# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np d = 64 # dimension nb = 100000 # database size nq = 10000 # nb of queries np.random.seed(1234) # make reproducible xb = np.random.random((nb, d)).astype('float32') xb[:, 0] += np.arange(nb) / 1000. xq = np.random.random((nq, d)).astype('float32') xq[:, 0] += np.arange(nq) / 1000. import faiss nlist = 100 m = 8 k = 4 quantizer = faiss.IndexFlatL2(d) # this remains the same index = faiss.IndexIVFPQ(quantizer, d, nlist, m, 8) # 8 specifies that each sub-vector is encoded as 8 bits index.train(xb) index.add(xb) D, I = index.search(xb[:5], k) # sanity check print(I) print(D) index.nprobe = 10 # make comparable with experiment above D, I = index.search(xq, k) # search print(I[-5:])