# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import sys import time import numpy as np import re import faiss from multiprocessing.dummy import Pool as ThreadPool from datasets import ivecs_read # we mem-map the biggest files to avoid having them in memory all at # once def mmap_fvecs(fname): x = np.memmap(fname, dtype='int32', mode='r') d = x[0] return x.view('float32').reshape(-1, d + 1)[:, 1:] def mmap_bvecs(fname): x = np.memmap(fname, dtype='uint8', mode='r') d = x[:4].view('int32')[0] return x.reshape(-1, d + 4)[:, 4:] ################################################################# # Bookkeeping ################################################################# dbname = sys.argv[1] index_key = sys.argv[2] parametersets = sys.argv[3:] tmpdir = '/tmp/bench_polysemous' if not os.path.isdir(tmpdir): print("%s does not exist, creating it" % tmpdir) os.mkdir(tmpdir) ################################################################# # Prepare dataset ################################################################# print("Preparing dataset", dbname) if dbname.startswith('SIFT'): # SIFT1M to SIFT1000M dbsize = int(dbname[4:-1]) xb = mmap_bvecs('bigann/bigann_base.bvecs') xq = mmap_bvecs('bigann/bigann_query.bvecs') xt = mmap_bvecs('bigann/bigann_learn.bvecs') # trim xb to correct size xb = xb[:dbsize * 1000 * 1000] gt = ivecs_read('bigann/gnd/idx_%dM.ivecs' % dbsize) elif dbname == 'Deep1B': xb = mmap_fvecs('deep1b/base.fvecs') xq = mmap_fvecs('deep1b/deep1B_queries.fvecs') xt = mmap_fvecs('deep1b/learn.fvecs') # deep1B's train is is outrageously big xt = xt[:10 * 1000 * 1000] gt = ivecs_read('deep1b/deep1B_groundtruth.ivecs') else: print('unknown dataset', dbname, file=sys.stderr) sys.exit(1) print("sizes: B %s Q %s T %s gt %s" % ( xb.shape, xq.shape, xt.shape, gt.shape)) nq, d = xq.shape nb, d = xb.shape assert gt.shape[0] == nq ################################################################# # Training ################################################################# def choose_train_size(index_key): # some training vectors for PQ and the PCA n_train = 256 * 1000 if "IVF" in index_key: matches = re.findall('IVF([0-9]+)', index_key) ncentroids = int(matches[0]) n_train = max(n_train, 100 * ncentroids) elif "IMI" in index_key: matches = re.findall('IMI2x([0-9]+)', index_key) nbit = int(matches[0]) n_train = max(n_train, 256 * (1 << nbit)) return n_train def get_trained_index(): filename = "%s/%s_%s_trained.index" % ( tmpdir, dbname, index_key) if not os.path.exists(filename): index = faiss.index_factory(d, index_key) n_train = choose_train_size(index_key) xtsub = xt[:n_train] print("Keeping %d train vectors" % xtsub.shape[0]) # make sure the data is actually in RAM and in float xtsub = xtsub.astype('float32').copy() index.verbose = True t0 = time.time() index.train(xtsub) index.verbose = False print("train done in %.3f s" % (time.time() - t0)) print("storing", filename) faiss.write_index(index, filename) else: print("loading", filename) index = faiss.read_index(filename) return index ################################################################# # Adding vectors to dataset ################################################################# def rate_limited_imap(f, l): 'a thread pre-processes the next element' pool = ThreadPool(1) res = None for i in l: res_next = pool.apply_async(f, (i, )) if res: yield res.get() res = res_next yield res.get() def matrix_slice_iterator(x, bs): " iterate over the lines of x in blocks of size bs" nb = x.shape[0] block_ranges = [(i0, min(nb, i0 + bs)) for i0 in range(0, nb, bs)] return rate_limited_imap( lambda i01: x[i01[0]:i01[1]].astype('float32').copy(), block_ranges) def get_populated_index(): filename = "%s/%s_%s_populated.index" % ( tmpdir, dbname, index_key) if not os.path.exists(filename): index = get_trained_index() i0 = 0 t0 = time.time() for xs in matrix_slice_iterator(xb, 100000): i1 = i0 + xs.shape[0] print('\radd %d:%d, %.3f s' % (i0, i1, time.time() - t0), end=' ') sys.stdout.flush() index.add(xs) i0 = i1 print() print("Add done in %.3f s" % (time.time() - t0)) print("storing", filename) faiss.write_index(index, filename) else: print("loading", filename) index = faiss.read_index(filename) return index ################################################################# # Perform searches ################################################################# index = get_populated_index() ps = faiss.ParameterSpace() ps.initialize(index) # make sure queries are in RAM xq = xq.astype('float32').copy() # a static C++ object that collects statistics about searches ivfpq_stats = faiss.cvar.indexIVFPQ_stats ivf_stats = faiss.cvar.indexIVF_stats if parametersets == ['autotune'] or parametersets == ['autotuneMT']: if parametersets == ['autotune']: faiss.omp_set_num_threads(1) # setup the Criterion object: optimize for 1-R@1 crit = faiss.OneRecallAtRCriterion(nq, 1) # by default, the criterion will request only 1 NN crit.nnn = 100 crit.set_groundtruth(None, gt.astype('int64')) # then we let Faiss find the optimal parameters by itself print("exploring operating points") t0 = time.time() op = ps.explore(index, xq, crit) print("Done in %.3f s, available OPs:" % (time.time() - t0)) # opv is a C++ vector, so it cannot be accessed like a Python array opv = op.optimal_pts print("%-40s 1-R@1 time" % "Parameters") for i in range(opv.size()): opt = opv.at(i) print("%-40s %.4f %7.3f" % (opt.key, opt.perf, opt.t)) else: # we do queries in a single thread faiss.omp_set_num_threads(1) print(' ' * len(parametersets[0]), '\t', 'R@1 R@10 R@100 time %pass') for param in parametersets: print(param, '\t', end=' ') sys.stdout.flush() ps.set_index_parameters(index, param) t0 = time.time() ivfpq_stats.reset() ivf_stats.reset() D, I = index.search(xq, 100) t1 = time.time() for rank in 1, 10, 100: n_ok = (I[:, :rank] == gt[:, :1]).sum() print("%.4f" % (n_ok / float(nq)), end=' ') print("%8.3f " % ((t1 - t0) * 1000.0 / nq), end=' ') print("%5.2f" % (ivfpq_stats.n_hamming_pass * 100.0 / ivf_stats.ndis))