//! The `SourceMap` tracks all the source code used within a single crate, mapping //! from integer byte positions to the original source code location. Each bit //! of source parsed during crate parsing (typically files, in-memory strings, //! or various bits of macro expansion) cover a continuous range of bytes in the //! `SourceMap` and are represented by `SourceFile`s. Byte positions are stored in //! `Span` and used pervasively in the compiler. They are absolute positions //! within the `SourceMap`, which upon request can be converted to line and column //! information, source code snippets, etc. pub use crate::hygiene::{ExpnData, ExpnKind}; pub use crate::*; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::stable_hasher::StableHasher; use rustc_data_structures::sync::{AtomicU32, Lock, LockGuard, Lrc, MappedLockGuard}; use std::cmp; use std::convert::TryFrom; use std::hash::Hash; use std::path::{Path, PathBuf}; use std::sync::atomic::Ordering; use log::debug; use std::env; use std::fs; use std::io; #[cfg(test)] mod tests; /// Returns the span itself if it doesn't come from a macro expansion, /// otherwise return the call site span up to the `enclosing_sp` by /// following the `expn_data` chain. pub fn original_sp(sp: Span, enclosing_sp: Span) -> Span { let expn_data1 = sp.ctxt().outer_expn_data(); let expn_data2 = enclosing_sp.ctxt().outer_expn_data(); if expn_data1.is_root() || !expn_data2.is_root() && expn_data1.call_site == expn_data2.call_site { sp } else { original_sp(expn_data1.call_site, enclosing_sp) } } #[derive(Clone, RustcEncodable, RustcDecodable, Debug, Copy, HashStable_Generic)] pub struct Spanned { pub node: T, pub span: Span, } pub fn respan(sp: Span, t: T) -> Spanned { Spanned { node: t, span: sp } } pub fn dummy_spanned(t: T) -> Spanned { respan(DUMMY_SP, t) } // _____________________________________________________________________________ // SourceFile, MultiByteChar, FileName, FileLines // /// An abstraction over the fs operations used by the Parser. pub trait FileLoader { /// Query the existence of a file. fn file_exists(&self, path: &Path) -> bool; /// Returns an absolute path to a file, if possible. fn abs_path(&self, path: &Path) -> Option; /// Read the contents of an UTF-8 file into memory. fn read_file(&self, path: &Path) -> io::Result; } /// A FileLoader that uses std::fs to load real files. pub struct RealFileLoader; impl FileLoader for RealFileLoader { fn file_exists(&self, path: &Path) -> bool { fs::metadata(path).is_ok() } fn abs_path(&self, path: &Path) -> Option { if path.is_absolute() { Some(path.to_path_buf()) } else { env::current_dir().ok().map(|cwd| cwd.join(path)) } } fn read_file(&self, path: &Path) -> io::Result { fs::read_to_string(path) } } // This is a `SourceFile` identifier that is used to correlate `SourceFile`s between // subsequent compilation sessions (which is something we need to do during // incremental compilation). #[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug)] pub struct StableSourceFileId(u128); impl StableSourceFileId { pub fn new(source_file: &SourceFile) -> StableSourceFileId { StableSourceFileId::new_from_pieces( &source_file.name, source_file.name_was_remapped, source_file.unmapped_path.as_ref(), ) } pub fn new_from_pieces( name: &FileName, name_was_remapped: bool, unmapped_path: Option<&FileName>, ) -> StableSourceFileId { let mut hasher = StableHasher::new(); name.hash(&mut hasher); name_was_remapped.hash(&mut hasher); unmapped_path.hash(&mut hasher); StableSourceFileId(hasher.finish()) } } // _____________________________________________________________________________ // SourceMap // #[derive(Default)] pub(super) struct SourceMapFiles { source_files: Vec>, stable_id_to_source_file: FxHashMap>, } pub struct SourceMap { /// The address space