use super::{Parser, PathStyle, TokenType}; use crate::{maybe_recover_from_interpolated_ty_qpath, maybe_whole}; use rustc_ast::ast::{self, BareFnTy, FnRetTy, GenericParam, Lifetime, MutTy, Ty, TyKind}; use rustc_ast::ast::{ GenericBound, GenericBounds, PolyTraitRef, TraitBoundModifier, TraitObjectSyntax, }; use rustc_ast::ast::{Mac, Mutability}; use rustc_ast::ptr::P; use rustc_ast::token::{self, Token, TokenKind}; use rustc_errors::{pluralize, struct_span_err, Applicability, PResult}; use rustc_span::source_map::Span; use rustc_span::symbol::{kw, sym}; /// Any `?` or `?const` modifiers that appear at the start of a bound. struct BoundModifiers { /// `?Trait`. maybe: Option, /// `?const Trait`. maybe_const: Option, } impl BoundModifiers { fn to_trait_bound_modifier(&self) -> TraitBoundModifier { match (self.maybe, self.maybe_const) { (None, None) => TraitBoundModifier::None, (Some(_), None) => TraitBoundModifier::Maybe, (None, Some(_)) => TraitBoundModifier::MaybeConst, (Some(_), Some(_)) => TraitBoundModifier::MaybeConstMaybe, } } } #[derive(Copy, Clone, PartialEq)] pub(super) enum AllowPlus { Yes, No, } #[derive(PartialEq)] pub(super) enum RecoverQPath { Yes, No, } // Is `...` (`CVarArgs`) legal at this level of type parsing? #[derive(PartialEq)] enum AllowCVariadic { Yes, No, } /// Returns `true` if `IDENT t` can start a type -- `IDENT::a::b`, `IDENT`, /// `IDENT<::AssocTy>`. /// /// Types can also be of the form `IDENT(u8, u8) -> u8`, however this assumes /// that `IDENT` is not the ident of a fn trait. fn can_continue_type_after_non_fn_ident(t: &Token) -> bool { t == &token::ModSep || t == &token::Lt || t == &token::BinOp(token::Shl) } impl<'a> Parser<'a> { /// Parses a type. pub fn parse_ty(&mut self) -> PResult<'a, P> { self.parse_ty_common(AllowPlus::Yes, RecoverQPath::Yes, AllowCVariadic::No) } /// Parse a type suitable for a function or function pointer parameter. /// The difference from `parse_ty` is that this version allows `...` /// (`CVarArgs`) at the top level of the the type. pub(super) fn parse_ty_for_param(&mut self) -> PResult<'a, P> { self.parse_ty_common(AllowPlus::Yes, RecoverQPath::Yes, AllowCVariadic::Yes) } /// Parses a type in restricted contexts where `+` is not permitted. /// /// Example 1: `&'a TYPE` /// `+` is prohibited to maintain operator priority (P(+) < P(&)). /// Example 2: `value1 as TYPE + value2` /// `+` is prohibited to avoid interactions with expression grammar. pub(super) fn parse_ty_no_plus(&mut self) -> PResult<'a, P> { self.parse_ty_common(AllowPlus::No, RecoverQPath::Yes, AllowCVariadic::No) } /// Parses an optional return type `[ -> TY ]` in a function declaration. pub(super) fn parse_ret_ty( &mut self, allow_plus: AllowPlus, recover_qpath: RecoverQPath, ) -> PResult<'a, FnRetTy> { Ok(if self.eat(&token::RArrow) { // FIXME(Centril): Can we unconditionally `allow_plus`? let ty = self.parse_ty_common(allow_plus, recover_qpath, AllowCVariadic::No)?; FnRetTy::Ty(ty) } else { FnRetTy::Default(self.token.span.shrink_to_lo()) }) } fn parse_ty_common( &mut self, allow_plus: AllowPlus, recover_qpath: RecoverQPath, allow_c_variadic: AllowCVariadic, ) -> PResult<'a, P> { let allow_qpath_recovery = recover_qpath == RecoverQPath::Yes; maybe_recover_from_interpolated_ty_qpath!(self, allow_qpath_recovery); maybe_whole!(self, NtTy, |x| x); let lo = self.token.span; let mut impl_dyn_multi = false; let kind = if self.check(&token::OpenDelim(token::Paren)) { self.parse_ty_tuple_or_parens(lo, allow_plus)? } else if self.eat(&token::Not) { // Never type `!