use super::diagnostics::Error; use super::expr::LhsExpr; use super::pat::GateOr; use super::path::PathStyle; use super::{BlockMode, Parser, Restrictions, SemiColonMode}; use crate::maybe_whole; use crate::DirectoryOwnership; use rustc_ast::ast; use rustc_ast::ast::{AttrStyle, AttrVec, Attribute, Mac, MacStmtStyle}; use rustc_ast::ast::{Block, BlockCheckMode, Expr, ExprKind, Local, Stmt, StmtKind, DUMMY_NODE_ID}; use rustc_ast::ptr::P; use rustc_ast::token::{self, TokenKind}; use rustc_ast::util::classify; use rustc_errors::{Applicability, PResult}; use rustc_span::source_map::{BytePos, Span}; use rustc_span::symbol::{kw, sym}; use std::mem; impl<'a> Parser<'a> { /// Parses a statement. This stops just before trailing semicolons on everything but items. /// e.g., a `StmtKind::Semi` parses to a `StmtKind::Expr`, leaving the trailing `;` unconsumed. pub fn parse_stmt(&mut self) -> PResult<'a, Option> { Ok(self.parse_stmt_without_recovery().unwrap_or_else(|mut e| { e.emit(); self.recover_stmt_(SemiColonMode::Break, BlockMode::Ignore); None })) } fn parse_stmt_without_recovery(&mut self) -> PResult<'a, Option> { maybe_whole!(self, NtStmt, |x| Some(x)); let attrs = self.parse_outer_attributes()?; let lo = self.token.span; let stmt = if self.eat_keyword(kw::Let) { self.parse_local_mk(lo, attrs.into())? } else if self.is_kw_followed_by_ident(kw::Mut) { self.recover_stmt_local(lo, attrs.into(), "missing keyword", "let mut")? } else if self.is_kw_followed_by_ident(kw::Auto) { self.bump(); // `auto` let msg = "write `let` instead of `auto` to introduce a new variable"; self.recover_stmt_local(lo, attrs.into(), msg, "let")? } else if self.is_kw_followed_by_ident(sym::var) { self.bump(); // `var` let msg = "write `let` instead of `var` to introduce a new variable"; self.recover_stmt_local(lo, attrs.into(), msg, "let")? } else if self.token.is_path_start() && !self.token.is_qpath_start() && !self.is_path_start_item() { // We have avoided contextual keywords like `union`, items with `crate` visibility, // or `auto trait` items. We aim to parse an arbitrary path `a::b` but not something // that starts like a path (1 token), but it fact not a path. // Also, we avoid stealing syntax from `parse_item_`. self.parse_stmt_path_start(lo, attrs)? } else if let Some(item) = self.parse_stmt_item(attrs.clone())? { // FIXME: Bad copy of attrs self.mk_stmt(lo.to(item.span), StmtKind::Item(P(item))) } else if self.eat(&token::Semi) { // Do not attempt to parse an expression if we're done here. self.error_outer_attrs(&attrs); self.mk_stmt(lo, StmtKind::Empty) } else if self.token != token::CloseDelim(token::Brace) { // Remainder are line-expr stmts. let e = self.parse_expr_res(Restrictions::STMT_EXPR, Some(attrs.into()))?; self.mk_stmt(lo.to(e.span), StmtKind::Expr(e)) } else { self.error_outer_attrs(&attrs); return Ok(None); }; Ok(Some(stmt)) } fn parse_stmt_item(&mut self, attrs: Vec) -> PResult<'a, Option> { let old = mem::replace(&mut self.directory.ownership, DirectoryOwnership::UnownedViaBlock); let item = self.parse_item_common(attrs, false, true, |_| true)?; self.directory.ownership = old; Ok(item) } fn parse_stmt_path_start(&mut self, lo: Span, attrs: Vec) -> PResult<'a, Stmt> { let path = self.parse_path(PathStyle::Expr)?; if self.eat(&token::Not) { return self.parse_stmt_mac(lo, attrs.into(), path); } let expr = if self.check(&token::OpenDelim(token::Brace)) { self.parse_struct_expr(lo, path, AttrVec::new())? } else { let hi = self.prev_token.span; self.mk_expr(lo.to(hi), ExprKind::Path(None, path), AttrVec::new()) }; let expr = self.with_res(Restrictions::STMT_EXPR, |this| { let expr = this.parse_dot_or_call_expr_with(expr, lo, attrs.into())?; this.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(expr)) })?; Ok(self.mk_stmt(lo.to(self.prev_token.span), StmtKind::Expr(expr))) } /// Parses a statement macro `mac!(args)` provided a `path` representing `mac`. /// At this point, the `!` token after the path has already been eaten. fn parse_stmt_mac(&mut self, lo: Span, attrs: AttrVec, path: ast::Path) -> PResult<'a, Stmt> { let args = self.parse_mac_args()?; let delim = args.delim(); let hi = self.prev_token.span; let style = if delim == token::Brace { MacStmtStyle::Braces } else { MacStmtStyle::NoBraces }; let mac = Mac { path, args, prior_type_ascription: self.last_type_ascription }; let kind = if delim == token::Brace || self.token == token::Semi || self.token == token::Eof { StmtKind::Mac(P((mac, style, attrs))) } else { // Since none of the above applied, this is an expression statement macro. let e = self.mk_expr(lo.to(hi), ExprKind::Mac(mac), AttrVec::new()); let e = self.maybe_recover_from_bad_qpath(e, true)?; let e = self.parse_dot_or_call_expr_with(e, lo, attrs)?; let e = self.