below this value is currently used by the files in the source map. used_address_space: AtomicU32, files: Lock, file_loader: Box, // This is used to apply the file path remapping as specified via // `--remap-path-prefix` to all `SourceFile`s allocated within this `SourceMap`. path_mapping: FilePathMapping, } impl SourceMap { pub fn new(path_mapping: FilePathMapping) -> SourceMap { SourceMap { used_address_space: AtomicU32::new(0), files: Default::default(), file_loader: Box::new(RealFileLoader), path_mapping, } } pub fn with_file_loader( file_loader: Box, path_mapping: FilePathMapping, ) -> SourceMap { SourceMap { used_address_space: AtomicU32::new(0), files: Default::default(), file_loader, path_mapping, } } pub fn path_mapping(&self) -> &FilePathMapping { &self.path_mapping } pub fn file_exists(&self, path: &Path) -> bool { self.file_loader.file_exists(path) } pub fn load_file(&self, path: &Path) -> io::Result> { let src = self.file_loader.read_file(path)?; let filename = path.to_owned().into(); Ok(self.new_source_file(filename, src)) } /// Loads source file as a binary blob. /// /// Unlike `load_file`, guarantees that no normalization like BOM-removal /// takes place. pub fn load_binary_file(&self, path: &Path) -> io::Result> { // Ideally, this should use `self.file_loader`, but it can't // deal with binary files yet. let bytes = fs::read(path)?; // We need to add file to the `SourceMap`, so that it is present // in dep-info. There's also an edge case that file might be both // loaded as a binary via `include_bytes!` and as proper `SourceFile` // via `mod`, so we try to use real file contents and not just an // empty string. let text = std::str::from_utf8(&bytes).unwrap_or("").to_string(); self.new_source_file(path.to_owned().into(), text); Ok(bytes) } pub fn files(&self) -> MappedLockGuard<'_, Vec>> { LockGuard::map(self.files.borrow(), |files| &mut files.source_files) } pub fn source_file_by_stable_id( &self, stable_id: StableSourceFileId, ) -> Option> { self.files.borrow().stable_id_to_source_file.get(&stable_id).cloned() } fn allocate_address_space(&self, size: usize) -> Result { let size = u32::try_from(size).map_err(|_| OffsetOverflowError)?; loop { let current = self.used_address_space.load(Ordering::Relaxed); let next = current .checked_add(size) // Add one so there is some space between files. This lets us distinguish // positions in the `SourceMap`, even in the presence of zero-length files. .and_then(|next| next.checked_add(1)) .ok_or(OffsetOverflowError)?; if self .used_address_space .compare_exchange(current, next, Ordering::Relaxed, Ordering::Relaxed) .is_ok() { return Ok(usize::try_from(current).unwrap()); } } } /// Creates a new `SourceFile`. /// If a file already exists in the `SourceMap` with the same ID, that file is returned /// unmodified. pub fn new_source_file(&self, filename: FileName, src: String) -> Lrc { self.try_new_source_file(filename, src).unwrap_or_else(|OffsetOverflowError| { eprintln!("fatal error: rustc does not support files larger than 4GB"); crate::fatal_error::FatalError.raise() }) } fn try_new_source_file( &self, filename: FileName, src: String, ) -> Result, OffsetOverflowError> { // The path is used to determine the directory for loading submodules and // include files, so it must be before remapping. // Note that filename may not be a valid path, eg it may be `` etc, // but this is okay because the directory determined by `path.pop()` will // be empty, so the working directory will be used. let unmapped_path = filename.clone(); let (filename, was_remapped) = match filename { FileName::Real(filename) => { let (filename, was_remapped) = self.path_mapping.map_prefix(filename); (FileName::Real(filename), was_remapped) } other => (other, false), }; let file_id = StableSourceFileId::new_from_pieces(&filename, was_remapped, Some(&unmapped_path)); let lrc_sf = match self.source_file_by_stable_id(file_id) { Some(lrc_sf) => lrc_sf, None => { let start_pos = self.allocate_address_space(src.len())?; let source_file = Lrc::new(SourceFile::new( filename, was_remapped, unmapped_path, src, Pos::from_usize(start_pos), )); let mut files = self.files.borrow_mut(); files.source_files.push(source_file.clone()); files.stable_id_to_source_file.insert(file_id, source_file.clone()); source_file } }; Ok(lrc_sf) } /// Allocates a new `SourceFile` representing a source file from an external /// crate. The source code of such an "imported `SourceFile`" is not available, /// but we still know enough to generate accurate debuginfo location /// information for things inlined from other crates. pub fn new_imported_source_file( &self, filename: FileName, name_was_remapped: bool, crate_of_origin: u32, src_hash: u128, name_hash: u128, source_len: usize, mut file_local_lines: Vec, mut file_local_multibyte_chars: Vec, mut file_local_non_narrow_chars: Vec, mut file_local_normalized_pos: Vec, ) -> Lrc { let start_pos = self .allocate_address_space(source_len) .expect("not enough address space for imported source file"); let end_pos = Pos::from_usize(start_pos + source_len); let start_pos = Pos::from_usize(start_pos); for pos in &mut file_local_lines { *pos = *pos + start_pos; } for mbc in &mut file_local_multibyte_chars { mbc.pos = mbc.pos + start_pos; } for swc in &mut file_local_non_narrow_chars { *swc = *swc + start_pos; } for nc in &mut file_local_normalized_pos { nc.pos = nc.pos + start_pos; } let source_file = Lrc::new(SourceFile { name: filename, name_was_remapped, unmapped_path: None, crate_of_origin, src: None, src_hash, external_src: Lock::new(ExternalSource::AbsentOk), start_pos, end_pos, lines: file_local_lines, multibyte_chars: file_local_multibyte_chars, non_narrow_chars: file_local_non_narrow_chars, normalized_pos: file_local_normalized_pos, name_hash, }); let mut files = self.files.borrow_mut(); files.source_files.push(source_file.clone()); files .stable_id_to_source_file .insert(StableSourceFileId::new(&source_file), source_file.clone()); source_file } pub fn mk_substr_filename(&self, sp: Span) -> String { let pos = self.lookup_char_pos(sp.lo()); format!("<{}:{}:{}>", pos.file.name, pos.line, pos.col.to_usize() + 1) } // If there is a doctest offset, applies it to the line. pub fn doctest_offset_line(&self, file: &FileName, orig: usize) -> usize { return match file { FileName::DocTest(_, offset) => { return if *offset >= 0 { orig + *offset as usize } else { orig - (-(*offset)) as usize }; } _ => orig, }; } /// Looks up source information about a `BytePos`. pub fn lookup_char_pos(&self, pos: BytePos) -> Loc { let chpos = self.bytepos_to_file_charpos(pos); match self.lookup_line(pos) { Ok(SourceFileAndLine { sf: f, line: a }) => { let line = a + 1; // Line numbers start at 1 let linebpos = f.lines[a]; let linechpos = self.bytepos_to_file_charpos(linebpos); let col = chpos - linechpos; let col_display = { let start_width_idx = f .non_narrow_chars .binary_search_by_key(&linebpos, |x| x.pos()) .unwrap_or_else(|x| x); let end_width_idx = f .non_narrow_chars .binary_search_by_key(&pos, |x| x.pos()) .unwrap_or_else(|x| x); let special_chars = end_width_idx - start_width_idx; let non_narrow: usize = f.non_narrow_chars[start_width_idx..end_width_idx] .iter() .map(|x| x.width()) .sum(); col.0 - special_chars + non_narrow }; debug!("byte pos {:?} is on the line at byte pos {:?}", pos, linebpos); debug!("char pos {:?} is on the line at char pos {:?}", chpos, linechpos); debug!("byte is on line: {}", line); assert!