/** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include #include #include #include #include #include #include #include #include double elapsed() { struct timeval tv; gettimeofday(&tv, nullptr); return tv.tv_sec + tv.tv_usec * 1e-6; } int main() { double t0 = elapsed(); // dimension of the vectors to index int d = 128; // size of the database we plan to index size_t nb = 1000 * 1000; // make a set of nt training vectors in the unit cube // (could be the database) size_t nt = 100 * 1000; //--------------------------------------------------------------- // Define the core quantizer // We choose a multiple inverted index for faster training with less data // and because it usually offers best accuracy/speed trade-offs // // We here assume that its lifespan of this coarse quantizer will cover the // lifespan of the inverted-file quantizer IndexIVFFlat below // With dynamic allocation, one may give the responsability to free the // quantizer to the inverted-file index (with attribute do_delete_quantizer) // // Note: a regular clustering algorithm would be defined as: // faiss::IndexFlatL2 coarse_quantizer (d); // // Use nhash=2 subquantizers used to define the product coarse quantizer // Number of bits: we will have 2^nbits_coarse centroids per subquantizer // meaning (2^12)^nhash distinct inverted lists size_t nhash = 2; size_t nbits_subq = int(log2(nb + 1) / 2); // good choice in general size_t ncentroids = 1 << (nhash * nbits_subq); // total # of centroids faiss::MultiIndexQuantizer coarse_quantizer(d, nhash, nbits_subq); printf("IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)", nhash, nbits_subq, ncentroids, nb); // the coarse quantizer should not be dealloced before the index // 4 = nb of bytes per code (d must be a multiple of this) // 8 = nb of bits per sub-code (almost always 8) faiss::MetricType metric = faiss::METRIC_L2; // can be METRIC_INNER_PRODUCT faiss::IndexIVFFlat index(&coarse_quantizer, d, ncentroids, metric); index.quantizer_trains_alone = true; // define the number of probes. 2048 is for high-dim, overkilled in practice // Use 4-1024 depending on the trade-off speed accuracy that you want index.nprobe = 2048; std::mt19937 rng; std::uniform_real_distribution<> distrib; { // training printf("[%.3f s] Generating %ld vectors in %dD for training\n", elapsed() - t0, nt, d); std::vector trainvecs(nt * d); for (size_t i = 0; i < nt * d; i++) { trainvecs[i] = distrib(rng); } printf("[%.3f s] Training the index\n", elapsed() - t0); index.verbose = true; index.train(nt, trainvecs.data()); } size_t nq; std::vector queries; { // populating the database printf("[%.3f s] Building a dataset of %ld vectors to index\n", elapsed() - t0, nb); std::vector database(nb * d); for (size_t i = 0; i < nb * d; i++) { database[i] = distrib(rng); } printf("[%.3f s] Adding the vectors to the index\n", elapsed() - t0); index.add(nb, database.data()); // remember a few elements from the database as queries int i0 = 1234; int i1 = 1244; nq = i1 - i0; queries.resize(nq * d); for (int i = i0; i < i1; i++) { for (int j = 0; j < d; j++) { queries[(i - i0) * d + j] = database[i * d + j]; } } } { // searching the database int k = 5; printf("[%.3f s] Searching the %d nearest neighbors " "of %ld vectors in the index\n", elapsed() - t0, k, nq); std::vector nns(k * nq); std::vector dis(k * nq); index.search(nq, queries.data(), k, dis.data(), nns.data()); printf("[%.3f s] Query results (vector ids, then distances):\n", elapsed() - t0); for (int i = 0; i < nq; i++) { printf("query %2d: ", i); for (int j = 0; j < k; j++) { printf("%7ld ", nns[j + i * k]); } printf("\n dis: "); for (int j = 0; j < k; j++) { printf("%7g ", dis[j + i * k]); } printf("\n"); } } return 0; }