use exercism::sum_of_multiples::sum_of_multiples; #[test] fn no_multiples_within_limit() { assert_eq!(0, sum_of_multiples(1, &[3, 5])) } #[test] #[ignore] fn one_factor_has_multiples_within_limit() { assert_eq!(3, sum_of_multiples(4, &[3, 5])) } #[test] #[ignore] fn more_than_one_multiple_within_limit() { assert_eq!(9, sum_of_multiples(7, &[3])) } #[test] #[ignore] fn more_than_one_factor_with_multiples_within_limit() { assert_eq!(23, sum_of_multiples(10, &[3, 5])) } #[test] #[ignore] fn each_multiple_is_only_counted_once() { assert_eq!(2318, sum_of_multiples(100, &[3, 5])) } #[test] #[ignore] fn a_much_larger_limit() { assert_eq!(233_168, sum_of_multiples(1000, &[3, 5])) } #[test] #[ignore] fn three_factors() { assert_eq!(51, sum_of_multiples(20, &[7, 13, 17])) } #[test] #[ignore] fn factors_not_relatively_prime() { assert_eq!(30, sum_of_multiples(15, &[4, 6])) } #[test] #[ignore] fn some_pairs_of_factors_relatively_prime_and_some_not() { assert_eq!(4419, sum_of_multiples(150, &[5, 6, 8])) } #[test] #[ignore] fn one_factor_is_a_multiple_of_another() { assert_eq!(275, sum_of_multiples(51, &[5, 25])) } #[test] #[ignore] fn much_larger_factors() { assert_eq!(2_203_160, sum_of_multiples(10_000, &[43, 47])) } #[test] #[ignore] fn all_numbers_are_multiples_of_1() { assert_eq!(4950, sum_of_multiples(100, &[1])) } #[test] #[ignore] fn no_factors_means_an_empty_sum() { assert_eq!(0, sum_of_multiples(10_000, &[])) } #[test] #[ignore] fn the_only_multiple_of_0_is_0() { assert_eq!(0, sum_of_multiples(1, &[0])) } #[test] #[ignore] fn the_factor_0_does_not_affect_the_sum_of_multiples_of_other_factors() { assert_eq!(3, sum_of_multiples(4, &[3, 0])) } #[test] #[ignore] fn solutions_using_include_exclude_must_extend_to_cardinality_greater_than_3() { assert_eq!(39_614_537, sum_of_multiples(10_000, &[2, 3, 5, 7, 11])) }