(chpos >= linechpos); Loc { file: f, line, col, col_display } } Err(f) => { let col_display = { let end_width_idx = f .non_narrow_chars .binary_search_by_key(&pos, |x| x.pos()) .unwrap_or_else(|x| x); let non_narrow: usize = f.non_narrow_chars[0..end_width_idx].iter().map(|x| x.width()).sum(); chpos.0 - end_width_idx + non_narrow }; Loc { file: f, line: 0, col: chpos, col_display } } } } // If the corresponding `SourceFile` is empty, does not return a line number. pub fn lookup_line(&self, pos: BytePos) -> Result> { let idx = self.lookup_source_file_idx(pos); let f = (*self.files.borrow().source_files)[idx].clone(); match f.lookup_line(pos) { Some(line) => Ok(SourceFileAndLine { sf: f, line }), None => Err(f), } } /// Returns `Some(span)`, a union of the LHS and RHS span. The LHS must precede the RHS. If /// there are gaps between LHS and RHS, the resulting union will cross these gaps. /// For this to work, /// /// * the syntax contexts of both spans much match, /// * the LHS span needs to end on the same line the RHS span begins, /// * the LHS span must start at or before the RHS span. pub fn merge_spans(&self, sp_lhs: Span, sp_rhs: Span) -> Option { // Ensure we're at the same expansion ID. if sp_lhs.ctxt() != sp_rhs.ctxt() { return None; } let lhs_end = match self.lookup_line(sp_lhs.hi()) { Ok(x) => x, Err(_) => return None, }; let rhs_begin = match self.lookup_line(sp_rhs.lo()) { Ok(x) => x, Err(_) => return None, }; // If we must cross lines to merge, don't merge. if lhs_end.line != rhs_begin.line { return None; } // Ensure these follow the expected order and that we don't overlap. if (sp_lhs.lo() <= sp_rhs.lo()) && (sp_lhs.hi() <= sp_rhs.lo()) { Some(sp_lhs.to(sp_rhs)) } else { None } } pub fn span_to_string(&self, sp: Span) -> String { if self.files.borrow().source_files.is_empty() && sp.is_dummy() { return "no-location".to_string(); } let lo = self.lookup_char_pos(sp.lo()); let hi = self.lookup_char_pos(sp.hi()); format!( "{}:{}:{}: {}:{}", lo.file.name, lo.line, lo.col.to_usize() + 1, hi.line, hi.col.to_usize() + 1, ) } pub fn span_to_filename(&self, sp: Span) -> FileName { self.lookup_char_pos(sp.lo()).file.name.clone() } pub fn span_to_unmapped_path(&self, sp: Span) -> FileName { self.lookup_char_pos(sp.lo()) .file .unmapped_path .clone() .expect("`SourceMap::span_to_unmapped_path` called for imported `SourceFile`?") } pub fn is_multiline(&self, sp: Span) -> bool { let lo = self.lookup_char_pos(sp.lo()); let hi = self.lookup_char_pos(sp.hi()); lo.line != hi.line } pub fn is_valid_span(&self, sp: Span) -> Result<(Loc, Loc), SpanLinesError> { let lo = self.lookup_char_pos(sp.lo()); debug!("span_to_lines: lo={:?}", lo); let hi = self.lookup_char_pos(sp.hi()); debug!("span_to_lines: hi={:?}", hi); if lo.file.start_pos != hi.file.start_pos { return Err(SpanLinesError::DistinctSources(DistinctSources { begin: (lo.file.name.clone(), lo.file.start_pos), end: (hi.file.name.clone(), hi.file.start_pos), })); } Ok((lo, hi)) } pub fn span_to_lines(&self, sp: Span) -> FileLinesResult { debug!("span_to_lines(sp={:?})", sp); let (lo, hi) = self.is_valid_span(sp)?; assert!(hi.line >= lo.line); let mut lines = Vec::with_capacity(hi.line - lo.line + 1); // The span starts partway through the first line, // but after that it starts from offset 0. let mut start_col = lo.col; // For every line but the last, it extends from `start_col` // and to the end of the line. Be careful because the line // numbers in Loc are 1-based, so we subtract 1 to get 0-based // lines. let hi_line = hi.line.saturating_sub(1); for line_index in lo.line.saturating_sub(1)..hi_line { let line_len = lo.file.get_line(line_index).map(|s| s.chars().count()).unwrap_or(0); lines.push(LineInfo { line_index, start_col, end_col: CharPos::from_usize(line_len) }); start_col = CharPos::from_usize(0); } // For the last line, it extends from `start_col` to `hi.col`: lines.push(LineInfo { line_index: hi_line, start_col, end_col: hi.col }); Ok(FileLines { file: lo.file, lines }) } /// Extracts the source surrounding the given `Span` using the `extract_source` function. The /// extract function takes three arguments: a string slice containing the source, an index in /// the slice for the beginning of the span and an index in the slice for the end of the span. fn span_to_source(&self, sp: Span, extract_source: F) -> Result where F: Fn(&str, usize, usize) -> Result, { let local_begin = self.lookup_byte_offset(sp.lo()); let local_end = self.lookup_byte_offset(sp.hi()); if local_begin.sf.start_pos != local_end.sf.start_pos { return Err(SpanSnippetError::DistinctSources(DistinctSources { begin: (local_begin.sf.name.clone(), local_begin.sf.start_pos), end: (local_end.sf.name.clone(), local_end.sf.start_pos), })); } else { self.ensure_source_file_source_present(local_begin.sf.clone()); let start_index = local_begin.pos.to_usize(); let end_index = local_end.pos.to_usize(); let source_len = (local_begin.sf.end_pos - local_begin.sf.start_pos).to_usize(); if start_index > end_index || end_index > source_len { return Err(SpanSnippetError::MalformedForSourcemap(MalformedSourceMapPositions { name: local_begin.sf.name.clone(), source_len, begin_pos: local_begin.pos, end_pos: local_end.pos, })); } if let Some(ref src) = local_begin.sf.src { return extract_source(src, start_index, end_index); } else if let Some(src) = local_begin.sf.external_src.borrow().get_source() { return extract_source(src, start_index, end_index); } else { return Err(SpanSnippetError::SourceNotAvailable { filename: local_begin.sf.name.clone(), }); } } } /// Returns the source snippet as `String` corresponding to the given `Span`. pub fn span_to_snippet(&self, sp: Span) -> Result { self.span_to_source(sp, |src, start_index, end_index| { src.get(start_index..end_index) .map(|s| s.to_string()) .ok_or_else(|| SpanSnippetError::IllFormedSpan(sp)) }) } pub fn span_to_margin(&self, sp: Span) -> Option { match self.span_to_prev_source(sp) { Err(_) => None, Ok(source) => source .split('\n') .last() .map(|last_line| last_line.len() - last_line.trim_start().len()), } } /// Returns the source snippet as `String` before the given `Span`. pub fn span_to_prev_source(&self, sp: Span) -> Result { self.span_to_source(sp, |src, start_index, _| { src.get(..start_index) .map(|s| s.to_string()) .ok_or_else(|| SpanSnippetError::IllFormedSpan(sp)) }) } /// Extends the given `Span` to just after the previous occurrence of `c`. Return the same span /// if no character could be found or if an error occurred while retrieving the code snippet. pub fn span_extend_to_prev_char(&self, sp: Span, c: char) -> Span { if let Ok(prev_source) = self.span_to_prev_source(sp) { let prev_source = prev_source.rsplit(c).next().unwrap_or("").trim_start(); if !prev_source.is_empty() && !prev_source.contains('\n') { return sp.with_lo(BytePos(sp.lo().0 - prev_source.len() as u32)); } } sp } /// Extends the given `Span` to just after the previous occurrence of `pat` when surrounded by /// whitespace. Returns the same span if no character could be found or if an error occurred /// while retrieving the code snippet. pub fn span_extend_to_prev_str(&self, sp: Span, pat: &str, accept_newlines: bool) -> Span { // assure that the pattern is delimited, to avoid the following // fn my_fn() // ^^^^ returned span without the check // ---------- correct span for ws in &[" ", "\t", "\n"] { let pat = pat.to_owned() + ws; if let Ok(prev_source) = self.span_to_prev_source(sp) { let prev_source = prev_source.rsplit(&pat).next().unwrap_or("").trim_start(); if !prev_source.is_empty() && (!prev_source.contains('\n') || accept_newlines) { return sp.with_lo(BytePos(sp.lo().0 - prev_source.len() as u32)); } } } sp } /// Given a `Span`, tries