# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function import os import sys import time import numpy as np import re import faiss from multiprocessing.dummy import Pool as ThreadPool import pdb import argparse import datasets from datasets import sanitize import neighbor_codec ###################################################### # Command-line parsing ###################################################### parser = argparse.ArgumentParser() def aa(*args, **kwargs): group.add_argument(*args, **kwargs) group = parser.add_argument_group('dataset options') aa('--db', default='deep1M', help='dataset') aa( '--compute_gt', default=False, action='store_true', help='compute and store the groundtruth') group = parser.add_argument_group('index consturction') aa('--indexkey', default='HNSW32', help='index_factory type') aa('--efConstruction', default=200, type=int, help='HNSW construction factor') aa('--M0', default=-1, type=int, help='size of base level') aa('--maxtrain', default=256 * 256, type=int, help='maximum number of training points') aa('--indexfile', default='', help='file to read or write index from') aa('--add_bs', default=-1, type=int, help='add elements index by batches of this size') aa('--link_singletons', default=False, action='store_true', help='do a pass to link in the singletons') group = parser.add_argument_group( 'searching (reconstruct_from_neighbors options)') aa('--beta_centroids', default='', help='file with codebook') aa('--neigh_recons_codes', default='', help='file with codes for reconstruction') aa('--beta_ntrain', default=250000, type=int, help='') aa('--beta_k', default=256, type=int, help='beta codebook size') aa('--beta_nsq', default=1, type=int, help='number of beta sub-vectors') aa('--beta_niter', default=10, type=int, help='') aa('--k_reorder', default='-1', help='') group = parser.add_argument_group('searching') aa('--k', default=100, type=int, help='nb of nearest neighbors') aa('--exhaustive', default=False, action='store_true', help='report the exhaustive search topline') aa('--searchthreads', default=-1, type=int, help='nb of threads to use at search time') aa('--efSearch', default='', type=str, help='comma-separated values of efSearch to try') args = parser.parse_args() print("args:", args) ###################################################### # Load dataset ###################################################### xt, xb, xq, gt = datasets.load_data( dataset=args.db, compute_gt=args.compute_gt) nq, d = xq.shape nb, d = xb.shape ###################################################### # Make index ###################################################### if os.path.exists(args.indexfile): print("reading", args.indexfile) index = faiss.read_index(args.indexfile) if isinstance(index, faiss.IndexPreTransform): index_hnsw = faiss.downcast_index(index.index) vec_transform = index.chain.at(0).apply_py else: index_hnsw = index vec_transform = lambda x:x hnsw = index_hnsw.hnsw hnsw_stats = faiss.cvar.hnsw_stats else: print("build index, key=", args.indexkey) index = faiss.index_factory(d, args.indexkey) if isinstance(index, faiss.IndexPreTransform): index_hnsw = faiss.downcast_index(index.index) vec_transform = index.chain.at(0).apply_py else: index_hnsw = index vec_transform = lambda x:x hnsw = index_hnsw.hnsw hnsw.efConstruction = args.efConstruction hnsw_stats = faiss.cvar.hnsw_stats index.verbose = True index_hnsw.verbose = True index_hnsw.storage.verbose = True if args.M0 != -1: print("set level 0 nb of neighbors to", args.M0) hnsw.set_nb_neighbors(0, args.M0) xt2 = sanitize(xt[:args.maxtrain]) assert np.all(np.isfinite(xt2)) print("train, size", xt.shape) t0 = time.time() index.train(xt2) print(" train in %.3f s" % (time.time() - t0)) print("adding") t0 = time.time() if args.add_bs == -1: index.add(sanitize(xb)) else: for i0 in range(0, nb, args.add_bs): i1 = min(nb, i0 + args.add_bs) print(" adding %d:%d / %d" % (i0, i1, nb)) index.add(sanitize(xb[i0:i1])) print(" add in %.3f s" % (time.time() - t0)) print("storing", args.indexfile) faiss.write_index(index, args.indexfile) ###################################################### # Train