` TyKind::Never } else if self.eat(&token::BinOp(token::Star)) { self.parse_ty_ptr()? } else if self.eat(&token::OpenDelim(token::Bracket)) { self.parse_array_or_slice_ty()? } else if self.check(&token::BinOp(token::And)) || self.check(&token::AndAnd) { // Reference self.expect_and()?; self.parse_borrowed_pointee()? } else if self.eat_keyword_noexpect(kw::Typeof) { self.parse_typeof_ty()? } else if self.eat_keyword(kw::Underscore) { // A type to be inferred `_` TyKind::Infer } else if self.token_is_bare_fn_keyword() { // Function pointer type self.parse_ty_bare_fn(Vec::new())? } else if self.check_keyword(kw::For) { // Function pointer type or bound list (trait object type) starting with a poly-trait. // `for<'lt> [unsafe] [extern "ABI"] fn (&'lt S) -> T` // `for<'lt> Trait1<'lt> + Trait2 + 'a` let lifetime_defs = self.parse_late_bound_lifetime_defs()?; if self.token_is_bare_fn_keyword() { self.parse_ty_bare_fn(lifetime_defs)? } else { let path = self.parse_path(PathStyle::Type)?; let parse_plus = allow_plus == AllowPlus::Yes && self.check_plus(); self.parse_remaining_bounds(lifetime_defs, path, lo, parse_plus)? } } else if self.eat_keyword(kw::Impl) { self.parse_impl_ty(&mut impl_dyn_multi)? } else if self.is_explicit_dyn_type() { self.parse_dyn_ty(&mut impl_dyn_multi)? } else if self.check(&token::Question) || self.check_lifetime() && self.look_ahead(1, |t| t.is_like_plus()) { // Bound list (trait object type) let bounds = self.parse_generic_bounds_common(allow_plus, None)?; TyKind::TraitObject(bounds, TraitObjectSyntax::None) } else if self.eat_lt() { // Qualified path let (qself, path) = self.parse_qpath(PathStyle::Type)?; TyKind::Path(Some(qself), path) } else if self.token.is_path_start() { self.parse_path_start_ty(lo, allow_plus)? } else if self.eat(&token::DotDotDot) { if allow_c_variadic == AllowCVariadic::Yes { TyKind::CVarArgs } else { // FIXME(Centril): Should we just allow `...` syntactically // anywhere in a type and use semantic restrictions instead? self.error_illegal_c_varadic_ty(lo); TyKind::Err } } else { let msg = format!("expected type, found {}", super::token_descr(&self.token)); let mut err = self.struct_span_err(self.token.span, &msg); err.span_label(self.token.span, "expected type"); self.maybe_annotate_with_ascription(&mut err, true); return Err(err); }; let span = lo.to(self.prev_token.span); let ty = self.mk_ty(span, kind); // Try to recover from use of `+` with incorrect priority. self.maybe_report_ambiguous_plus(allow_plus, impl_dyn_multi, &ty); self.maybe_recover_from_bad_type_plus(allow_plus, &ty)?; self.maybe_recover_from_bad_qpath(ty, allow_qpath_recovery) } /// Parses either: /// - `(TYPE)`, a parenthesized type. /// - `(TYPE,)`, a tuple with a single field of type TYPE. fn parse_ty_tuple_or_parens(&mut self, lo: Span, allow_plus: AllowPlus) -> PResult<'a, TyKind> { let mut trailing_plus = false; let (ts, trailing) = self.parse_paren_comma_seq(|p| { let ty = p.parse_ty()?; trailing_plus = p.prev_token.kind == TokenKind::BinOp(token::Plus); Ok(ty) })?; if ts.len() == 1 && !trailing { let ty = ts.into_iter().next().unwrap().into_inner(); let maybe_bounds = allow_plus == AllowPlus::Yes && self.token.is_like_plus(); match ty.kind { // `(TY_BOUND_NOPAREN) + BOUND + ...`. TyKind::Path(None, path) if maybe_bounds => { self.parse_remaining_bounds(Vec::new(), path, lo, true) } TyKind::TraitObject(mut bounds, TraitObjectSyntax::None) if maybe_bounds && bounds.len() == 1 && !trailing_plus => { let path = match bounds.remove(0) { GenericBound::Trait(pt, ..) => pt.trait_ref.path, GenericBound::Outlives(..) => { return Err(self.struct_span_err( ty.span, "expected trait bound, not lifetime bound", )); } }; self.parse_remaining_bounds(Vec::new(), path, lo, true) } // `(TYPE)` _ => Ok(TyKind::Paren(P(ty))), } } else { Ok(TyKind::Tup(ts)) } } fn parse_remaining_bounds( &mut self, generic_params: Vec, path: ast::Path, lo: Span, parse_plus: bool, ) -> PResult<'a, TyKind> { assert_ne!