to get a shorter span ending before the first occurrence of `char` /// `c`. pub fn span_until_char(&self, sp: Span, c: char) -> Span { match self.span_to_snippet(sp) { Ok(snippet) => { let snippet = snippet.split(c).next().unwrap_or("").trim_end(); if !snippet.is_empty() && !snippet.contains('\n') { sp.with_hi(BytePos(sp.lo().0 + snippet.len() as u32)) } else { sp } } _ => sp, } } /// Given a `Span`, tries to get a shorter span ending just after the first occurrence of `char` /// `c`. pub fn span_through_char(&self, sp: Span, c: char) -> Span { if let Ok(snippet) = self.span_to_snippet(sp) { if let Some(offset) = snippet.find(c) { return sp.with_hi(BytePos(sp.lo().0 + (offset + c.len_utf8()) as u32)); } } sp } /// Given a `Span`, gets a new `Span` covering the first token and all its trailing whitespace /// or the original `Span`. /// /// If `sp` points to `"let mut x"`, then a span pointing at `"let "` will be returned. pub fn span_until_non_whitespace(&self, sp: Span) -> Span { let mut whitespace_found = false; self.span_take_while(sp, |c| { if !whitespace_found && c.is_whitespace() { whitespace_found = true; } !whitespace_found || c.is_whitespace() }) } /// Given a `Span`, gets a new `Span` covering the first token without its trailing whitespace /// or the original `Span` in case of error. /// /// If `sp` points to `"let mut x"`, then a span pointing at `"let"` will be returned. pub fn span_until_whitespace(&self, sp: Span) -> Span { self.span_take_while(sp, |c| !c.is_whitespace()) } /// Given a `Span`, gets a shorter one until `predicate` yields `false`. pub fn span_take_while

(&self, sp: Span, predicate: P) -> Span where P: for<'r> FnMut(&'r char) -> bool, { if let Ok(snippet) = self.span_to_snippet(sp) { let offset = snippet.chars().take_while(predicate).map(|c| c.len_utf8()).sum::(); sp.with_hi(BytePos(sp.lo().0 + (offset as u32))) } else { sp } } pub fn def_span(&self, sp: Span) -> Span { self.span_until_char(sp, '{') } /// Returns a new span representing just the start point of this span. pub fn start_point(&self, sp: Span) -> Span { let pos = sp.lo().0; let width = self.find_width_of_character_at_span(sp, false); let corrected_start_position = pos.checked_add(width).unwrap_or(pos); let end_point = BytePos(cmp::max(corrected_start_position, sp.lo().0)); sp.with_hi(end_point) } /// Returns a new span representing just the end point of this span. pub fn end_point(&self, sp: Span) -> Span { let pos = sp.hi().0; let width = self.find_width_of_character_at_span(sp, false); let corrected_end_position = pos.checked_sub(width).unwrap_or(pos); let end_point = BytePos(cmp::max(corrected_end_position, sp.lo().0)); sp.with_lo(end_point) } /// Returns a new span representing the next character after the end-point of this span. pub fn next_point(&self, sp: Span) -> Span { let start_of_next_point = sp.hi().0; let width = self.find_width_of_character_at_span(sp.shrink_to_hi(), true); // If the width is 1, then the next span should point to the same `lo` and `hi`. However, // in the case of a multibyte character, where the width != 1, the next span should // span multiple bytes to include the whole character. let end_of_next_point = start_of_next_point.checked_add(width - 1).unwrap_or(start_of_next_point); let end_of_next_point = BytePos(cmp::max(sp.lo().0 + 1, end_of_next_point)); Span::new(BytePos(start_of_next_point), end_of_next_point, sp.ctxt()) } /// Finds the width of a character, either before or after the provided span. fn find_width_of_character_at_span(&self, sp: Span, forwards: bool) -> u32 { let sp = sp.data(); if sp.lo == sp.hi { debug!("find_width_of_character_at_span: early return empty span"); return 1; } let local_begin = self.lookup_byte_offset(sp.lo); let local_end = self.lookup_byte_offset(sp.hi); debug!