beta centroids and encode dataset ###################################################### if args.beta_centroids: print("reordering links") index_hnsw.reorder_links() if os.path.exists(args.beta_centroids): print("load", args.beta_centroids) beta_centroids = np.load(args.beta_centroids) nsq, k, M1 = beta_centroids.shape assert M1 == hnsw.nb_neighbors(0) + 1 rfn = faiss.ReconstructFromNeighbors(index_hnsw, k, nsq) else: print("train beta centroids") rfn = faiss.ReconstructFromNeighbors( index_hnsw, args.beta_k, args.beta_nsq) xb_full = vec_transform(sanitize(xb[:args.beta_ntrain])) beta_centroids = neighbor_codec.train_beta_codebook( rfn, xb_full, niter=args.beta_niter) print(" storing", args.beta_centroids) np.save(args.beta_centroids, beta_centroids) faiss.copy_array_to_vector(beta_centroids.ravel(), rfn.codebook) index_hnsw.reconstruct_from_neighbors = rfn if rfn.k == 1: pass # no codes to take care of elif os.path.exists(args.neigh_recons_codes): print("loading neigh codes", args.neigh_recons_codes) codes = np.load(args.neigh_recons_codes) assert codes.size == rfn.code_size * index.ntotal faiss.copy_array_to_vector(codes.astype('uint8'), rfn.codes) rfn.ntotal = index.ntotal else: print("encoding neigh codes") t0 = time.time() bs = 1000000 if args.add_bs == -1 else args.add_bs for i0 in range(0, nb, bs): i1 = min(i0 + bs, nb) print(" encode %d:%d / %d [%.3f s]\r" % ( i0, i1, nb, time.time() - t0), end=' ') sys.stdout.flush() xbatch = vec_transform(sanitize(xb[i0:i1])) rfn.add_codes(i1 - i0, faiss.swig_ptr(xbatch)) print() print("storing %s" % args.neigh_recons_codes) codes = faiss.vector_to_array(rfn.codes) np.save(args.neigh_recons_codes, codes) ###################################################### # Exhaustive evaluation ###################################################### if args.exhaustive: print("exhaustive evaluation") xq_tr = vec_transform(sanitize(xq)) index2 = faiss.IndexFlatL2(index_hnsw.d) accu_recons_error = 0.0 if faiss.get_num_gpus() > 0: print("do eval on GPU") co = faiss.GpuMultipleClonerOptions() co.shard = False index2 = faiss.index_cpu_to_all_gpus(index2, co) # process in batches in case the dataset does not fit in RAM rh = datasets.ResultHeap(xq_tr.shape[0], 100) t0 = time.time() bs = 500000 for i0 in range(0, nb, bs): i1 = min(nb, i0 + bs) print(' handling batch %d:%d' % (i0, i1)) xb_recons = np.empty( (i1 - i0, index_hnsw.d), dtype='float32') rfn.reconstruct_n(i0, i1 - i0, faiss.swig_ptr(xb_recons)) accu_recons_error += ( (vec_transform(sanitize(xb[i0:i1])) - xb_recons)**2).sum() index2.reset() index2.add(xb_recons) D, I = index2.search(xq_tr, 100) rh.add_batch_result(D, I, i0) rh.finalize() del index2 t1 = time.time() print("done in %.3f s" % (t1 - t0)) print("total reconstruction error: ", accu_recons_error) print("eval retrieval:") datasets.evaluate_DI(rh.D, rh.I, gt) def get_neighbors(hnsw, i, level): " list the neighbors for node i at level " assert i < hnsw.levels.size() assert level < hnsw.levels.at(i) be = np.empty(2, 'uint64') hnsw.neighbor_range(i, level, faiss.swig_ptr(be), faiss.swig_ptr(be[1:])) return [hnsw.neighbors.at(j) for j in range(be[0], be[1])] ############################################################# # Index is ready ############################################################# xq = sanitize(xq) if args.searchthreads != -1: print("Setting nb of threads to", args.searchthreads) faiss.omp_set_num_threads(args.searchthreads) if gt is None: print("no valid groundtruth -- exit") sys.exit() k_reorders = [int(x) for x in args.k_reorder.split(',')] efSearchs = [int(x) for x in args.efSearch.split(',')] for k_reorder in k_reorders: if index_hnsw.reconstruct_from_neighbors: print("setting k_reorder=%d" % k_reorder) index_hnsw.reconstruct_from_neighbors.k_reorder = k_reorder for efSearch in efSearchs: print("efSearch=%-4d" % efSearch, end=' ') hnsw.efSearch = efSearch hnsw_stats.reset() datasets.evaluate(xq, gt, index, k=args.k, endl=False) print("ndis %d nreorder %d" % (hnsw_stats.ndis, hnsw_stats.nreorder))