(self.token, token::Question); let poly_trait_ref = PolyTraitRef::new(generic_params, path, lo.to(self.prev_token.span)); let mut bounds = vec![GenericBound::Trait(poly_trait_ref, TraitBoundModifier::None)]; if parse_plus { self.eat_plus(); // `+`, or `+=` gets split and `+` is discarded bounds.append(&mut self.parse_generic_bounds(Some(self.prev_token.span))?); } Ok(TyKind::TraitObject(bounds, TraitObjectSyntax::None)) } /// Parses a raw pointer type: `*[const | mut] $type`. fn parse_ty_ptr(&mut self) -> PResult<'a, TyKind> { let mutbl = self.parse_const_or_mut().unwrap_or_else(|| { let span = self.prev_token.span; let msg = "expected mut or const in raw pointer type"; self.struct_span_err(span, msg) .span_label(span, msg) .help("use `*mut T` or `*const T` as appropriate") .emit(); Mutability::Not }); let ty = self.parse_ty_no_plus()?; Ok(TyKind::Ptr(MutTy { ty, mutbl })) } /// Parses an array (`[TYPE; EXPR]`) or slice (`[TYPE]`) type. /// The opening `[` bracket is already eaten. fn parse_array_or_slice_ty(&mut self) -> PResult<'a, TyKind> { let elt_ty = self.parse_ty()?; let ty = if self.eat(&token::Semi) { TyKind::Array(elt_ty, self.parse_anon_const_expr()?) } else { TyKind::Slice(elt_ty) }; self.expect(&token::CloseDelim(token::Bracket))?; Ok(ty) } fn parse_borrowed_pointee(&mut self) -> PResult<'a, TyKind> { let opt_lifetime = if self.check_lifetime() { Some(self.expect_lifetime()) } else { None }; let mutbl = self.parse_mutability(); let ty = self.parse_ty_no_plus()?; Ok(TyKind::Rptr(opt_lifetime, MutTy { ty, mutbl })) } // Parses the `typeof(EXPR)`. // To avoid ambiguity, the type is surrounded by parenthesis. fn parse_typeof_ty(&mut self) -> PResult<'a, TyKind> { self.expect(&token::OpenDelim(token::Paren))?; let expr = self.parse_anon_const_expr()?; self.expect(&token::CloseDelim(token::Paren))?; Ok(TyKind::Typeof(expr)) } /// Is the current token one of the keywords that signals a bare function type? fn token_is_bare_fn_keyword(&mut self) -> bool { self.check_keyword(kw::Fn) || self.check_keyword(kw::Unsafe) || self.check_keyword(kw::Extern) } /// Parses a function pointer type (`TyKind::BareFn`). /// ``` /// [unsafe] [extern "ABI"] fn (S) -> T /// ^~~~~^ ^~~~^ ^~^ ^ /// | | | | /// | | | Return type /// Function Style ABI Parameter types /// ``` fn parse_ty_bare_fn(&mut self, generic_params: Vec) -> PResult<'a, TyKind> { let unsafety = self.parse_unsafety(); let ext = self.parse_extern()?; self.expect_keyword(kw::Fn)?; let decl = self.parse_fn_decl(|_| false, AllowPlus::No)?; Ok(TyKind::BareFn(P(BareFnTy { ext, unsafety, generic_params, decl }))) } /// Parses an `impl B0 + ... + Bn` type. fn parse_impl_ty(&mut self, impl_dyn_multi: &mut bool) -> PResult<'a, TyKind> { // Always parse bounds greedily for better error recovery. let bounds = self.parse_generic_bounds(None)?; *impl_dyn_multi = bounds.len() > 1 || self.prev_token.kind == TokenKind::BinOp(token::Plus); Ok(TyKind::ImplTrait(ast::DUMMY_NODE_ID, bounds)) } /// Is a `dyn B0 + ... + Bn` type allowed here? fn is_explicit_dyn_type(&mut self) -> bool { self.check_keyword(kw::Dyn) && (self.token.uninterpolated_span().rust_2018() || self.look_ahead(1, |t| { t.can_begin_bound() && !can_continue_type_after_non_fn_ident(t) })) } /// Parses a `dyn B0 + ... + Bn` type. /// /// Note that this does *not* parse bare trait objects. fn parse_dyn_ty(&mut self, impl_dyn_multi: &mut bool) -> PResult<'a, TyKind> { self.bump(); // `dyn` // Always parse bounds greedily for better error recovery. let bounds = self.parse_generic_bounds(None)?; *impl_dyn_multi = bounds.len() > 1 || self.prev_token.kind == TokenKind::BinOp(token::Plus); Ok(TyKind::TraitObject(bounds, TraitObjectSyntax::Dyn)) } /// Parses a type starting with a path. /// /// This can be: /// 1. a type macro, `mac!(...)