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(e))?; StmtKind::Expr(e) }; Ok(self.mk_stmt(lo.to(hi), kind)) } /// Error on outer attributes in this context. /// Also error if the previous token was a doc comment. fn error_outer_attrs(&self, attrs: &[Attribute]) { if let [.., last] = attrs { if last.is_doc_comment() { self.span_fatal_err(last.span, Error::UselessDocComment).emit(); } else if attrs.iter().any(|a| a.style == AttrStyle::Outer) { self.struct_span_err(last.span, "expected statement after outer attribute").emit(); } } } fn recover_stmt_local( &mut self, lo: Span, attrs: AttrVec, msg: &str, sugg: &str, ) -> PResult<'a, Stmt> { let stmt = self.parse_local_mk(lo, attrs)?; self.struct_span_err(lo, "invalid variable declaration") .span_suggestion(lo, msg, sugg.to_string(), Applicability::MachineApplicable) .emit(); Ok(stmt) } fn parse_local_mk(&mut self, lo: Span, attrs: AttrVec) -> PResult<'a, Stmt> { let local = self.parse_local(attrs)?; Ok(self.mk_stmt(lo.to(self.prev_token.span), StmtKind::Local(local))) } /// Parses a local variable declaration. fn parse_local(&mut self, attrs: AttrVec) -> PResult<'a, P> { let lo = self.prev_token.span; let pat = self.parse_top_pat(GateOr::Yes)?; let (err, ty) = if self.eat(&token::Colon) { // Save the state of the parser before parsing type normally, in case there is a `:` // instead of an `=` typo. let parser_snapshot_before_type = self.clone(); let colon_sp = self.prev_token.span; match self.parse_ty() { Ok(ty) => (None, Some(ty)), Err(mut err) => { // Rewind to before attempting to parse the type and continue parsing. let parser_snapshot_after_type = self.clone(); mem::replace(self, parser_snapshot_before_type); let snippet = self.span_to_snippet(pat.span).unwrap(); err.span_label(pat.span, format!("while parsing the type for `{}`", snippet)); (Some((parser_snapshot_after_type, colon_sp, err)), None) } } } else { (None, None) }; let init = match (self.parse_initializer(err.is_some()), err) { (Ok(init), None) => { // init parsed, ty parsed init } (Ok(init), Some((_, colon_sp, mut err))) => { // init parsed, ty error // Could parse the type as if it were the initializer, it is likely there was a // typo in the code: `:` instead of `=`. Add suggestion and emit the error. err.span_suggestion_short( colon_sp, "use `=` if you meant to assign", " =".to_string(), Applicability::MachineApplicable, ); err.emit(); // As this was parsed successfully, continue as if the code has been fixed for the // rest of the file. It will still fail due to the emitted error, but we avoid // extra noise. init } (Err(mut init_err), Some((snapshot, _, ty_err))) => { // init error, ty error init_err.cancel(); // Couldn't parse the type nor the initializer, only raise the type error and // return to the parser state before parsing the type as the initializer. // let x: ; mem::replace(self, snapshot); return Err(ty_err); } (Err(err), None) => { // init error, ty parsed // Couldn't parse the initializer and we're not attempting to recover a failed // parse of the type, return the error. return Err(err); } }; let hi = if self.token == token::Semi { self.token.span } else { self.prev_token.span }; Ok(P(ast::Local { ty, pat, init, id: DUMMY_NODE_ID, span: lo.to(hi), attrs })) } /// Parses the RHS of a local variable declaration (e.g., '= 14;'). fn parse_initializer(&mut self, skip_eq: bool) -> PResult<'a, Option>> { if self.eat(&token::Eq) { Ok(Some(self.parse_expr()?)) } else if skip_eq { Ok(Some(self.parse_expr()?)) } else { Ok(None) } } /// Parses a block. No inner attributes are allowed. pub fn parse_block(&mut self) -> PResult<'a, P> { maybe_whole!(self, NtBlock, |x| x); let lo = self.token.span; if !self.eat(&token::OpenDelim(token::Brace)) { return self.error_block_no_opening_brace(); } self.parse_block_tail(lo, BlockCheckMode::Default) } fn error_block_no_opening_brace(&mut self) -> PResult<'a, T> { let sp = self.token.span; let tok = super::token_descr(&self.token); let mut e = self.struct_span_err(sp, &format!