# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np d = 64 # dimension nb = 100000 # database size nq = 10000 # nb of queries np.random.seed(1234) # make reproducible xb = np.random.random((nb, d)).astype('float32') xb[:, 0] += np.arange(nb) / 1000. xq = np.random.random((nq, d)).astype('float32') xq[:, 0] += np.arange(nq) / 1000. import faiss nlist = 100 k = 4 quantizer = faiss.IndexFlatL2(d) # the other index index = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2) # here we specify METRIC_L2, by default it performs inner-product search assert not index.is_trained index.train(xb) assert index.is_trained index.add(xb) # add may be a bit slower as well D, I = index.search(xq, k) # actual search print(I[-5:]) # neighbors of the 5 last queries index.nprobe = 10 # default nprobe is 1, try a few more D, I = index.search(xq, k) print(I[-5:]) # neighbors of the 5 last queries