( "find_width_of_character_at_span: local_begin=`{:?}`, local_end=`{:?}`", local_begin, local_end ); if local_begin.sf.start_pos != local_end.sf.start_pos { debug!("find_width_of_character_at_span: begin and end are in different files"); return 1; } let start_index = local_begin.pos.to_usize(); let end_index = local_end.pos.to_usize(); debug!( "find_width_of_character_at_span: start_index=`{:?}`, end_index=`{:?}`", start_index, end_index ); // Disregard indexes that are at the start or end of their spans, they can't fit bigger // characters. if (!forwards && end_index == usize::min_value()) || (forwards && start_index == usize::max_value()) { debug!("find_width_of_character_at_span: start or end of span, cannot be multibyte"); return 1; } let source_len = (local_begin.sf.end_pos - local_begin.sf.start_pos).to_usize(); debug!("find_width_of_character_at_span: source_len=`{:?}`", source_len); // Ensure indexes are also not malformed. if start_index > end_index || end_index > source_len { debug!("find_width_of_character_at_span: source indexes are malformed"); return 1; } let src = local_begin.sf.external_src.borrow(); // We need to extend the snippet to the end of the src rather than to end_index so when // searching forwards for boundaries we've got somewhere to search. let snippet = if let Some(ref src) = local_begin.sf.src { let len = src.len(); &src[start_index..len] } else if let Some(src) = src.get_source() { let len = src.len(); &src[start_index..len] } else { return 1; }; debug!("find_width_of_character_at_span: snippet=`{:?}`", snippet); let mut target = if forwards { end_index + 1 } else { end_index - 1 }; debug!("find_width_of_character_at_span: initial target=`{:?}`", target); while !snippet.is_char_boundary(target - start_index) && target < source_len { target = if forwards { target + 1 } else { match target.checked_sub(1) { Some(target) => target, None => { break; } } }; debug!("find_width_of_character_at_span: target=`{:?}`", target); } debug!("find_width_of_character_at_span: final target=`{:?}`", target); if forwards { (target - end_index) as u32 } else { (end_index - target) as u32 } } pub fn get_source_file(&self, filename: &FileName) -> Option> { for sf in self.files.borrow().source_files.iter() { if *filename == sf.name { return Some(sf.clone()); } } None } /// For a global `BytePos`, computes the local offset within the containing `SourceFile`. pub fn lookup_byte_offset(&self, bpos: BytePos) -> SourceFileAndBytePos { let idx = self.lookup_source_file_idx(bpos); let sf = (*self.files.borrow().source_files)[idx].clone(); let offset = bpos - sf.start_pos; SourceFileAndBytePos { sf, pos: offset } } /// Converts an absolute `BytePos` to a `CharPos` relative to the `SourceFile`. pub fn bytepos_to_file_charpos(&self, bpos: BytePos) -> CharPos { let idx = self.lookup_source_file_idx(bpos); let map = &(*self.files.borrow().source_files)[idx]; // The number of extra bytes due to multibyte chars in the `SourceFile`. let mut total_extra_bytes = 0; for mbc in map.multibyte_chars.iter() { debug!("{}-byte char at {:?}", mbc.bytes, mbc.pos); if mbc.pos < bpos { // Every character is at least one byte, so we only // count the actual extra bytes. total_extra_bytes += mbc.bytes as u32 - 1; // We should never see a byte position in the middle of a // character. assert!(bpos.to_u32() >= mbc.pos.to_u32() + mbc.bytes as u32); } else { break; } } assert!