == v a % pow2 (v m)) [SMTPat (a `logand` mod_mask #t m)] (** Casts a value between two signed types using modular reduction *) [@(strict_on_arguments [0;2])] inline_for_extraction val cast_mod: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t'} -> l':secrecy_level{PUB? l \/ SEC? l'} -> a:int_t t l -> b:int_t t' l'{v b == v a @%. t'} /// /// Operators available for all machine integers /// unfold let (+!) #t #l = add #t #l unfold let (+.) #t #l = add_mod #t #l unfold let ( *! ) #t #l = mul #t #l unfold let ( *. ) #t #l = mul_mod #t #l unfold let ( -! ) #t #l = sub #t #l unfold let ( -. ) #t #l = sub_mod #t #l unfold let ( >>. ) #t #l = shift_right #t #l unfold let ( <<. ) #t #l = shift_left #t #l unfold let ( >>>. ) #t #l = rotate_right #t #l unfold let ( <<<. ) #t #l = rotate_left #t #l unfold let ( ^. ) #t #l = logxor #t #l unfold let ( |. ) #t #l = logor #t #l unfold let ( &. ) #t #l = logand #t #l unfold let ( ~. ) #t #l = lognot #t #l /// /// Operations on public integers /// [@(strict_on_arguments [0])] inline_for_extraction val div: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> int_t t PUB val div_lemma: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> Lemma (v (div a b) == FStar.Int.(v a / v b)) [SMTPat (v #t (div #t a b))] [@(strict_on_arguments [0])] inline_for_extraction val mod: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> int_t t PUB val mod_lemma: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> Lemma (if signed t then v (mod a b) == FStar.Int.mod #(bits t) (v a) (v b) else v (mod a b) == FStar.UInt.mod #(bits t) (v a) (v b)) [SMTPat (v #t (mod #t a b))] [@(strict_on_arguments [0])] inline_for_extraction val eq: #t:inttype -> int_t t PUB -> int_t t PUB -> bool inline_for_extraction val eq_lemma: #t:inttype -> a:int_t t PUB -> b:int_t t PUB -> Lemma (a `eq` b == (v a = v b)) [SMTPat (eq #t a b)] [@(strict_on_arguments [0])] inline_for_extraction val ne: #t:inttype -> int_t t PUB -> int_t t PUB -> bool val ne_lemma: #t:inttype -> a:int_t t PUB -> b:int_t t PUB -> Lemma (a `ne` b == (v a <> v b)) [SMTPat (ne #t a b)] [@(strict_on_arguments [0])] inline_for_extraction val lt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool val lt_lemma: #t:inttype -> a:int_t t PUB -> b:int_t t PUB -> Lemma (a `lt` b == (v a < v b)) [SMTPat (lt #t a b)] [@(strict_on_arguments [0])] inline_for_extraction val lte: #t:inttype -> int_t t PUB -> int_t t PUB -> bool val lte_lemma: #t:inttype -> a:int_t t PUB -> b:int_t t PUB -> Lemma (a `lte` b == (v a <= v b)) [SMTPat (lte #t a b)] [@(strict_on_arguments [0])] inline_for_extraction val gt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool val gt_lemma: #t:inttype -> a:int_t t PUB -> b:int_t t PUB -> Lemma (a `gt` b == (v a > v b)) [SMTPat (gt #t a b)] [@(strict_on_arguments [0])] inline_for_extraction val gte: #t:inttype -> int_t t PUB -> int_t t PUB -> bool val gte_lemma: #t:inttype -> a:int_t t PUB -> b:int_t t PUB -> Lemma (a `gte` b == (v a >= v b)) [SMTPat (gte #t a b)] unfold let (/.) #t = div #t unfold let (%.) #t = mod #t unfold let (=.) #t = eq #t unfold let (<>.) #t = ne #t unfold let (<.) #t = lt #t unfold let (<=.) #t = lte #t unfold let (>.) #t = gt #t unfold let (>=.) #t = gte #t