("expected `{{`, found {}", tok)); let do_not_suggest_help = self.token.is_keyword(kw::In) || self.token == token::Colon; // Check to see if the user has written something like // // if (cond) // bar; // // which is valid in other languages, but not Rust. match self.parse_stmt_without_recovery() { Ok(Some(stmt)) => { if self.look_ahead(1, |t| t == &token::OpenDelim(token::Brace)) || do_not_suggest_help { // If the next token is an open brace (e.g., `if a b {`), the place- // inside-a-block suggestion would be more likely wrong than right. e.span_label(sp, "expected `{`"); return Err(e); } let stmt_span = if self.eat(&token::Semi) { // Expand the span to include the semicolon. stmt.span.with_hi(self.prev_token.span.hi()) } else { stmt.span }; if let Ok(snippet) = self.span_to_snippet(stmt_span) { e.span_suggestion( stmt_span, "try placing this code inside a block", format!("{{ {} }}", snippet), // Speculative; has been misleading in the past (#46836). Applicability::MaybeIncorrect, ); } } Err(mut e) => { self.recover_stmt_(SemiColonMode::Break, BlockMode::Ignore); e.cancel(); } _ => {} } e.span_label(sp, "expected `{`"); return Err(e); } /// Parses a block. Inner attributes are allowed. pub(super) fn parse_inner_attrs_and_block( &mut self, ) -> PResult<'a, (Vec, P)> { maybe_whole!(self, NtBlock, |x| (Vec::new(), x)); let lo = self.token.span; self.expect(&token::OpenDelim(token::Brace))?; Ok((self.parse_inner_attributes()?, self.parse_block_tail(lo, BlockCheckMode::Default)?)) } /// Parses the rest of a block expression or function body. /// Precondition: already parsed the '{'. pub(super) fn parse_block_tail( &mut self, lo: Span, s: BlockCheckMode, ) -> PResult<'a, P> { let mut stmts = vec![]; while !self.eat(&token::CloseDelim(token::Brace)) { if self.token == token::Eof { break; } let stmt = match self.parse_full_stmt() { Err(mut err) => { self.maybe_annotate_with_ascription(&mut err, false); err.emit(); self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore); Some(self.mk_stmt_err(self.token.span)) } Ok(stmt) => stmt, }; if let Some(stmt) = stmt { stmts.push(stmt); } else { // Found only `;` or `}`. continue; }; } Ok(self.mk_block(stmts, s, lo.to(self.prev_token.span))) } /// Parses a statement, including the trailing semicolon. pub fn parse_full_stmt(&mut self) -> PResult<'a, Option> { // Skip looking for a trailing semicolon when we have an interpolated statement. maybe_whole!(self, NtStmt, |x| Some(x)); let mut stmt = match self.parse_stmt_without_recovery()? { Some(stmt) => stmt, None => return Ok(None), }; let mut eat_semi = true; match stmt.kind { // Expression without semicolon. StmtKind::Expr(ref expr) if self.token != token::Eof && classify::expr_requires_semi_to_be_stmt(expr) => { // Just check for errors and recover; do not eat semicolon yet. if let Err(mut e) = self.expect_one_of(&[], &[token::Semi, token::CloseDelim(token::Brace)]) { if let TokenKind::DocComment(..) = self.token.kind { if let Ok(snippet) = self.span_to_snippet(self.token.span) { let sp = self.token.span; let marker = &snippet[..3]; let (comment_marker, doc_comment_marker) = marker.split_at(2); e.span_suggestion( sp.with_hi(sp.lo() + BytePos(marker.len() as u32)), &format!( "add a space before `{}` to use a regular comment", doc_comment_marker, ), format!("{} {}", comment_marker, doc_comment_marker), Applicability::MaybeIncorrect, ); } } e.emit(); self.recover_stmt(); // Don't complain about type errors in body tail after parse error (#57383). let sp = expr.span.to(self.prev_token.span); stmt.kind = StmtKind::Expr(self.mk_expr_err(sp)); } } StmtKind::Local(..) => { self.expect_semi()?; eat_semi = false; } StmtKind::Empty => eat_semi = false, _ => {} } if eat_semi && self.eat(&token::Semi) { stmt = stmt.add_trailing_semicolon(); } stmt.span = stmt.span.to(self.prev_token.span); Ok(Some(stmt)) } pub(super) fn mk_block(&self, stmts: Vec, rules: BlockCheckMode, span: Span) -> P { P(Block { stmts, id: DUMMY_NODE_ID, rules, span }) } pub(super) fn mk_stmt(&self, span: Span, kind: StmtKind) -> Stmt { Stmt { id: DUMMY_NODE_ID, kind, span } } fn mk_stmt_err(&self, span: Span) -> Stmt { self.mk_stmt(span, StmtKind::Expr(self.mk_expr_err(span))) } pub(super) fn mk_block_err(&self, span: Span) -> P { self.mk_block(vec![self.mk_stmt_err(span)], BlockCheckMode::Default, span) } }