# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function import numpy as np import faiss import unittest from common_faiss_tests import get_dataset_2 class TestPCA(unittest.TestCase): def test_pca(self): d = 64 n = 1000 np.random.seed(123) x = np.random.random(size=(n, d)).astype('float32') pca = faiss.PCAMatrix(d, 10) pca.train(x) y = pca.apply_py(x) # check that energy per component is decreasing column_norm2 = (y**2).sum(0) prev = 1e50 for o in column_norm2: self.assertGreater(prev, o) prev = o def test_pca_epsilon(self): d = 64 n = 1000 np.random.seed(123) x = np.random.random(size=(n, d)).astype('float32') # make sure data is in a sub-space x[:, ::2] = 0 # check division by 0 with default computation pca = faiss.PCAMatrix(d, 60, -0.5) pca.train(x) y = pca.apply(x) self.assertFalse(np.all(np.isfinite(y))) # check add epsilon pca = faiss.PCAMatrix(d, 60, -0.5) pca.epsilon = 1e-5 pca.train(x) y = pca.apply(x) self.assertTrue(np.all(np.isfinite(y))) # check I/O index = faiss.index_factory(d, "PCAW60,Flat") index = faiss.deserialize_index(faiss.serialize_index(index)) pca1 = faiss.downcast_VectorTransform(index.chain.at(0)) pca1.epsilon = 1e-5 index.train(x) pca = faiss.downcast_VectorTransform(index.chain.at(0)) y = pca.apply(x) self.assertTrue(np.all(np.isfinite(y))) class TestRevSwigPtr(unittest.TestCase): def test_rev_swig_ptr(self): index = faiss.IndexFlatL2(4) xb0 = np.vstack([ i * 10 + np.array([1, 2, 3, 4], dtype='float32') for i in range(5)]) index.add(xb0) xb = faiss.rev_swig_ptr(index.get_xb(), 4 * 5).reshape(5, 4) self.assertEqual(np.abs(xb0 - xb).sum(), 0) class TestException(unittest.TestCase): def test_exception(self): index = faiss.IndexFlatL2(10) a = np.zeros((5, 10), dtype='float32') b = np.zeros(5, dtype='int64') # an unsupported operation for IndexFlat self.assertRaises( RuntimeError, index.add_with_ids, a, b ) # assert 'add_with_ids not implemented' in str(e) def test_exception_2(self): self.assertRaises( RuntimeError, faiss.index_factory, 12, 'IVF256,Flat,PQ8' ) # assert 'could not parse' in str(e) class TestMapLong2Long(unittest.TestCase): def test_maplong2long(self): keys = np.array([13, 45, 67], dtype=np.int64) vals = np.array([3, 8, 2], dtype=np.int64) m = faiss.MapLong2Long() m.add(keys, vals) assert np.all(m.search_multiple(keys) == vals) assert m.search(12343) == -1 class TestOrthognalReconstruct(unittest.TestCase): def test_recons_orthonormal(self): lt = faiss.LinearTransform(20, 10, True) rs = np.random.RandomState(10) A, _ = np.linalg.qr(rs.randn(20, 20)) A = A[:10].astype('float32') faiss.copy_array_to_vector(A.ravel(), lt.A) faiss.copy_array_to_vector(rs.randn(10).astype('float32'), lt.b) lt.set_is_orthonormal() lt.is_trained = True assert lt.is_orthonormal x = rs.rand(30, 20).astype('float32') xt = lt.apply_py(x) xtt = lt.reverse_transform(xt) xttt = lt.apply_py(xtt) err = ((xt - xttt)**2).sum() self.assertGreater(1e-5, err) def test_recons_orthogona_impossible(self): lt = faiss.LinearTransform(20, 10, True) rs = np.random.RandomState(10) A = rs.randn(10 * 20).astype('float32') faiss.copy_array_to_vector(A.ravel(), lt.A) faiss.copy_array_to_vector(rs.randn(10).astype('float32'), lt.b) lt.is_trained = True lt.set_is_orthonormal() assert not lt.is_orthonormal x = rs.rand(30, 20).astype('float32') xt = lt.apply_py(x) try: lt.reverse_transform(xt) except Exception: pass else: self.assertFalse('should do an exception') class TestMAdd(unittest.TestCase): def test_1(self): # try with dimensions that are multiples of 16 or not rs = np.random.RandomState(123) swig_ptr = faiss.swig_ptr for dim in 16, 32, 20, 25: for _repeat in 1, 2, 3, 4, 5: a = rs.rand(dim).astype('float32') b = rs.rand(dim).astype('float32') c = np.zeros(dim, dtype='float32') bf = rs.uniform(5.0) - 2.5 idx = faiss.fvec_madd_and_argmin( dim, swig_ptr(a), bf, swig_ptr(b), swig_ptr(c)) ref_c = a + b * bf assert np.abs(c - ref_c).max() < 1e-5 assert idx == ref_c.argmin() class TestNyFuncs(unittest.TestCase): def test_l2(self): rs = np.random.RandomState(123) swig_ptr = faiss.swig_ptr for d in 1, 2, 4, 8, 12, 16: x = rs.rand(d).astype('float32') for ny in 128, 129, 130: print("d=%d ny=%d" % (d, ny)) y = rs.rand(ny, d).astype('float32') ref = ((x - y) ** 2).sum(1) new = np.zeros(ny, dtype='float32') faiss.fvec_L2sqr_ny(swig_ptr(new), swig_ptr(x), swig_ptr(y), d, ny) assert np.abs(ref - new).max() < 1e-4 def test_IP(self): # this one is not optimized with SIMD but just in case rs = np.random.RandomState(123) swig_ptr = faiss.swig_ptr for d in 1, 2, 4, 8, 12, 16: x = rs.rand(d).astype('float32') for ny in 128, 129, 130: print("d=%d ny=%d" % (d, ny)) y = rs.rand(ny, d).astype('float32') ref = (x * y).sum(1) new = np.zeros(ny, dtype='float32') faiss.fvec_inner_products_ny( swig_ptr(new), swig_ptr(x), swig_ptr(y), d, ny) assert np.abs(ref - new).max() < 1e-4 class TestMatrixStats(unittest.TestCase): def test_0s(self): rs = np.random.RandomState(123) m = rs.rand(40, 20).astype('float32') m[5:10] = 0 comments = faiss.MatrixStats(m).comments print(comments) assert 'has 5 copies' in comments assert '5 null vectors' in comments def test_copies(self): rs = np.random.RandomState(123) m = rs.rand(40, 20).astype('float32') m[::2] = m[1::2] comments = faiss.MatrixStats(m).comments print(comments) assert '20 vectors are distinct' in comments def test_dead_dims(self): rs = np.random.RandomState(123) m = rs.rand(40, 20).astype('float32') m[:, 5:10] = 0 comments = faiss.MatrixStats(m).comments print(comments) assert '5 dimensions are constant' in comments def test_rogue_means(self): rs = np.random.RandomState(123) m = rs.rand(40, 20).astype('float32') m[:, 5:10] += 12345 comments = faiss.MatrixStats(m).comments print(comments) assert '5 dimensions are too large wrt. their variance' in comments def test_normalized(self): rs = np.random.RandomState(123) m = rs.rand(40, 20).astype('float32') faiss.normalize_L2(m) comments = faiss.MatrixStats(m).comments print(comments) assert 'vectors are normalized' in comments class TestScalarQuantizer(unittest.TestCase): def test_8bit_equiv(self): rs = np.random.RandomState(123) for _it in range(20): for d in 13, 16, 24: x = np.floor(rs.rand(5, d) * 256).astype('float32') x[0] = 0 x[1] = 255 # make sure to test extreme cases x[2, 0] = 