# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np d = 64 # dimension nb = 100000 # database size nq = 10000 # nb of queries np.random.seed(1234) # make reproducible xb = np.random.random((nb, d)).astype('float32') xb[:, 0] += np.arange(nb) / 1000. xq = np.random.random((nq, d)).astype('float32') xq[:, 0] += np.arange(nq) / 1000. import faiss # make faiss available res = faiss.StandardGpuResources() # use a single GPU ## Using a flat index index_flat = faiss.IndexFlatL2(d) # build a flat (CPU) index # make it a flat GPU index gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat) gpu_index_flat.add(xb) # add vectors to the index print(gpu_index_flat.ntotal) k = 4 # we want to see 4 nearest neighbors D, I = gpu_index_flat.search(xq, k) # actual search print(I[:5]) # neighbors of the 5 first queries print(I[-5:]) # neighbors of the 5 last queries ## Using an IVF index nlist = 100 quantizer = faiss.IndexFlatL2(d) # the other index index_ivf = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2) # here we specify METRIC_L2, by default it performs inner-product search # make it an IVF GPU index gpu_index_ivf = faiss.index_cpu_to_gpu(res, 0, index_ivf) assert not gpu_index_ivf.is_trained gpu_index_ivf.train(xb) # add vectors to the index assert gpu_index_ivf.is_trained gpu_index_ivf.add(xb) # add vectors to the index print(gpu_index_ivf.ntotal) k = 4 # we want to see 4 nearest neighbors D, I = gpu_index_ivf.search(xq, k) # actual search print(I[:5]) # neighbors of the 5 first queries print(I[-5:]) # neighbors of the 5 last queries