{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# PeTS Equation of State - Binary Mixture (Pseudo Pure Fluid)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Original publication of the _perturbation theory for truncated and shifted Lennard-Jones fluids_ (PeTS) of M. Heier, S. Stephan, J. Liu, W.G. Chapman, H. Hasse, K. Langenbach, Mol. Phys. **116**, 2083 (2018);\n", "https://doi.org/10.1080/00268976.2018.1447153" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from feos.eos import *\n", "from feos.si import *\n", "from feos.pets import PetsParameters\n", "import matplotlib.pyplot as plt\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Specifying PeTS Parameters" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "epsilon_k = 1.0 * KELVIN\n", "sigma = 1.0 * ANGSTROM" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definition of Reference Data\n", "\n", "The molecular simulation reference data is taken from J. Vrabec, G.K. Kedia, G. Fuchs, H. Hasse, Mol. Phys. **104**, 1509 (2006);\n", "https://doi.org/10.1080/00268970600556774\n", "\n", "Critical point reference data is taken from the original publication of M. Heier, S. Stephan, J. Liu, W.G. Chapman, Mol. Phys. **116**, 2083 (2018);\n", "https://doi.org/10.1080/00268976.2018.1447153" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Dara from Vrabec et al. (2006)\n", "data = np.array([\n", " [0.64, 0.00217, 0.8176, 0.00351, 5.7118],\n", " [0.67, 0.00335, 0.8024, 0.00525, 5.5910],\n", " [0.70, 0.00479, 0.7866, 0.00727, 5.4666],\n", " [0.73, 0.00697, 0.7704, 0.01036, 5.325 ],\n", " [0.76, 0.00944, 0.7538, 0.01374, 5.179 ],\n", " [0.79, 0.01241, 0.7361, 0.01776, 5.022 ],\n", " [0.82, 0.01640, 0.7181, 0.0233, 4.844 ],\n", " [0.85, 0.0214, 0.6986, 0.0303, 4.639 ],\n", " [0.88, 0.0274, 0.6784, 0.0392, 4.413 ],\n", " [0.91, 0.0336, 0.6556, 0.0483, 4.172 ],\n", " [0.94, 0.0417, 0.6309, 0.0616, 3.87 ],\n", " [0.97, 0.0504, 0.6032, 0.0763, 3.56 ],\n", " [1.00, 0.0606, 0.5712, 0.0960, 3.18 ],\n", " [1.03, 0.0730, 0.530, 0.127, 2.63 ],\n", " [1.06, 0.0855, 0.463, 0.168, 1.88 ]]\n", ")\n", "\n", "df = pd.DataFrame(data, columns=['T*', 'p*', 'rho^L*', 'rho^V*', 'Delta^LV h*'])\n", "\n", "# Critical point data extracted from Heier et al. (2018), figure 1; unclear origin\n", "T_c = 1.0850094876660341\n", "p_c = 0.10073800738007378\n", "rho_c = 0.3194085027726432\n", "\n", "# Critical point data extracted from Vrabec et al. (2018)\n", "T_c_vrabec = 1.0779\n", "p_c_vrabec = np.exp(3.1664 - 5.9809 / T_c_vrabec + 0.01498 / T_c_vrabec**3)\n", "rho_c_vrabec = 0.3190\n", "\n", "# Critical point data extracted from Heier et al. (2018), figure 1; critical point of original PeTS implementation\n", "T_c_pets_heier = 1.0884250474383301\n", "p_c_pets_heier = 0.10184501845018448\n", "rho_c_pets_heier = 0.3077634011090573" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definition of PeTS Equation of State" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "pets = EquationOfState.pets(PetsParameters.from_lists(epsilon_k=[epsilon_k/KELVIN]*2, sigma=[sigma/ANGSTROM]*2))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "cp = State.critical_point_pure(eos=pets)\n", "\n", "T_c_pets = cp[0].temperature\n", "p_c_pets = cp[0].pressure()\n", "rho_c_pets = cp[0].density\n", "\n", "T_c_pets_red = cp[0].temperature / epsilon_k" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Phase Diagram of Pseudo Pure Fluid (Binary Mixture of the Same Component)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "temps = np.linspace(0.64, 0.99*T_c_pets_red, 101) # PhaseEquilibrium.bubble_point_tx() not converging to two phases close to critical point\n", "p_sat = np.zeros(temps.shape)\n", "rho_sat = np.zeros([temps.shape[0], 2])\n", "pressure_ic = None\n", "\n", "for i, temperature in enumerate(np.nditer(temps)):\n", " pe = PhaseEquilibrium.bubble_point(eos=pets, temperature_or_pressure=temperature * epsilon_k, liquid_molefracs=np.array([0.5, 0.5]), tp_init=pressure_ic, tol_inner=1e-7)\n", " p_sat[i] = pe.liquid.pressure() / (epsilon_k * KB / sigma**3)\n", " rho_sat[i, 0] = pe.vapor.density * (NAV * sigma**3)\n", " rho_sat[i, 1] = pe.liquid.density * (NAV * sigma**3)\n", "\n", " pressure_ic = pe.vapor.pressure() * 