`, /// 2. a bare trait object, `B0 + ... + Bn`, /// 3. or a path, `path::to::MyType`. fn parse_path_start_ty(&mut self, lo: Span, allow_plus: AllowPlus) -> PResult<'a, TyKind> { // Simple path let path = self.parse_path(PathStyle::Type)?; if self.eat(&token::Not) { // Macro invocation in type position Ok(TyKind::Mac(Mac { path, args: self.parse_mac_args()?, prior_type_ascription: self.last_type_ascription, })) } else if allow_plus == AllowPlus::Yes && self.check_plus() { // `Trait1 + Trait2 + 'a` self.parse_remaining_bounds(Vec::new(), path, lo, true) } else { // Just a type path. Ok(TyKind::Path(None, path)) } } fn error_illegal_c_varadic_ty(&self, lo: Span) { struct_span_err!( self.sess.span_diagnostic, lo.to(self.prev_token.span), E0743, "C-variadic type `...` may not be nested inside another type", ) .emit(); } pub(super) fn parse_generic_bounds( &mut self, colon_span: Option, ) -> PResult<'a, GenericBounds> { self.parse_generic_bounds_common(AllowPlus::Yes, colon_span) } /// Parses bounds of a type parameter `BOUND + BOUND + ...`, possibly with trailing `+`. /// /// See `parse_generic_bound` for the `BOUND` grammar. fn parse_generic_bounds_common( &mut self, allow_plus: AllowPlus, colon_span: Option, ) -> PResult<'a, GenericBounds> { let mut bounds = Vec::new(); let mut negative_bounds = Vec::new(); while self.can_begin_bound() { match self.parse_generic_bound()? { Ok(bound) => bounds.push(bound), Err(neg_sp) => negative_bounds.push(neg_sp), } if allow_plus == AllowPlus::No || !self.eat_plus() { break; } } if !negative_bounds.is_empty() { self.error_negative_bounds(colon_span, &bounds, negative_bounds); } Ok(bounds) } /// Can the current token begin a bound? fn can_begin_bound(&mut self) -> bool { // This needs to be synchronized with `TokenKind::can_begin_bound`. self.check_path() || self.check_lifetime() || self.check(&token::Not) // Used for error reporting only. || self.check(&token::Question) || self.check_keyword(kw::For) || self.check(&token::OpenDelim(token::Paren)) } fn error_negative_bounds( &self, colon_span: Option, bounds: &[GenericBound], negative_bounds: Vec, ) { let negative_bounds_len = negative_bounds.len(); let last_span = *negative_bounds.last().expect("no negative bounds, but still error?"); let mut err = self.struct_span_err(negative_bounds, "negative bounds are not supported"); err.span_label(last_span, "negative bounds are not supported"); if let Some(bound_list) = colon_span { let bound_list = bound_list.to(self.prev_token.span); let mut new_bound_list = String::new(); if !bounds.is_empty() { let mut snippets = bounds.iter().map(|bound| self.span_to_snippet(bound.span())); while let Some(Ok(snippet)) = snippets.next() { new_bound_list.push_str(" + "); new_bound_list.push_str(&snippet); } new_bound_list = new_bound_list.replacen(" +", ":", 1); } err.tool_only_span_suggestion( bound_list, &format!("remove the bound{}", pluralize!(negative_bounds_len)), new_bound_list, Applicability::MachineApplicable, ); } err.emit(); } /// Parses a bound according to the grammar: /// ``` /// BOUND = TY_BOUND | LT_BOUND /// ``` fn parse_generic_bound(&mut self) -> PResult<'a, Result> { let anchor_lo = self.prev_token.span; let lo = self.token.span; let has_parens = self.eat(&token::OpenDelim(token::Paren)); let inner_lo = self.token.span; let is_negative = self.eat(&token::Not); let modifiers = self.parse_ty_bound_modifiers(); let bound = if self.token.is_lifetime() { self.error_lt_bound_with_modifiers(modifiers); self.parse_generic_lt_bound(lo, inner_lo, has_parens)? } else { self.parse_generic_ty_bound(lo, has_parens, modifiers)? }; Ok(if is_negative { Err(anchor_lo.to(self.prev_token.span)) } else { Ok(bound) }) } /// Parses a lifetime ("outlives") bound, e.g. `'a`, according to: /// ``` /// LT_BOUND = LIFETIME /// ``` fn parse_generic_lt_bound( &mut self, lo: Span, inner_lo: Span, has_parens: bool, ) -> PResult<'a, GenericBound> { let