(map.start_pos.to_u32() + total_extra_bytes <= bpos.to_u32()); CharPos(bpos.to_usize() - map.start_pos.to_usize() - total_extra_bytes as usize) } // Returns the index of the `SourceFile` (in `self.files`) that contains `pos`. pub fn lookup_source_file_idx(&self, pos: BytePos) -> usize { self.files .borrow() .source_files .binary_search_by_key(&pos, |key| key.start_pos) .unwrap_or_else(|p| p - 1) } pub fn count_lines(&self) -> usize { self.files().iter().fold(0, |a, f| a + f.count_lines()) } pub fn generate_fn_name_span(&self, span: Span) -> Option { let prev_span = self.span_extend_to_prev_str(span, "fn", true); self.span_to_snippet(prev_span) .map(|snippet| { let len = snippet .find(|c: char| !c.is_alphanumeric() && c != '_') .expect("no label after fn"); prev_span.with_hi(BytePos(prev_span.lo().0 + len as u32)) }) .ok() } /// Takes the span of a type parameter in a function signature and try to generate a span for /// the function name (with generics) and a new snippet for this span with the pointed type /// parameter as a new local type parameter. /// /// For instance: /// ```rust,ignore (pseudo-Rust) /// // Given span /// fn my_function(param: T) /// // ^ Original span /// /// // Result /// fn my_function(param: T) /// // ^^^^^^^^^^^ Generated span with snippet `my_function` /// ``` /// /// Attention: The method used is very fragile since it essentially duplicates the work of the /// parser. If you need to use this function or something similar, please consider updating the /// `SourceMap` functions and this function to something more robust. pub fn generate_local_type_param_snippet(&self, span: Span) -> Option<(Span, String)> { // Try to extend the span to the previous "fn" keyword to retrieve the function // signature. let sugg_span = self.span_extend_to_prev_str(span, "fn", false); if sugg_span != span { if let Ok(snippet) = self.span_to_snippet(sugg_span) { // Consume the function name. let mut offset = snippet .find(|c: char| !c.is_alphanumeric() && c != '_') .expect("no label after fn"); // Consume the generics part of the function signature. let mut bracket_counter = 0; let mut last_char = None; for c in snippet[offset..].chars() { match c { '<' => bracket_counter += 1, '>' => bracket_counter -= 1, '(' => { if bracket_counter == 0 { break; } } _ => {} } offset += c.len_utf8(); last_char = Some(c); } // Adjust the suggestion span to encompass the function name with its generics. let sugg_span = sugg_span.with_hi(BytePos(sugg_span.lo().0 + offset as u32)); // Prepare the new suggested snippet to append the type parameter that triggered // the error in the generics of the function signature. let mut new_snippet = if last_char == Some('>') { format!("{}, ", &snippet[..(offset - '>'.len_utf8())]) } else { format!("{}<", &snippet[..offset]) }; new_snippet .push_str(&self.span_to_snippet(span).unwrap_or_else(|_| "T".to_string())); new_snippet.push('>'); return Some((sugg_span, new_snippet)); } } None } pub fn ensure_source_file_source_present(&self, source_file: Lrc) -> bool { source_file.add_external_src(|| match source_file.name { FileName::Real(ref name) => self.file_loader.read_file(name).ok(), _ => None, }) } pub fn is_imported(&self, sp: Span) -> bool { let source_file_index = self.lookup_source_file_idx(sp.lo()); let source_file = &self.files()[source_file_index]; source_file.is_imported() } } #[derive(Clone)] pub struct FilePathMapping { mapping: Vec<(PathBuf, PathBuf)>, } impl FilePathMapping { pub fn empty() -> FilePathMapping { FilePathMapping { mapping: vec![] } } pub fn new(mapping: Vec<(PathBuf, PathBuf)>) -> FilePathMapping { FilePathMapping { mapping } } /// Applies any path prefix substitution as defined by the mapping. /// The return value is the remapped path and a boolean indicating whether /// the path was affected by the mapping. pub fn map_prefix(&self, path: PathBuf) -> (PathBuf, bool) { // NOTE: We are iterating over the mapping entries from last to first // because entries specified later on the command line should // take precedence. for &(ref from, ref to) in self.mapping.iter().rev() { if let Ok(rest) = path.strip_prefix(from) { return (to.join(rest), true); } } (path, false) } }