1.03" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAFZCAYAAABuazUnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAADp7klEQVR4nOzdeVwU5ePA8c+z3AIiChqKIl6o3CCIN2QeKeKdmpVUamaaWZpWZmb21cq0zMpfZaF5kZamHZaoaN6C4n0rlkfeIqew7PP7Y5eNY7lEBeV5v168dGeeeeaZZ2Zn9pnnElJKFEVRFEVRFEVRlLtLU94JUBRFURRFURRFeRipwpaiKIqiKIqiKMo9oApbiqIoiqIoiqIo94AqbCmKoiiKoiiKotwDqrClKIqiKIqiKIpyD6jClqIoiqIoiqIoyj2gCltKuRJCHBJChN6FeNoJIY4VsT5KCDGtrPu5m4QQbwohvinvdCiKojzs1LNGPWseVEKIWCHE0PJOR37FfaeEEL8LIYbcvxRVXKqw9ZAQQvwhhJhqYnlPIcS/Qgjz8kiXIQ1ThBCLTK2TUnpKKWPLug8p5V9SSo873V4I4SKEmC+EuCiESBZCHBVCvCuEsC1r2gojpfyflLLYG2hFvdEWxZB/z5lYPkYIEVceacqVhkghRLYQIkUIcUsIkSCECC/PNCnKg0I9a9SzpqIxXHsJhvv5VSHEeiFE/RJuK4UQje5h2uob9nFPvheGaz7LcC0lCyGOCyHmCiFc7sX+csv9nTL13ZNSPi6lXHCv0/EgUIWth0cU8LQQQuRb/jSwWEqpvR+JKM8H7Z0SQlQHtgM2QCsppT3QCagGNCzHpD3IFgDPmFj+tGHdfVHE9bhdSmmH/hzPB34wXAcl3f6+KO/9K4oJUahnzR1Rz5q7z1BQWgi8BjgA7sAXgO4+7d/sfuynGNGGa6k60Bt4BIi/HwUupYSklOrvIfhDf/NOAtrnWuYIZAC+QDD6m/xN4CIwF7DMFVYCLwOngavAR4DGsE4DTALOApfR39gcDOvqG7Z9Hvgb2GwibVOARYWkOxF4LNcxRAE3gMPAeOBcvjQ2yvU5Cphm+H9ovrD+wB4gGYgGluWENZGGacCBnOMtJExrYLchj3cDrXOtc0D/g/0icN4QnxlgCSQAow3hzICtwOT8+QJYA4uAa4ZztBuoBbwPZBvOYwow1xC+KbAOuA4cA57Ily+fA78ajn8n0DDXes9c214C3sx1nicCpwzp+AGofofXoyugBdxyLWsGZAJOQHdgL3AL+AeYkitczjU1HLhgyNfXcq23Aj4xrLtg+L9V7usAmAD8C3xvIm2RwJZcn20N+2thOCcrDOfiFjC0sPNr2LYRsMlwXVxF/9ADEMBs9N+XJGA/4GVYFwsMLSI9EngJOAGcMSwLR38t3QS2AT7lfc9Rf5XzD/WsCUU9a3LnS3k/a/oBCUWsL/R6BDYbznWq4ZgHkO9+nP96MBzzl8Bvhu0eo+jn2d+G7VMMf60My58DjqC/Bv8g77OyE3DUcA3MRf+MGVrI8RnPba5lZsA+YGauZYU+Q9B/N8ahf04lob+OrQ3rnIBfDNtdB/7iv+9rouH4u6J/tmcZjnGfYX0seZ91Jo+ZIp6XD8tfuSdA/d3FkwlfA9/k+vxCzk0ICARCAHP0D60jwCu5wkpgI/o3I/WA4zlfEsMX5CTQALADfsLwI5b/HoAL0f9otTGRrgI3g1zrEvnvATjD8EWuDtQFDnIHD0D0D56zwFjAAv3NOIvCH4A7gHeLyNfqhpvD04b8G2T4XMOwfhXwf4bjrwnsAl4wrPMyhG0GvGXYl1n+fDGcqzVAFfQ3ykCgqmFd/huWLfob+rOG9ASg/9HimStfrqN/yJgDi4FlhnX2GAov6B+69kBLw7pXDOlzRV+g+T9gaRmux3XApFyfpwOrcp0vb/QPXR/0D+Je+a6ppYZj9Qau5LpOphrSWRNwRv/geC9XvFrgA8MxmLoeIzE8TA35Mwb9DwUHwznJAnoZ0mZTzPldajivGkN+tjUs7wLEo39jLQzn36WQ82lMT67rfB36687GcH4vAy0N18YQ9N8bq/K+56i/yvmHetaoZ81/+VKuzxrDtZKB/sd6GGCXb31Jrsfc5zqS4gtbSUAb/rvvh1L888w8V3y90F/nzQzpmgRsM6xzQl9o64f+mhqL/plW4sKWYflUYKfh/0U+Qwz/3wXURn8NHgFGGNZNB+YZ0mIBtAOEie9UgXSQ63oq5pgLfV4+LH/lngD1dxdPJrQ13ARsDJ+3AmMLCfsKsDLXZwl0zfV5JLDe8P/1wMhc6zzQP1Bybl4SaFBEukzeDAzrcn9ZT+dLw3Du7AHYHn2Nh8gVdhuFPwBP5NxYCln/NLAr37Lt6G/KtYDb5Hrwo39Absz1+TX0b6luAI1N5Qv6Hxkmaywo+AAcAPyVL8z/Ae/kypfcP4S6AUdzpW1vIcd5BOiY67NLznm+w+vxKeCY4f8a9G/4ehcS9hNgtuH/OddU01zrPwTmG/5/CuiWa10XIDHXdZCJ4a1cIfuKRP/wuon+h8MO8j4wNucKW+T5Rf/D7yvANd8+HkX/IzKEfG+xTZzPSAoWth7N9flLDIXJXMuOAR3u5LyoP/VX1j/Us0Y9a/7Ll4rwrAlBXzt2BX3BK4p8ha5irsfSFrYWFpOeTyj4PMtd2PodeD7XZw2QBrihb36/I9c6gb61RmkLWyOAE4b/F/kMQf/deCrXug+BeYb/TwV+zp1HhXynCqSDvIWtoo650Oflw/Kn+mw9RKSUW9DfbHoKIRoAQcASACFEEyHEL4YOzLeA/6F/g5LbP7n+fxb9Ww4M/57Nt84c/c0/z7ZCiMGGgQdShBC/l/IQaptIw52oDZyXhm90CeK6hv5mX1R8+bc/C9RBf6OwAC4KIW4KIW6ifxjVzBV2Afob7m9SyhOF7ON79NXqy4QQF4QQHwohLAoJ6wa0zNmfYZ+D0bfTzvFvrv+noX9LDPq3uKeKiHdlrjiPoG9WUit/QMMoQznneXAh8f0EuAghQtD/QKmCvrkJQoiWQoiNQogrQogk9A+GslyPtXN9viKlzCgkTTl2SCmrSSmdpJQhUsqYQvZb3Pl9Hf3DcJdhZKbnAKSUG9A3//gcuCSE+EoIUbWYNOWWPw2v5TvfdfMds6LcN+pZkyce9az5T7k8a6SUO6SUT0gpndHXvLRHX7tX0uuxtHJfOyV9nuXmBnya6/ivo3+O1CHftWm4tv4xFUkx6hjizdlfcc+Qws7jR+hrpP4UQpwWQky8g7TkpMHkMd+F52WFpwpbD5+F6N+MPA38KaW8ZFj+Jfo3Xo2llFWBN9Ff6LnVzfX/eujf2GH41y3fOi36qvIc+tc/Ui6WUtoZ/h4vZdovmkhDbmnof7DneATTLgJ18nXgzh9XbjFAbyFEYd+H/MefE9959DfB24CT4cd7NSllVSmlZ66wX6Bv89xFCNHW1A6klFlSynellM3Rt9kP578BJmS+4P8Am3Ltr5ohv18s4hhzb1tYR+x/gMfzxWstpTxvIr2P5zrPiws5pjT0/Z9yrsdlUspMw+olwGqgrpTSAX0zhbJcjxdyfc6fX6WVe/siz6+U8l8p5TApZW30zXO+yBnZSko5R0oZiL7fQhP0/UJA386/uOs4fxrez3deqkgpl5bxOBWlLNSzRj1rinLfnjX5wu9G/6LPy7CoJNdjbnnuz0KI4u7PUPTzzNTz6B/0zT9zH7+NlHIb+a5Nw7VV10QchTJcXz3QN5XN2d8dPUOklMlSyteklA0Mcb4qhOhoKmgxURV1zEU9Lx8KqrD18FmIvsPiMPKO+maPvh1wihCiKWDqZjleCOEohKiLvh9LtGH5UmCsEMJdCGGH/s1QtCzdqFMaIYR1rj8rE2F+AN4wpMEVGJ1vfQLwpBDCTAjRFehQyL62o39AvyyEMBdC9EHfprwws4CqwAIhhBuAEKKOEGKWEMIHfUfYJkKIJw3xDQCaA79IKS8CfwIfCyGqCiE0QoiGQogOhnieRt9mPBJ9p/AFhjzMQwgRJoTwFvqRjW6hb1KRbVh9CX279By/GNLztBDCwvAXJIRoVsQx5t72ESHEK0IIKyGEvRCipWHdPOD9XHngLIToWYI4i7IAfVOUvhS8Hq9LKTOEEMHAkya2fVsIUUUI4Ym+z0Du63GSIX1OwGT0Hb7vuhKc3/6GaxX0TXckkG04Hy0Nb4xT0TdtyTmfCUAfw7E1Qt/hvyhfAyMM8QkhhK0QorsQwv7uHq2ilIp61qhnTVHuy7NGCNFWCDFMCFHT8LkpEIG+eTgUfz3mP+Z9gKcQwk8IYY2+eVxxinqeXUE/MmLufcxDf/15GtLsIITob1j3q2H/fYR+xM2XKbywn4fh/DRD/z16BP31BmV4hgghwoUQjYQQAn0+ZvPf9ZLbJaC+KPxFQqHHXMzz8qGgClsPGSllIvr22Lbo37TkGIf+BpCM/osXXWBjfbvcePQPml/Rj3oE8C36pgebgTPovwj5H07FGQSk5/oz1bzgXfRNJs6gf6h8n2/9GPRvVm6ib8qwytSODLUnfdA/dG6g/7H/U2EJk1JeR/+GLwvYKYRIRt93IAk4KaW8hv7t32vom4G8DoRLKa8aongGfUfpw4b9rUDffK4e+rbbz0gpU6SUS4A49B1583vEsN0t9E0qNvFfAeJToJ8Q4oYQYo6UMhnoDAxE/yb0X/4bEKJIhm07oc/Hf9H3IQjLtZ/V6JsLJKN/WLU0FU8pbEafj+cNbxxzjASmGvYzGf2Pn/w2oW++sB79qEp/GpZPQ5+P+9GP7LXHsOxeMXl+DeuC0F8zKejzboyU8gz6H1RfG8KfRX/dzDRsMxt9v7JL6H+kFvm2VkoZh/4H7VxDfCfRX9uKUm7Us0Y9a4pyH581N9EXrg4Y7sNrgZXo+x1B8dfjFPQF05tCiCeklMfR91OKMaR5SwnSUOjzzNDC431gq2EfIVLKlejzcZnQN208CDxuCH8V6I9+EJdrQGP0fSKLMsBw7DfR5+s1IFBKecEQZ1meIY3R50UK+pcLX0jT89UtN/x7TQixJ//Koo6Zop+XD4WcEUWUSk4IIdFXs58s77TkEPqZyRdJKV2LCao8RIR+MsozgEUp32grilLBqWeNoiiVjarZUhRFURRFURRFuQdUYUtRFEVR7gIhRFchxDEhxElhYtQuQx+hlUKI/UKIXUIIL1PxKIqiKA8P1YxQURRFUcrIMODAcfT9VM4Bu4FBUsrDucJ8BKRIKd81dNb/XEppamQvRVEU5SGharYURVEUpeyC0Q9ycNowcMIyIP8Ia83RD4iAlPIo+tG7CswtpCiKojw8zMs7AeWpWrVqslGjRuWdjPsiNTUVW1vb8k7GfVOZjlcd68OpMh1rfHz8VamfkPRBVoe8k4+eo+AIa/vQj163xTBEtBvgSt55pBBCDAeGA1hbWwfWq1fU1E2Vl06nQ6NR74xNUXlTOJU3hVN5U7jjx4/f8XOqUhe2atWqRVxcXHkn476IjY0lNDS0vJNx31Sm41XH+nCqTMcqhDhb3mm4C0xNlJq/nf4M4FMhRAL6aQv2op+nKe9GUn4FfAXg4eEhjx07dndT+pCoTN+R0lJ5UziVN4VTeVO4sjynKnVhS1EURVHuknNA3VyfXdHPTWQkpbyFfoJuDJOEnjH8KYqiKA8pVVeoKIqiKGW3G2gshHAXQliinwg292S/CCGqGdYBDAU2GwpgiqIoykNK1WwpiqIoShlJKbVCiFHAH4AZ8K2U8pAQYoRh/TygGbBQCJENHAaeL7cEK4qiKPeFKmzlk5WVxblz58jIyCjvpNxVDg4OHDlypLyTcd9UpuNVx1p+rK2tcXV1xcLCoryTolQAUsrfgN/yLZuX6//bgcb3O12KoihK+VGFrXzOnTuHvb099evXR9+k/uGQnJyMvb19eSfjvqlMx6uOtXxIKbl27Rrnzp3D3d29vJOjKIqiKEoFpPps5ZORkUGNGjUeqoKWoih3nxCCGjVqPHS14IqiKIqi3D2qsGWCKmgpilIS6l6hKIqiKEpRVGFLURRFURRFURTlHlCFrQrm5s2bfPHFF8bPsbGxhIeHmww7dOhQDh8+XKJ4//e//1GnTh38/Pzw8vJi9erVhYbt3bs3fn5+NGrUCAcHB/z8/PDz82Pbtm388ssv+Pv74+vrS/Pmzfm///u/AtuvXr2aGTNmlChdxYmMjGTFihV3Ja7SWrVqVYnyN3+4yZMnExMTcy+TpiiKoiiKojwA1AAZFUxOYWvkyJHFhv3mm29KFffYsWMZN24cR44coV27dly+fBmNpmB5e+XKlYC+oDdz5kx++eUXQD9So5ubG7t27cLV1ZXbt2+TmJhYYPuIiAgiIiJKlbaKaNWqVYSHh9O8efNShZs6der9SJ6iKIqiKIpSwamarQpm4sSJnDp1Cj8/P8aPHw9ASkoK/fr1o2nTpgwePBgpJQChoaHExcWRnZ1NZGQkXl5eeHt7M3v27CL30axZM8zNzbl69Sp//vknrVq1IiAggP79+5OSklLodsnJyWi1WmrUqAGAlZUVHh4eBcJFRUUxatQoQF8z9eKLLxIWFkaDBg3YtGkTzz33HM2aNSMyMtK4jZ2dHa+99hoBAQF07NiRK1euFIg3Pj6eDh06EBgYSJcuXbh48aIxH8aOHUv79u1p1qwZu3fvZvDgwTRu3JhJkyYZt1+0aBHBwcH4+fnxwgsvkJ2dbdz3W2+9ha+vLyEhIVy6dIlt27axevVqxo8fj5+fH6dOneLrr78mKCgIX19f+vbtS1pamslwuWvj1q9fj7+/P97e3jz33HPcvn0bgPr16/POO+8QEBCAt7c3R48eLfKcKYqiKIqiKA8eVbNVhHfXHOLwhVt3Nc7mtavyTg/PQtfPmDGDgwcPkpCQAOhrl/bu3cuhQ4eoXbs2bdq0YevWrbRt29a4TUJCAufPn+fgwYOAvnasKDt37kSj0SCEYNq0acTExGBra8sHH3zArFmzmDx5ssntqlevTkREBG5ubnTs2JHw8HAGDRpksnYstxs3brBhwwZWr15Njx492Lp1K9988w1BQUEkJCTg5+dHamoqAQEBfPzxx0ydOpV3332XuXPnGuPIyspi9OjR/Pzzzzg7OxMdHc1bb73Ft99+C4ClpSWbN2/m008/pWfPnmzatIl69erRsGFDxo4dy+XLl4mOjmbr1q1YWFgwcuRIFi9ezDPPPENqaiohISG8//77vP7663z99ddMmjSJiIgIwsPD6devHwDVqlVj2LBhAEyaNIn58+czevToAuFyZGRkEBkZyfr162nSpAnPPPMMX375Ja+88goATk5O7Nmzhy+++IKZM2eWuqZSURRFURRFqdhUzdYDIDg4GFdXVzQaDX5+fgWa7jVo0IDTp08zevRo1q5dS9WqVU3GM3v2bPz8/Bg3bhzR0dHs3LmTw4cP06ZNG/z8/FiwYAFnz54tMi3ffPMN69evJzg4mJkzZ/Lcc88Vm/4ePXoghMDb25tatWrh7e2NRqPB09PTeCwajYYBAwYA8NRTT7Fly5Y8cRw7doyDBw/SqVMn/Pz8mDZtGufOnTOuz2m26O3tjaenJ4888ghWVlY0aNCAf/75h/Xr1xMfH09QUBB+fn6sX7+e06dPA/qCWk6/uMDAQJNNIwEOHjxIu3bt8Pb2ZvHixRw6dKjI4z527Bju7u40adIEgCFDhrB582bj+j59+hS7T0VRFEVRFOXBpWq2ilBUDdT9ZGVlZfy/mZkZWq02z3pHR0f27dvHH3/8weeff84PP/xgrPHJLafPVo41a9bQqVMnli5dWqr0eHt74+3tzdNPP427uztRUVElSr9Go8lzLBqNpsCx5Mg/pLaUEk9PT7Zv335H+5BSMmTIEKZPn15gWwsLC+P+TOVvjsjISFatWoWvry9RUVHExsYWcsT/pbkoOeksap+KoiiKoijKg0vVbFUw9vb2JCcnl2qbq1evotPp6Nu3L++99x579uwp0XYhISFs3bqVkydPApCWlsbx48cLDZ+SkpKngJGQkICbm1up0loYnU5n7Oe0ZMmSPM0kATw8PLhy5YqxsJWVlVVszVJuHTt2ZMWKFVy+fBmA69evF1uLl/9cJCcn4+LiQlZWFosXLy40XI6mTZuSmJhozN/vv/+eDh06lDjNysMtf2G8uMK5oiiKoigPHlWzVcHUqFGDNm3a4OXlxeOPP0737t2L3eb8+fM8++yz6HQ6AJO1N6Y4OzsTFRXFoEGDjAM3TJs2zdjsLT8pJR9++CEvvPACNjY22NraFlurVVK2trYcOnSIwMBAHBwciI6OzrPe0tKSFStW8PLLL5OUlIRWq+WVV17B07NktY/Nmzdn2rRpdO7cGZ1Oh4WFBZ9//nmRhcWBAwcybNgw5syZw4oVK3jvvfdo2bIlbm5ueHt7GwtY+cPlsLa25rvvvqN///5otVqCgoIYMWLEHeSO8rDZNvVl9p3ZzpcdMnjEzoUx/i8TGL0fM/uqOI8eVd7JUxRFURTlLhGV+W2qh4eHPHbsWJ5lR44coVmzZuWUonsnOTkZe3v78k5Goezs7IocCbG0Kvrx3k3qWMtXae8Zv576hRPvvkmXXVn82kKw4DENz2/Q0GVXFo7PPE2tN95ACEFsbCyhoaH3LuEViBAiXkrZorzTURGZek4pepXpO1JaKm8Kp/KmcCpvCleW55Sq2VIURbmPPt07h4uP6tDqBN3jJN3jsoFsYlvZMcJQ0FIURVEU5eGg+mwpFcLdrNVSlIoqac0a/k25CEJfo5Xblx0yVEFLURRFUR4yqrClKIpyHyStWcPFtydT45YEKRkSo8uz/sVN1mqQDEVRFEV5yFSoZoRCiK7Ap4AZ8I2Ucka+9U2B74AA4C0p5cySbqsoilKeLs/+BJmRwaCNkGoj6LpH5u2ztT2FS9OnG/tsKcp99b86kGmihYGlHbx5/v6nR1EU5SFRYQpbQggz4HOgE3AO2C2EWC2lPJwr2HXgZaDXHWyrKIpSbrQXLwLQ7gicdZJs8BEs7ChwugWN3/kfjobRCFVBSykXhoJWljTDQmQXWK4oiqLcmQpT2AKCgZNSytMAQohlQE/AWGCSUl4GLgsh8o+HXuy2iqIo5cncxQXthQsAuF0Ft6uSR/dLzGvXpvHL4cg3uquCllKusqUg6PYX1BOXCdCcIEBzgkDNcWpLqa5NRVGUO1SRClt1gH9yfT4HtLzb2wohhgPDQT/PVO5JegEcHBxKPanwgyA7O/uhPK7CVKbjVcdavjIyMgrcR0zJHvMyWecvgMzVV0tosKhTm/Mmts8/ibii3GsZWPKk2QbidY2Jzg4lKrsrALWmryfQzZGAeo4EuDniWbsqVuZm5ZxaRVGUB0NFKmyZem1W0t7iJd5WSvkV8BXo5y/JP5/AkSNHKtw8PgBDhw7l1VdfpXnz5ne0fe75ierXr09cXBxOTk6Fhv/f//7Hm2++afzcunVrtm3bdkf7LkxiYiLh4eEcPHiwyDDbtm3jySefLHG8oaGhjBkzht69exuXffLJJxw/fpwvvviixPHc7bm/ivLJJ58wfPhwqlSpUuJtIiMjCQ8Pp0uXLkVes6tWrWL//v1MnjyZWbNm8c0332Bubo6zszPffvutcWLnBQsWMG3aNAAmTZrEkCFDADhz5gwDBw7k+vXrBAQE8P3332NpaQno5+R45ZVXyMrKwsnJiU2bNpGZmcljjz3Ghg0bMDe/u7eYijjPlrW1Nf7+/iUKm7RmDZdnf4L24kXMXVyoOfYVHHr0MBlWzXei3G+24javW+gnlM+SZhyV9dija8yeBm8Sf/YGvx34FwBLcw3edRwIqFfNWAirWdW6PJOuKIpSYVWkwtY5oG6uz67Ahfuw7Z27jx2Kv/nmm7saX3HyF7budkGrpBITE1myZEmpCluDBg3ixx9/zFPYWrZsGR999FGecNnZ2ZiZVYy3s5988glPPfVUqQpbJfXhhx+yevVqAPz9/YmLi6NKlSp8+eWXvP7660RHR3P9+nXeffdd4uLiEEIQGBhIREQEjo6OTJgwgbFjxzJw4EBGjBjB/PnzefHFF7l58yYjR45k7dq11KtXj8uXLwNgaWlJx44diY6OZvDgwXf9eB5kDj16FFq4Uh58JRjkyQFYBNRD//ydKaX87r4ntAQsRDbe4gzemjMMGbgcgMvJGew5e5M9f99gz9kbLNh+lq//OgOAq6ONseAV6OZI00fsMf+grhp0Q1GUSq8iDf2+G2gshHAXQlgCA4HV92HbO1dYx+EydChOTU2le/fu+Pr64uXlRXS0/i1jaGgocXFxgL7GZcKECQQGBvLYY4+xa9cuQkNDadCggfFHdVRUFKNGjTLG279/f5NNknr16kVgYCCenp589dVXAEycOJH09HT8/PyMP5bt7OwAkFIyfvx4vLy88Pb2NqYv5y18v379aNq0KYMHDzY5jHV8fDy+vr60atWKzz//3Lg8MTGRdu3aERAQQEBAgLFwN3HiRP766y/8/PyYPXt2oeFy69evH2vXruX27dvGuC9cuEDbtm2JjY0lLCyMJ598Em9v70LzIMdrr71GQEAAHTt25MqVKwCcOnWKrl27EhgYSLt27Th69CgAly5donfv3vj6+uLr62sybX/++SetWrUiICCA/v37k5KSwpw5c7hw4QJhYWGEhYUV2Gbq1KkEBQXh5eXF8OHDSzU8+PHjx7GysjLWYoaFhRkLdCEhIZw7dw6AP/74g06dOlG9enUcHR3p1KkTa9euRUrJhg0b6NevHwBDhgxh1apVACxZsoQ+ffpQr149AGrWrGncb69evVi8eHGJ06koD7pcAzU9DjQHBgkh8jdFeAk4LKX0BUKBjw3PrPJnaVfs8pr21nT1eoQ3uzVjxYutOTClMz+NbM2k7s3wcXVgx+lrvLP6EOGfbcF7yp8MShnDR1lPsCHbj5vS9r841aAbiqJUIhWmZktKqRVCjAL+QP9W8Fsp5SEhxAjD+nlCiEeAOKAqoBNCvAI0l1LeMrVtuRxIGa1du5batWvz66+/ApCUlFQgTGpqKqGhoXzwwQf07t2bSZMmsW7dOg4fPsyQIUOIiIgo8f6+/fZbqlevTnp6OkFBQfTt25cZM2Ywd+5cEhISCoT/6aefSEhIYN++fVy9epWgoCDat28PwN69ezl06BC1a9emTZs2bN26lbZt2+bZ/tlnn+Wzzz6jQ4cOjB8/3ri8Zs2arFu3Dmtra06cOMGgQYOIi4tjxowZzJw5k19++QWAtLQ0k+Fyq1GjBoGBgaxdu5aePXuybNkyBgwYYOzgvWvXLg4ePIi7u3uheVCjRg1SU1MJCAjg448/ZurUqbz77rvMnTuX4cOHM2/ePBo3bszOnTsZOXIkGzZs4OWXX6ZDhw6sXLmS7OzsAk0Qr169yrRp04iJicHW1pYPPviAWbNmGZv3bdy40WTTzlGjRjF58mQAnn76aX755Rd6lLB2ZOvWrQQEBJhcN3/+fB5//HEAzp8/T926/1UOu7q6cv78ea5du0a1atWMzQFzloO+IJeVlUVoaCjJycmMGTOGZ555BgAvLy92795dojQqykOiJAM1ScBe6G9GduhH2NXe74SadAc1TVbmZvp+XPUcAf3LuPM309nz9032nL1B3PaTzNP1IDtb34KgoThPC81xAsVxAi6n0NDZVg28oSjKQ6/CFLYApJS/Ab/lWzYv1///Rd9EsETbPoi8vb0ZN24cEyZMIDw8nHbt2hUIY2lpSdeuXY3hrayssLCwwNvbm8TExFLtb86cOaxcuRKAf/75hxMnTlCjRo1Cw2/ZsoVBgwZhZmZGrVq16NChA7t376Zq1aoEBwfj6qo/PX5+fiQmJuYpbCUlJXHz5k06dOgA6AsOv//+OwBZWVmMGjWKhIQEzMzMOH78uMn9lzRcv379WLZsmbGw9e233xrXBQcHGwtaReWBRqNhwIABADz11FP06dOHlJQUtm3bRv/+/Y3b59SgbdiwgYULFwJgZmaGg4NDnjTt2LGDw4cP06ZNGwAyMzNp1apVoXmdY+PGjXz44YekpaVx/fp1PD09S1zYunjxIs7OzgWWL1q0iLi4ODZt2gRgsrZMCFHocgCtVkt8fDzr168nPT2dVq1aERISQpMmTTAzM8PS0rJC9rFSlHukJAM1zUXf6uICYA8MkFLqeEgIIXB1rIKrYxUifGvDntakSSv26RqwRzZhj64xf2S3IJowmLWJalUsjM0OA+o54le3GjaWFaNpt6Ioyt1SoQpbCjRp0oT4+Hh+++033njjDTp37mys1chhYWFh/MGr0WiwsrIy/l+r1b8kNTc3R6f77xmeUyDILTY2lpiYGLZv306VKlUIDQ0lIyOjyPQV1YQtJx2gL2zkpCX3toW9xZw9eza1atVi37596HQ6rK1Nd7Yuabjw8HDeeust9uzZQ3p6ep7aHVvb/5qzlCYPhBDodDqqVatmstavOFJKOnXqxNKlS0u8TUZGBiNHjiQuLo66desyZcqUYs9RbjY2NgVqR2NiYnj//ffZtGmT8Zy5urrmaWZ67tw5QkNDcXJy4ubNm2i1WszNzTl37hy1a9c2buPk5IStrS22tra0b9+effv20aRJE0B/zRV2fhTlIVSSgZq6AAnAo0BDYJ0Q4i8p5a08ERUzau4Dw+Nd4389DX9PyX+5ePsapyyacOKmjqP/XGHDUX1/TzMB9ew1NHLU0LiaGY0cNVS3Lry3gxqxs3Aqbwqn8qZwKm/uDVXYqmAuXLhA9erVeeqpp7CzsyMqKuqO4qlfvz5ffPEFOp2O8+fPEx8fXyBMUlISjo6OVKlShaNHj7Jjxw7jOgsLC7KysrCwsMizTfv27fm///s/hgwZwvXr19