bound = GenericBound::Outlives(self.expect_lifetime()); if has_parens { // FIXME(Centril): Consider not erroring here and accepting `('lt)` instead, // possibly introducing `GenericBound::Paren(P)`? self.recover_paren_lifetime(lo, inner_lo)?; } Ok(bound) } /// Emits an error if any trait bound modifiers were present. fn error_lt_bound_with_modifiers(&self, modifiers: BoundModifiers) { if let Some(span) = modifiers.maybe_const { self.struct_span_err( span, "`?const` may only modify trait bounds, not lifetime bounds", ) .emit(); } if let Some(span) = modifiers.maybe { self.struct_span_err(span, "`?` may only modify trait bounds, not lifetime bounds") .emit(); } } /// Recover on `('lifetime)` with `(` already eaten. fn recover_paren_lifetime(&mut self, lo: Span, inner_lo: Span) -> PResult<'a, ()> { let inner_span = inner_lo.to(self.prev_token.span); self.expect(&token::CloseDelim(token::Paren))?; let mut err = self.struct_span_err( lo.to(self.prev_token.span), "parenthesized lifetime bounds are not supported", ); if let Ok(snippet) = self.span_to_snippet(inner_span) { err.span_suggestion_short( lo.to(self.prev_token.span), "remove the parentheses", snippet, Applicability::MachineApplicable, ); } err.emit(); Ok(()) } /// Parses the modifiers that may precede a trait in a bound, e.g. `?Trait` or `?const Trait`. /// /// If no modifiers are present, this does not consume any tokens. /// /// ``` /// TY_BOUND_MODIFIERS = "?" ["const" ["?"]] /// ``` fn parse_ty_bound_modifiers(&mut self) -> BoundModifiers { if !self.eat(&token::Question) { return BoundModifiers { maybe: None, maybe_const: None }; } // `? ...` let first_question = self.prev_token.span; if !self.eat_keyword(kw::Const) { return BoundModifiers { maybe: Some(first_question), maybe_const: None }; } // `?const ...` let maybe_const = first_question.to(self.prev_token.span); self.sess.gated_spans.gate(sym::const_trait_bound_opt_out, maybe_const); if !self.eat(&token::Question) { return BoundModifiers { maybe: None, maybe_const: Some(maybe_const) }; } // `?const ? ...` let second_question = self.prev_token.span; BoundModifiers { maybe: Some(second_question), maybe_const: Some(maybe_const) } } /// Parses a type bound according to: /// ``` /// TY_BOUND = TY_BOUND_NOPAREN | (TY_BOUND_NOPAREN) /// TY_BOUND_NOPAREN = [TY_BOUND_MODIFIERS] [for] SIMPLE_PATH /// ``` /// /// For example, this grammar accepts `?const ?for<'a: 'b> m::Trait<'a>`. fn parse_generic_ty_bound( &mut self, lo: Span, has_parens: bool, modifiers: BoundModifiers, ) -> PResult<'a, GenericBound> { let lifetime_defs = self.parse_late_bound_lifetime_defs()?; let path = self.parse_path(PathStyle::Type)?; if has_parens { self.expect(&token::CloseDelim(token::Paren))?; } let modifier = modifiers.to_trait_bound_modifier(); let poly_trait = PolyTraitRef::new(lifetime_defs, path, lo.to(self.prev_token.span)); Ok(GenericBound::Trait(poly_trait, modifier)) } /// Optionally parses `for<$generic_params>`. pub(super) fn parse_late_bound_lifetime_defs(&mut self) -> PResult<'a, Vec> { if self.eat_keyword(kw::For) { self.expect_lt()?; let params = self.parse_generic_params()?; self.expect_gt()?; // We rely on AST validation to rule out invalid cases: There must not be type // parameters, and the lifetime parameters must not have bounds. Ok(params) } else { Ok(Vec::new()) } } pub fn check_lifetime(&mut self) -> bool { self.expected_tokens.push(TokenType::Lifetime); self.token.is_lifetime() } /// Parses a single lifetime `'a` or panics. pub fn expect_lifetime(&mut self) -> Lifetime { if let Some(ident) = self.token.lifetime() { self.bump(); Lifetime { ident, id: ast::DUMMY_NODE_ID } } else { self.span_bug(self.token.span, "not a lifetime") } } pub(super) fn mk_ty(&self, span: Span, kind: TyKind) -> P { P(Ty { kind, span, id: ast::DUMMY_NODE_ID }) } }