0 x[3, 0] = 255 x[2, 1] = 255 x[3, 1] = 0 ref_index = faiss.IndexScalarQuantizer( d, faiss.ScalarQuantizer.QT_8bit) ref_index.train(x[:2]) ref_index.add(x[2:3]) index = faiss.IndexScalarQuantizer( d, faiss.ScalarQuantizer.QT_8bit_direct) assert index.is_trained index.add(x[2:3]) assert np.all( faiss.vector_to_array(ref_index.codes) == faiss.vector_to_array(index.codes)) # Note that distances are not the same because ref_index # reconstructs x as x + 0.5 D, I = index.search(x[3:], 1) # assert D[0, 0] == Dref[0, 0] # print(D[0, 0], ((x[3] - x[2]) ** 2).sum()) assert D[0, 0] == ((x[3] - x[2]) ** 2).sum() def test_6bit_equiv(self): rs = np.random.RandomState(123) for d in 3, 6, 8, 16, 36: trainset = np.zeros((2, d), dtype='float32') trainset[0, :] = 0 trainset[0, :] = 63 index = faiss.IndexScalarQuantizer( d, faiss.ScalarQuantizer.QT_6bit) index.train(trainset) print('cs=', index.code_size) x = rs.randint(64, size=(100, d)).astype('float32') # verify encoder / decoder index.add(x) x2 = index.reconstruct_n(0, x.shape[0]) assert np.all(x == x2 - 0.5) # verify AVX decoder (used only for search) y = 63 * rs.rand(20, d).astype('float32') D, I = index.search(y, 10) for i in range(20): for j in range(10): dis = ((y[i] - x2[I[i, j]]) ** 2).sum() # print(dis, D[i, j]) assert abs(D[i, j] - dis) / dis < 1e-5 class TestRandom(unittest.TestCase): def test_rand(self): x = faiss.rand(2000) assert np.all(x >= 0) and np.all(x < 1) h, _ = np.histogram(x, np.arange(0, 1, 0.1)) assert h.min() > 160 and h.max() < 240 def test_randint(self): x = faiss.randint(20000, vmax=100) assert np.all(x >= 0) and np.all(x < 100) c = np.bincount(x, minlength=100) print(c) assert c.max() - c.min() < 50 * 2 class TestPairwiseDis(unittest.TestCase): def test_L2(self): swig_ptr = faiss.swig_ptr x = faiss.rand((100, 10), seed=1) y = faiss.rand((200, 10), seed=2) ix = faiss.randint(50, vmax=100) iy = faiss.randint(50, vmax=200) dis = np.empty(50, dtype='float32') faiss.pairwise_indexed_L2sqr( 10, 50, swig_ptr(x), swig_ptr(ix), swig_ptr(y), swig_ptr(iy), swig_ptr(dis)) for i in range(50): assert np.allclose( dis[i], ((x[ix[i]] - y[iy[i]]) ** 2).sum()) def test_IP(self): swig_ptr = faiss.swig_ptr x = faiss.rand((100, 10), seed=1) y = faiss.rand((200, 10), seed=2) ix = faiss.randint(50, vmax=100) iy = faiss.randint(50, vmax=200) dis = np.empty(50, dtype='float32') faiss.pairwise_indexed_inner_product( 10, 50, swig_ptr(x), swig_ptr(ix), swig_ptr(y), swig_ptr(iy), swig_ptr(dis)) for i in range(50): assert np.allclose( dis[i], np.dot(x[ix[i]], y[iy[i]])) class TestSWIGWrap(unittest.TestCase): """ various regressions with the SWIG wrapper """ def test_size_t_ptr(self): # issue 1064 index = faiss.IndexHNSWFlat(10, 32) hnsw = index.hnsw index.add(np.random.rand(100, 10).astype('float32')) be = np.empty(2, 'uint64') hnsw.neighbor_range(23, 0, faiss.swig_ptr(be), faiss.swig_ptr(be[1:])) def test_id_map_at(self): # issue 1020 n_features = 100 feature_dims = 10 features = np.random.random((n_features, feature_dims)).astype(np.float32) idx = np.arange(n_features).astype(np.int64) index = faiss.IndexFlatL2(feature_dims) index = faiss.IndexIDMap2(index) index.add_with_ids(features, idx) [index.id_map.at(int(i)) for i in range(index.ntotal)] def test_downcast_Refine(self): index = faiss.IndexRefineFlat( faiss.IndexScalarQuantizer(10, faiss.ScalarQuantizer.QT_8bit) ) # serialize and deserialize index2 = faiss.deserialize_index( faiss.serialize_index(index) ) assert isinstance(index2, faiss.IndexRefineFlat) def do_test_array_type(self, dtype): """ tests swig_ptr and rev_swig_ptr for this type of array """ a = np.arange(12).astype(dtype) ptr = faiss.swig_ptr(a) print(ptr) a2 = faiss.rev_swig_ptr(ptr, 12) np.testing.assert_array_equal(a, a2) def test_all_array_types(self): self.do_test_array_type('float32') self.do_test_array_type('float64') self.do_test_array_type('int8') self.do_test_array_type('uint8') self.do_test_array_type('int16') self.do_test_array_type('uint16') self.do_test_array_type('int32') self.do_test_array_type('uint32') self.do_test_array_type('int64') self.do_test_array_type('uint64') def test_int64(self): # see https://github.com/facebookresearch/faiss/issues/1529 v = faiss.Int64Vector() for i in range(10): v.push_back(i) a = faiss.vector_to_array(v) assert a.dtype == 'int64' np.testing.assert_array_equal(a, np.arange(10, dtype='int64')) # check if it works in an IDMap idx = faiss.IndexIDMap(faiss.IndexFlatL2(32)) idx.add_with_ids( np.random.rand(10, 32).astype('float32'), np.random.randint(1000, size=10, dtype='int64') ) faiss.vector_to_array(idx.id_map) class TestNNDescentKNNG(unittest.TestCase): def test_knng_L2(self): self.subtest(32, 10, faiss.METRIC_L2) def test_knng_IP(self): self.subtest(32, 10, faiss.METRIC_INNER_PRODUCT) def subtest(self, d, K, metric): metric_names = {faiss.METRIC_L1: 'L1', faiss.METRIC_L2: 'L2', faiss.METRIC_INNER_PRODUCT: 'IP'} nb = 1000 _, xb, _ = get_dataset_2(d, 0, nb, 0) _, knn = faiss.knn(xb, xb, K + 1, metric) knn = knn[:, 1:] index = faiss.IndexNNDescentFlat(d, K, metric) index.nndescent.S = 10 index.nndescent.R = 32 index.nndescent.L = K + 20 index.nndescent.iter = 5 index.verbose = True index.add(xb) graph = index.nndescent.final_graph graph = faiss.vector_to_array(graph) graph = graph.reshape(nb, K) recalls = 0 for i in range(nb): for j in range(K): for k in range(K): if graph[i, j] == knn[i, k]: recalls += 1 break recall = 1.0 * recalls / (nb * K) print('Metric: {}, knng accuracy: {}'.format(metric_names[metric], recall)) assert recall > 0.99 class TestResultHeap(unittest.TestCase): def test_keep_min(self): self.run_test(False) def test_keep_max(self): self.run_test(True) def run_test(self, keep_max): nq = 100 nb = 1000 restab = faiss.rand((nq, nb), 123) ids = faiss.randint((nq, nb), 1324, 10000) all_rh = {} for nstep in 1, 3: rh = faiss.ResultHeap(nq, 10, keep_max=keep_max) for i in range(nstep): i0, i1 = i * nb // nstep, (i + 1) * nb // nstep D = restab[:, i0:i1].copy() I = ids[:, i0:i1].copy() rh.add_result(D, I) rh.finalize() if keep_max: assert np.all(rh.D[:, :-1] >= rh.D[:, 1:]) else: assert np.all(rh.D[:, :-1] <= rh.D[:, 1:]) all_rh[nstep] = rh np.testing.assert_equal(all_rh[1].D, all_rh[3].D) np.testing.assert_equal(all_rh[1].I, all_rh[3].I)