m8eTMfffSRsd9SUapVq4aDgwNbtmyhbdu2efr0JCUl4erqikajYcGCBWRn6yfVtLe3zzPUd2Hh8rOzsyM0NJTnnnuOQYMGFZqmovJAp9OxYsUKBg4cyJIlS2jbti1Vq1bF3d2d5cuX079/f6SU7N+/H19fXzp27MiXX37JK6+8QnZ2NqmpqVStWtUYX0hICC+99BInT56kUaNGpKWlce7cOZo0aWI8zvzNCHMKVk5OTqSkpLBixQpj/6mSaNasGYsWLTJ+3rt3Ly+88AJr167N08eqS5cuvPnmm9y4cQPQ9y2bPn06QgjCwsKM+bBgwQJ69uwJQM+ePRk1ahRarZbMzEx27tzJ2LFjAbh27RrOzs4Frh9FeYiVZKCmZ4EZUv/W6qQQ4gzQFNiVO1Bxo+Y+MKb0LGLdfy+BbqZlsvfvm8SdvU782Rv89c9N1p3Vv6yrU82GADdHWrgZBt6I8sI8S182jfV4l9C4d/SRqEE38lCjmRZO5U3hVN7cG6qwVRaWdoWPtHSHDhw4wPjx49FoNFhYWPDll1/eUTxt2rTB3d0db29vvLy88PX1LRCma9euzJs3Dx8fHzw8PAgJCTGuGz58OD4+PgQEBOQpFPXu3Zvt27fj6+uLEIIPP/yQRx55pESFLYDvvvuO5557jipVqtClSxfj8pEjR9K3b1+WL19OWFiYsfbJx8cHc3NzfH19iYyMLDScKYMGDaJPnz4sW7as0DBF5YGtrS2HDh0iMDAQBwcH42Agixcv5sUXX2TatGlkZWUxcOBAfH19+fTTTxk+fDjz58/HzMyML7/8Mk8zQWdnZ6Kiohg0aJCxpnHatGk0adKE4cOH8/jjj+Pi4sLGjRuN21SrVo1hw4bh7e1N/fr1CQoKMnkckydPpkWLFgX667Vv357XXnvNWKs4fvx4UlJSjM0g69Wrx+rVq6levTpvv/22Mf7JkydTvXp1AD744AMGDhzIpEmT8Pf35/nnnwf0BbmuXbvi4+ODRqNh6NCheHl5Afqmj926dSs03yuTqym30emkGhr74WccqAk4j36gpvzDqP4NdAT+EkLUAjyA0/c1lfdTCZ+R1apYEta0JmFN9S+AsrJ1HLl4i/izN4g7e4PdZ66zZp++3FqFT/DTnKSFOI7FrSoESBuqinQ16IaiKBWWKM3IZg8bDw8PeezYsTzLjhw5QrNmzcopRfdOZes7U5mOt7hjHTNmDD169OCxxx67b2nq06cP06dPx8PD467GWxHPa3H3jKlrDrNs99/seLMjVa1LXtNXmd4wCiHipZQtyjsdZSWE6AZ8wn8DNb2fb5Cn2kAU4IK+2eEMKeWiQqIDTD+nKqPzN9OJS7xO/PIPidM14aishw4NAh0e4h9aaI7Tot94At0ccXW0qfQDb1Sm+0dpqbwpnMqbwpXlOaVqthTlIffmm2+yc+fO+7a/zMxMevXqddcLWg+ipLQslu3+my6ej5SqoKU8mEowyNMFoPP9TtfDoE41G+r41aHnqigAUqQ1C+pMJevvHcTrmrAquw2LohMAqFXVihZu1WlR35EWbtVp5mKPuVlFmulGUZTKRBW2FOUhV6tWrVJNB1BWlpaWxiHgK7tFO8+SlpnNsHYNyjspivJQsRMZeNqnE2r+EwDZUnD0hbP6poeJN4hLvM6vBy4CUMXSDP961WjhVp2g+tXxr1cNW6t8P3/+V0dNwKwoyj2hCluKoij3wG1tNlHbEmnX2InmtasWv4GiKHfMTEg8azvgWduBZ1rVB+DCzXTizuoLXnGJN5iz4QRSgplG0NylKoFujgTVr05QfUdqFtbnS/UFUxSljFRhS1EU5R5Ytfc8V5JvM8vsc5iyERxcoeNk8HmivJOmKA+uUgxMVbuaDRHVbPRzfgG3MrLY+/dN4hOvszvxBst2/03UtkQA6onZtBDHCNLo/xqKC1Tybl+KotwlqrClKIpyl+l0kq/W7aO55hxt0zfoh0JI+gfWvKwPoApcinJncjfpi42FQUmFBs2vqrUFHZo406GJfqL3rGwdhy7cIi7xOrt+380mnS8/6doD4EgyLTTHCNYcJeifm3jWroqF6velKModUHeOB9Tq1auZMWMGAKtWreLw4cPGdZMnTyYmJqbUcSYmJhqH7i6rbt26cfPmzSLDREVFceFC/mloMA6PntvVq1dxdnY2OTlzYSIjI1mxYkWJw5dFbGws27ZtK/U24eHhxYZLT0+nQ4cOZGdnk5CQQKtWrfD09MTHx8c4HD3AmTNnaNmyJY0bN2bAgAFkZmYCcPToUVq1aoWVlRUzZ87ME/fs2bPx9PTEy8uLQYMGGef1GjduHBs2bCjV8Sj/WX/0MqduaRhutibv2/GsdFg/tdzSpSjKfyzMNPjVrcbQdg34ynI2cVYvssHyVT4w/4qOZns4IV15X/sUvT7fis+UP3ny6x3MXnecrSevkpapLe/kK4rygFA1Ww8grVZLRESEcdCDVatWER4eTvPmzQGYOrX8f8z99ttvxYaJiorCy8uL2rVr51nep08fxo0bR1paGlWqVAFgxYoVREREYGVllSdsdnY2ZmZmdy/hdyg2NhY7Oztat2591+P+9ttv6dOnD2ZmZlSpUoWFCxfSuHFjLly4QGBgIK1bt8be3p4JEyYwduxYBg4cyIgRI5g/fz4vvvgi1atXZ86cOaxatSpPvOfPn2fOnDkcPnwYGxsbnnjiCZYtW0ZkZCSjR49m2LBhPProo3f9eCqDeZtOUYcrhGu2F1yZdO7+J0hRlGIJAQ3EvzTQ/MsAYgG4LKuxu+8OdideZ3fidT7bcAKdBHONwLOOA8H1HQl2r0FQfUeqVbHMG6EadENRFFTNVtnt/wFme8GUavp/9/9Q5igXLlyIj48Pvr6+PP3004C+lubVV18lLCyMCRMmEBUVxahRo9i2bRurV69m/Pjx+Pn5cerUqTw1Ort376Z169a0bt2a4OBgkpOTSUxMpF27dgQEBBAQEFBsjUxsbCzt27end+/eNG/enBEjRqDT6QBYunSpceLkCRMmGLepX78+V69eJTExkWbNmjFs2DA8PT3p3Lkz6enprFixgri4OAYPHoyfnx/p6enGbatWrUr79u1Zs2aNcdmyZcuMtV3169dn6tSptG3bluXLl/P1118TFBSEr68vffv2JS0tzbhdTEwM7dq1o0mTJvzyyy+AvoA2fvx4goKC8PHx4f/+7/+M4T/88EO8vb3x9fVl4sSJBfLiypUr9O3bl6CgIIKCgti6dSuJiYnMmzeP2bNn4+fnx19//ZVnm127dtG6dWv8/f1p3bo1pZ0zZ/HixfTs2ROAJk2a0LhxYwBq165NzZo1uXr1KlJKNmzYQL9+/QAYMmSIsXBVs2ZNgoKCsLAoOPS4VqslPT0drVZLWlqaseDr5ubGtWvX+Pfff0uVVgV2J14n/uwNhttvxVzoCgZwcL3/iVIUpWgm+nwB1LTS0t3HhSkRnvz6cjv2vdOZqGeDeKFDA6zMNCzYfpZhC+Pwm7qOLrM3M2nVAVbvu8ClWxmFD66hBt1QlEpF1WyVxf4f9H0wsgwFhbvQJ+PQoUO8//77bN26FScnJ65fv25cd/z4cWJiYjAzMyMqKgqA1q1bExERQXh4uPGHdo7MzEwGDBhAdHQ0TZs2RUqJjY0NNWvWZN26dVhbW3PixAkGDRpEXFxckenatWsXhw8fxs3Nja5du/LTTz/RunVrJkyYQHx8PI6OjnTu3JlVq1bRq1evPNueOHGCpUuX8vXXX/PEE0/w448/8tRTTzF37lxmzpxJixYF54gbNGgQS5YsYcCAAVy4cIHjx48TFhZmXG9tbc2WLVsAuHbtGsOGDQNg0qRJzJ8/n8jISEDfNHLTpk2cOnWKsLAwTp48ycKFC3FwcGD37t3cvn2bNm3a0LlzZ44ePcqqVavYuXMnVapUyZP3OcaMGcPYsWNp27Ytf//9N126dOHIkSOMGDECOzs7xo0bV2Cbpk2bsnnzZszNzYmJieHNN9/kxx9/LDK/c2RmZnL69Gnq169v8pxkZmbSoEEDrl27RrVq1TA313+lXV1dOX++6DenderUYdy4cdSrVw8bGxs6d+5M587/TQEUEBDA1q1b6du3b4nSqujNiz1FdVtLnni8E/y+5r/7A4CFjX6QDEVRKpYS1jTZW1sQ6lGTUI+aAGRkZbP/XBK7zlxjV+INVu45z6IdfwPgJmYRpDlGsDhKiOYIdcVlNeiGolRCqrBVFuun5v0hBf/1ybjDwlZO7YSTkxMA1atXN67r379/qZrMHTt2DBcXF4KCgkhOTqZqVf3w06mpqYwaNYqEhATMzMw4fvx4sXEFBwfToIF+rqBBgwaxZcsWLCwsCA0NxdlZ39l48ODBbN68uUBhy93dHT8/PwACAwNJTEwsdn/h4eGMHDmSW7du8cMPP9CvX788xz5gwADj/w8ePMikSZO4efMmKSkpdOnSxbjuiSeeQKPR0LhxYxo0aMDRo0f5888/2b9/v7H2LykpiRMnThATE8Ozzz5rbLqYO+9zxMTE5Okfd+vWLZKTk4s8lqSkJIYMGcKJEycQQpCVlVXs8ee4evUq1apVK7D84sWLPP300yxYsACNRoOUskAYUcxT/caNG/z888+cOXOGatWq0b9/fxYtWsRTTz0F6GvETPWpUwp37N9k1h+9zNjHmmAT0El/h10/Vd90UI1GqCgPHWsLM4LdqxPsrn9eaLN1HL54i11n9INurM8OYAUdAHiEawRrjtJSc4SWl1No6Gxb7H1aUZQHnypslUVhfS/K0CdDSlnozdfW1vauxDV79mxq1arFvn370Ol0WFtbFxtX/niEECZ/4JuSu5+VmZlZniaDhbGxsaFr166sXLmSZcuWMXv27Dzrc+dFZGQkq1atwtfXl6ioKGJjY4tN92effZanUAawdu3aYh98Op2O7du3Y2NjU+wx5Hj77bcJCwtj5cqVJCYmEhoaWuJtbWxsjINW5Lh16xbdu3dn2rRphISEkJycjJOTEzdv3kSr1WJubs65c+cK9IXLLyYmBnd3d2NhuU+fPmzbts1Y2MrIyCjVcSrwf5tOUcXSjGdauekX+DyhCleKUomYm2nwca2Gj2s1hq6fjU4KTsra7NQ1Y6euGdt1zVmtawOzNuFkZ6kvqNWvTssGNfCoZY9GowpfivKwUX22yqKwvhdl6JPRsWNHfvjhB65duwZgsilbfvb29iZrV5o2bcqFCxfYvXs3AMnJyWi1WpKSknBxcUGj0fD999+TnZ1d7D527drFmTNn0Ol0REdH07ZtW1q2bMmmTZu4evUq2dnZLF26lA4dOpT4WAtLd45BgwYxa9YsLl26REhISKHhkpOTcXFxISsri8WLF+dZt3z5cnQ6HadOneL06dN4eHjQpUsXvvzyS2MN0/Hjx0lNTaVz5858++23xj5fpvK+c+fOzJ071/g5ISGh2GNJSkqiTp06AMbmnyXl6OhIdna2scCVmZlJ7969eeaZZ+jfv78xnBCCsLAwY23dggULjP28ClOvXj127NhBWloaUkrWr19Ps2bNjOuPHz9+10anrAz+uZ7Gz/suMDCoHo62lsVvoCjKQ08jJE0053naPIa5lp+xy+olNlq+yow+3rRv7My+f5KYsuYwj3/6FwHT1jF8YRzzt5zh0IUkdLqSvdBUFKViUzVbZdFxct4+W1DmPhmenp689dZbdOjQATMzM/z9/Yv9gT5w4ECGDRvGnDlz8gx1bmlpSXR0NKNHjyY1NRVbW1tiYmIYOXIkffv2Zfny5YSFhZWoxqxVq1ZMnDiRAwcOGAfL0Gg0TJ8+nbCwMKSUdOvWrdgf+LlFRkYyYsQIbGxsTNYWde7cmSFDhvD8888XWeP03nvv0bJlS9zc3PD29s5T6PHw8KBDhw5cunSJefPmYW1tzdChQ0lMTCQgIAApJc7OzqxatYquXbuSkJBAixYtsLS0pFu3bvzvf//Ls685c+bw0ksv4ePjg1arpX379sybN48ePXrQr18/fv75Zz777DPatWtn3Ob1119nyJAhzJo1q9DR/eLi4pg3bx7ffPNNgXWdO3dmy5YtPPbYY/zwww9s3ryZa9euGa+Lzz//nDZt2vDBBx8wcOBAJk2ahL+/P88//zwA//77Ly1atODWrVtoNBo++eQTDh8+TMuWLenXrx8BAQGYm5vj7+/P8OHDAcjKyuLkyZMm+9Mppn21+TQaAcPau5d3UhRFqQhMTMAsBLhbpeAeXI+BwfUA/YuanWeus/P0NXaeuc6fhy8B4GBjQVD96oQ0qE5Igxo0c6mK2QxXNcKhojxgREmbgj2MPDw8ZP6R4Y4cOZLn7X6x9v/wQPTJSE5Oxt7e/o62jY2NZebMmcbR/B4EZTneimbv3r3MmjWL77//3uT6e3GsK1euZM+ePbz33nt3Nd6yqojn9ciRI9RwdaftBxvp41+HGX197kq8sbGxpWpy+iATQsRLKVXJ3gRTzylF72H9jly4mc7OM9fYceo6O85c4+w1fWuLqtbmBGfuoJXmMK00h2kq/kEjcv2Gm/LfBM8Pa97cDSpvCqfypnBleU6pmq2yUn0ylHvM39+fsLCw+zqnmFar5bXXXrsv+3oYfLslEW22jhc6NCzvpCiK8oCrXc2G3v6u9PbXd0nIU/iKdyVGq/+9V41kWmqOGAtfTYro860oSvlRhS2lWKGhoepNRzl77rnn7uv+cvcHU4qmk5JFO/6mm7cL7k6lG8RGURSlOHkKXwfbcUFWZ4euOdsNf39ogwGoMS2GkIY1aNWgBuapuiIH3FIU5f5RhS1FUZQySLmtJeW2lhdDVa2Woij3Xm1xnT5mW+hjpp9r8h+dE9t1nuxoMpVtp67x6/6LAMzet57WDZ1o1bAGbRo5UaeaGl1WUcqDKmwpiqLcoWydJDVDS8emNfGs7VDeyVEUpRKqq7lKXc0mnhjgh5SSxGtpRP22javm1dl8/Aor9+oHznCrUYXWDWsYC2BOdv9Ny8L/6qiBNxTlHlGFLUVRlDt0PTWTbAkvPdqovJOiKEplYGKEQ+Ny9NOAuDvZElbPgtBQ/Yi7xy+lsPXkVbadusYv+y6ydNc/ADR9xJ7WDZ1o27gGwbe12JlqcWhqX4qilIoqbCmKotwBnU5yJeU21uYaAuo5lndyFEWpDEpZyySEwOMRezwesee5tu5os3UcOJ/EtlPX2HbqKot2nuXbrWcw5yv8xCnaaA7S1uwgfuIkFqL4OTgVRSmemtT4AbV69WpmzJgBwKpVqzh8+LBx3eTJk4mJiSl1nImJiXdtEttu3bpx8+bNIsNERUVx4cIFk+siIyPzzBkGYGdnV+x+W7duXeI0lkZRaS3MlClTmDlzZrHh9u7dy9ChQwFYvHgxPj4++Pj40Lp1a/bt22cMt3btWjw8PGjUqJHx3IN+mHZPT080Gg1xcXHG5VlZWQwZMgRvb2+aNWvG9OnTjesee+wxbty4UarjKYuoqChGjRp13/ZnSkmuydJ8d66nZaLN1mFvo95ZKYryYDA30+Bfz5GXwhqxeGgI+9/pzOKhLRlu9itZmPNZdm/6Z76D3+2veC5zHN9qu3L8UjKVeZogRSkr9SvhAaTVaomIiCAiIgLQF7bCw8Np3rw5AFOnTi3P5AHw22+/FRsmKioKLy8vateufdf2u23bthKHlVIipUSjKf6dw71Ia47//e9/TJo0CQB3d3c2bdqEo6Mjv//+O8OHD2fnzp1kZ2fz0ksvsW7dOlxdXQkKCiIiIoLmzZvTvHlzfvrpJ1544YU88S5fvpzbt29z4MAB0tLSaN68OYMGDaJ+/fo8/fTTfPHFF7z11lt3/XjuJa1WW+ptcs5zSa7Jkn53dFJyJfk2tpbmZJrfn+H4FUVR7jZrCzPaNHKijUU0EE2StGW7rjlbdF5s0XmzQRsAszdTq6oVbRo50a6xE20aOVHT3rq8k64oDwxVs1VGSWvWcOLRjhxp1pwTj3Ykac2aMse5cOFCfHx88PX15emnnwb0NT2vvvoqYWFhTJgwwVhTsG3bNlavXs348ePx8/Pj1KlTeWqFdu/eTevWrWndujXBwcEkJyeTmJhIu3btCAgIICAgoNgCSmxsLO3bt6d37940b96cESNGoNPpAFi6dCne3t54eXkxYcIE4zb169fn6tWrJCYm0qxZM4YNG4anpyedO3cmPT2dFStWEBcXx+DBg/Hz8yM9Pb1UefTRRx8RFBSEj48P77zzjnF57tovU2Fy0jNy5EgCAgL4559/8sQbHx9Phw4dCAwMpEuXLly8eLHYtH799dcEBQXh6+tL3759SUtLK/FxJCcns3//fnx9fQF9zZyjo75JWkhICOfOnQNg165dNGrUiAYNGmBpacnAgQP5+eefAfDw8MDDw6NA3EIIUlNT0Wq1pKenY2lpSdWqVQGIiIhg6dKlxrDdunUzWXMXGhpqrC27evUq9evXB/SFzz59+tC1a1caN27M66+/btxm7dq1BAQE4OvrS8eOHQvEeeXKFfr27UtQUBBBQUFs3brVeIytW7fG39+f1q1bkzORa1RUFP3796dHjx706tWrQHyzZs3Cy8sLLy8vPvnkE8D0ec65JgHee+89mjZtSqdOnRg0aJCxBjL3d6d+/fq88847BAQE4O3tzdGjR437vJGaSVa2jppVrVAURXlYOIhUuprtZprFd8Ravcpfli8zo483LepXZ+PRy4yN3kfw++vp+slm/vfbEf46cYWMLNXcUFGKomq2yiBpzRouvj0ZmZEBgPbCBS6+PRkAhx497ijOQ4cO8f7777N161acnJy4fv26cd3x48eJiYnBzMyMqKgoQP/jPCIigvDwcPr165cnrszMTAYMGEB0dDRNmzZFSomNjQ01a9Zk3bp1WFtbc+LECQYNGpSn+Zkpu3bt4vDhw7i5udG1a1d++uknWrduzYQJE4iPj8fR0ZHOnTuzatWqAj+IT5w4wdKlS/n666954okn+PHHH3nqqaeYO3cuM2fOpEUL0xNyjx8/nmnTphVY/ueff3LixAl27dqFlJKIiAg2b95M+/btjWHWr19vMky9evU4duwY3333HV988UWeeLOyshg9ejQ///wzzs7OREdH89Zbb/Htt98WmdY+ffowbNgwACZNmsT8+fMZPXp0kfmZIy4urtCmm/Pnz+fxxx8H4Pz589StW9e4ztXVlZ07dxYZd79+/fj5559xcXEhLS2N2bNnU716dQAcHR25ffs2165do0aNGiWq9ckvISGBvXv3YmVlhYeHB6NHj8ba2pphw4axefNm3N3d81y/OcaMGcPYsWNp27Ytf//9N126dOHIkSM0bdqUzZs3Y25uTkxMDG+++SY//vgjANu3b2f//v1YWFjkiSs+Pp7vvvuOnTt3IqWkZcuWdOjQAUdHx0LPc1xcHD/++CN79+5Fq9USEBBAYGCgyWN0cnJiz549fPHFF8ycOZNv3huNTqfjiqxLFbKxu3YGbl6G/z2mRuxSEEJ0BT4FzIBvpJQz8q0fDww2fDQHmgHOUsqCXxRFuZ8KGXijrnUGA4PrMTC4Hjqd5NCFW2w+cYUtJ67y3dYzfLX5NFbmGlo2qEH7xk60b+JM45p2+vm91AiHigKowlaZXJ79ibGglUNmZHB59id3XNjasGED/fr1w8nJCcD44xj0E82amZW8ydKxY8dwcXEhKCiI5ORkY61Gamoqo0aNIiEhATMzM44fP15sXMHBwTRo0ACAQYMGsWXLFiwsLAgNDcXZ2RmAwYMHs3nz5gKFLXd3d/z8/AAIDAwkMTGxROn/6KOP8hQgc2qt/vzzT/7880/8/f0BSElJ4cSJE3kKWxs2bDAZpl69eri5uRESElJgf8eOHePgwYN06tQJgOzsbFxcXIpN58GDB5k0aRI3b94kJSWFLl26lOj4AC5evGjMv9w2btzI/Pnz2bJFP4+KqfbyxU1WuWvXLszMzLhw4QI3btygXbt2PPbYY8bzWLNmTS5cuECNGjVKnN7cOnbsiIODfrjz5s2bc/bsWW7cuEH79u1xd3cH8l6/OWJiYvL0Mbx16xbJyckkJSUxZMgQTpw4gRCCrKwsY5hOnTpRvXp1kpOT88S1ZcsWevfuja2tfjLhPn368NdffxEREVHoed6yZQs9e/bExkY/50yPIr6rffr0AfTX7U8//QRSx03sycSc2uIqxlOgRuyq9IQQZsDnQCfgHLBbCLFaSmm82KWUHwEfGcL3AMaqgpZSIZSg8KPRCLxdHfB2deClsEakZWrZefo6m09cYfPxK0z79Qj8egQXB2vaNXaiQ7onbTUHcRCpeSNS90ulklGFrTLQXrxYquUlUdSM7zk/KMsa1+zZs6lVqxb79u1Dp9NhbV182+v88QghStxh1srqv6ZWZmZmpW4ymJ+UkjfeeKNAH6WShElMTCw0H6WUeHp6sn379lKlJzIyklWrVuHr60tUVBSxsbEl3tbGxoaMfAX2/fv3M3ToUH7//XdjQcjV1TVPk8dz584V239syZIldO3aFQsLC2rWrEmbNm2Ii4szFrYyMjKMBY7CmJubG5uM5k9n/vOq1WqLvH5z6HQ6tm/fXmDfo0ePJiwsjJUrV5KYmEhoaKhxXVHnrDB3sk1+OceYc3w6CZdlNapwG3vKdh0rD51g4KSU8jSAEGIZ0BM4XEj4QcDSQtYpSoVXxdKcsKY1CWtaE4BzN9L468RVNh+/wu8H/+WHrDFo0OEvTtDBbD8dNPvwFmfQCDXYhlK5qMJWGZi7uKA10c/FvAS1IYXp2LEjvXv3ZuzYsdSoUYPr16+brB3Izd7evsAbf4CmTZty4cIFdu/eTdOmTUlOTsbGxoakpCRcXV3RaDQsWLCA7Ozi21vv2rWLM2fO4ObmRnR0NMOHD6dly5aMGTOGq1ev4ujoyNKlS0vcfK6odBenS5cuvP322wwePBg7OzvOnz9vLFDk6NixI9OnTy8QpigeHh5cuXKF7du306pVK7Kysjh+/Dienp5FpjU5ORkXFxeysrJYvHgxderUKfGxNGvWjI8//tj4+e+//6ZPnz58//33NGnSxLg8KCiIEydOcObMGerUqcOyZctYsmRJkXHXq1ePDRs28NRTT5GWlsaOHTt45ZVXAH2B499//zX2werYsSMLFy4skPb69esTHx9PcHBwgdEhTWnVqhUvvfQSZ86cMTYjzH/9du7cmblz5zJ+/HhA3xzRz8+PpKQk4/5zmskWp3379kRGRjJx4kSklKxcuZLvv/++yG3atm3LCy+8wBtvvIFWq+XXX381NgMtzk3sDLVa1yimTKlUPnWA3J1AzwEtTQUUQlQBugImh+gUQgwHhgM4OzuX6gVOZZKSkqLyphDllTcuwABX6FfbktOnz3AguQoHbrkxO70Js+iPvbkWL/s0fJbE4OVkhr3l/b+RquumcCpv7g1V2CqDmmNfydNnC0BYW1Nz7Ct3HKenpydvvfUWHTp0wMzMDH9//2J/eA4cOJBhw4YxZ86cPD+ILS0tiY6OZvTo0aSmpmJra0tMTAwjR46kb9++LF++nLCwsBLVmLVq1YqJEydy4MAB42AZGo2G6dOnExYWhpSSbt260bNnzxIfa2RkJCNGjMDGxsZkTUdhOnfuzJEjR2jVqhWgb164aNGiAoWts2fPFghTVDNMS0tLVqxYwcsvv0xSUhJarZZXXnkFT0/PItP63nvv0bJlS9zc3PD29jZZKJs3bx4AI0aMyLO8adOmJCUlkZycjL29PVOnTuXatWuMHDkS0NcsxcXFYW5uzty5c+nSpQvZ2dk899xzeHp6ArBmzRpef/11rly5Qvfu3fHz8+OPP/7gpZde4tlnn8XLywspJc8++yw+Pj6Avq9TSEiIsebq5MmTJgv148aN44knnuD777/n0UcfLfbcODs789VXX9GnTx90Op2xf2Buc+bM4aWXXsLHxwetVkv79u2ZN28er7/+OkOGDGHWrFkl2hdAQEAAkZGRBAcHAzB06FD8/f2LbKqaM5Kjr68vbm5utGjRwtgcsjiXpSM2ZGJPyQdBUSoNU78aC3uF3wPYWlgTQinlV8BXAB4eHjJ3La/yn9jYWFTemFYR8qbj5l7G/1+zsucvnQ+bsn3YdMOX7TduIwT41a1GaJOahDV1xqu2AxrNvS98VYS8qahU3twbojLPneDh4SFzRjzLceTIEZo1a1biOJLWrOHy7E/QXryIuYsLNce+csf9te6lnB/zdyI2NpaZM2fyyy+/3OVU3TtlOd77bfbs2djb2xvn2iqtOznWMWPGEBERQceOHTl48CDffvsts2bNuqP9309367ympKRgZ2dHWloa7du356uvviIgIKDIba6n3ubcjXTqi0tUFf8Vto6cvUyzP56AKUllTldulemhJ4SIl1KaHinnASGEaAVMkVJ2MXx+A0BKOd1E2JXAcill0dXTmH5OKXqV6TtSWhUib6aYfomlk4L9QxOJPXaZjceusP/cTaQEJzsrQj2cCfOoSbsmTlS1Lro1yp2qEHlTQam8KVxZnlOqZquMHHr0qJCFK+XB8eKLL7J8+fL7uk8vLy/jsOxeXl4PREHrbho+fDiHDx8mIyODIUOGFFvQ0knJ5Vu3C6/Vsix+wm3lobcbaCyEcAfOAwOBJ/MHEkI4AB2Ap+5v8hTlPitkhEONlS1+davhV7carzzWhGspt9l84gobjl7hz0P/siL+HOYaQVD96nRsVpNHm9akgbPhHqtGOFQeQKqwpRQrNDRUvem4h6ytrY3zqd0vJe2j9LAqrr9bfjfTMsnM1lG/hiPCpmbelUlH1ENeQUqpFUKMAv5AP/T7t1LKQ0KIEYb18wxBewN/SilTC4lKUR4OJbwv1rCzore/K739XdFm69jz9002HL3MxqOXmfbrEab9egR3J1sebVqTjun1CNIcw0Lk62uuRjhUKjBV2FIURSlCTq1WFUtz7K3VLVMpnJTyN+C3fMvm5fscBUTdv1QpyoPD3ExDsHt1gt2rM/Hxppy7kcaGo5dZf+Qy328/y/zsSdiTSqhmH4+Z7SFUs6/g0PKKUsGoXw6KoihFuJGqr9Wq7WhT7LD2iqIoyt3j6liFZ1rV55lW9Um9rWXLtC5s0PmzPjuANbrWmJFNsOYoj2ni6XQtjXo1qpR3khWlAFXYUhRFKYROJ7mcbKjVslK3S0VRlPJia2VOF7M4upjFoTMXJMiGrM8OYJ0ukPe0z/DeRxtp+og9nZrXonPzR/CqU1W9IFMqBPXrQVEUpRDXUzPJytZRV9VqKYqiVBgaIQkQJwnQnGQ8P3BWV5N1nf5g3eFLfL7xJJ9tOImLgzWdm9eis+cjBLtXx8JMU97JViopdeU9oFavXs2MGTMAWLVqFYcPHzaumzx5MjExMaWOMzExES8vr7uSvm7dunHz5s0iw0RFRXHBxKTQoJ+Dy93dHT8/PwICAti+fXuh8bRs2RI/Pz/q1auHs7Mzfn5+tGnThsTERL799lu8vb3x8fHBy8uLn3/+ucD2U6ZMYebMmXmW1a9fn6tXr5b5GO9E/vNZElFRUYwaZXJ+1DwuXrxIeHg4AOvWrSMwMBBvb28CAwPZsGGDMVx8fDze3t40atSIl19+mZwpIjZv3kxAQADm5uYFJjl+/fXX8fT0pFmzZnm2GThwICdOnCjV8VQE2YZaLTsrc+zu0RDEiqIoSikUMvKrm3UaQ9s1IPqFVsRN6sTM/r5413EgOu4fBn+zkxbTYnjth338eehfMrMr75RHSvmoUDVbQoiuwKfoR3L6Rko5I996YVjfDUgDIqWUewzrxgJD0U8ieQB4VkqZwUNIq9USERFBREQEoP9xHh4eTvPmzQGYOnVqeSYPgN9++63YMFFRUXh5eVG7dm2T6z/66CP69evHn3/+yQsvvMD+/ftNhtu5c6cxvri4OObOnUtycjJJSUm8//777NmzBwcHB1JSUrhy5cqdH1Q+JTnG3LKzs4ucVDlH/vN5N82aNcs4EqGTkxNr1qyhdu3aHDx4kC5dunD+vH70qBdffJGvvvqKkJAQunXrxtq1a3n88cepV68eUVFRBQqn27ZtY+vWrcZz1LZtWzZt2kRoaCgvvvgiH374IV9//fVdP5576VrqbbQ6HbWqqj4AiqIoFUIJRjisbmtJv0BX+gW6kp6Zzabj+iHl1x3+lx/3nMPKDB77dw9dvB7h0aY1sfvYTQ0nr9xTFaZmSwhhBnwOPA40BwYJIfL/2nwcaGz4Gw58adi2DvAy0EJK6YW+sDbwfqT719O/0nlFZ3wW+NB5RWd+Pf1rmeNcuHAhPj4++Pr6GocEj4yM5NVXXyUsLIwJEyYYazK2bdvG6tWrGT9+PH5+fpw6dYrIyEhjrcPu3btp3bo1rVu3Jjg4mOTkZBITE2nXrh0BAQEEBASwbdu2ItMTGxtL+/bt6d27N82bN2fEiBHodDoAli5dire3N15eXkyYMMG4TU7NUGJiIs2aNWPYsGF4enrSuXNn0tPTWbFiBXFxcQwePBg/Pz/S09ML3X/79u05efIkAIsWLSI4OBg/Pz9eeOEFsrOzC93u8uXL2NvbY2enfxNmZ2eHu7t7Cc5AXoXtM3ftV2Fh7OzsmDx5Mi1btixQO3fq1Cm6du1KYGAg7dq14+jRoybPZ25r1qyhZcuW+Pv789hjj3Hp0qVSHcuPP/5I165dAfD39zcWdD09PcnIyOD27dtcvHiRW7du0apVK4QQPPPMM6xatcp4zD4+Pmg0eW8dQggyMjLIzMzk9u3bZGVlUatWLQDatWtHTEwMWq22VGktT9k6HVeSb2NvbYGt6qulKIryQLKxNKOr1yPMGuBH/NudWPhcMK1rm7PzzHVeXrqXgPfWMTRlOD9ltyVJ5nuxpoaTV+6SClPYAoKBk1LK01LKTGAZ0DNfmJ7AQqm3A6gmhHAxrDMHbIQQ5kAVwHT7tLvo19O/MmXbFC6mXkQiuZh6kSnbppSpwHXo0CHef/99NmzYwL59+/j000+N644fP05MTAwff/yxcVnr1q2JiIjgo48+IiEhgYYNGxrXZWZmMmDAAD799FO2bdtGTEwMNjY21KxZk3Xr1rFnzx6io6N5+eWXi03Xrl27+Pjjjzlw4ACnTp3ip59+4sKFC0yYMIENGzaQkJDA7t27jT/Kcztx4gQvvfQShw4dolq1avz444/069ePFi1asHjxYhISErCxsSl032vWrMHb25sjR44QHR3N1q1bSUhIwMzMjMWLFxe6na+vL7Vq1cLd3Z1nn32WNWvWFBp29uzZ+Pn5Gf9ymjeWZJ9FhUlNTcXLy4udO3fStm3bPNsNHz6czz77jPj4eGbOnMnIkSOLPJ+grzHasWMHe/fuZeDAgXz44YeFHlN+Z86cwdHRESsrqwLrfvzxR/z9/bGysuL8+fO4uroa17m6uhprvArTqlUrwsLCcHFxwcXFhS5dutCsWTMANBoNjRo1Yt++fSVOa3m7kpJJtk5Sq2rBvFIURVEePBZmGto3cWaIpxU73+zIDy+0YnDLehzSufNq1kha3J7Hc5njWK5tT5K0Le/kKg+RivTKtg7wT67P54CWJQhTR0oZJ4SYCfwNpKOfMPJPUzsRQgxHXyuGs7MzsbGxedY7ODiQnJxcogTPjptNRnbelooZ2RnMjptNe+f2JYojv99++42IiAisrKxITk7GwsKC5ORksrKyCA8PJy0tTb8fQy1Czrr09HRjunM+79mzh5o1a9K0aVNjE7b09HSSkpIYN24cBw4cwMzMjJMnT5KcnExKSgo6na7A8aelpREYGIizszNpaWn07t2bDRs2oNVqadOmDdbW1qSnp9O3b19iYmLo2LEjUkpSUlJISUnBzc2Nhg0bkpycjJeXF8eOHSM5OZns7GxSU1NN5ndWVhbjxo1j6tSpODk5MWfOHH799Vfi4uIIDAwEID09Pc/5yp0n2dnZpKWlsXz5cuLj49m0aRNjxoxh27ZtvPnmm3n2dfv2bUaOHJmn0Onl5UVKSkqR+8w5xqLCmJmZ0blz5wLHmJKSwrZt2+jbt2+edJg6n7kdO3aMN998k0uXLpGZmYmbmxvZ2dl5jr0wp06dwtHRsUCYI0eOMH78eFatWmW8DrKzs43h0tLS8nzOOT+503jq1CkOHDjAkSNHAOjZsyft2rWjTZs2ADg6OnLq1CmaNGlSaPpKIn867oVsneRqig5bC0H27XSSbxcdPiMjo8B95G5ISUm5J/EqiqJUdmYaYZzP6+24NiTIhvyeHcxv2S3ZoAvgTa2Wdpr9dI8/RyfPWlRV/XaVMqhIhS1TQ33l78VoMowQwhF9rZc7cBNYLoR4Skq5qEBgKb8CvgLw8PCQoaGhedYfOXIEe3v7EiX4cvrlQpeXNI78rKyssLKyKrC9hYUFTk5OxuXW1tZYWlpib2+PhYUFNjY2xnU5n6tUqYK5uTn29vYkJycb13/88ce4urqyZMkSdDod1tbWxuZ2Go2mwL5zx5OzbysrK6ytrbGwsDCZJiGEsfle7rRVqVKFlJQU7O3tMTMzw9bW1mReWVhYMHPmTPr162dctmvXLiIjI5k+fbrJvMu9/9zHGxYWRlhYGOHh4Tz77LMFtjeV5znpt7KyKnSfJQljbW1NtWrVCiyXUlKtWjWT/dDyn8/cJk6cyKuvvkpERASxsbFMmTIFMzOzPMdemBo1aqDVavOEOXfuHE899RSLFi3C19cXAA8PDy5evGgMd/36derVq5dnu/xpXLduHW3btsXFRV/RHB4ezv79+41NFrOzs6levfodfy9y5D6v98qFm+lIeZs61e2wtii+j521tTX+/v53PR2xsbHkvz8piqIod1fukQ3fNF/CPtmQX7Nb8mt2CBuW78PyJw0dPJwJ93HhsWa1VNNypdQqUjPCc0DdXJ9dKdgUsLAwjwFnpJRXpJRZwE9A63uYVgAesX2kVMtLomPHjvzwww9cu3YN0P/QLU5O4SK/pk2bcuHCBXbv3g3of6hqtVqSkpJwcXFBo9Hw/fffF9nvKceuXbs4c+YMOp2O6Oho2rZtS8uWLdm0aRNXr14lOzubpUuX0qFDhxIfa2HpLkzHjh1ZsWIFly/rC7nXr1/n7NmzhYa/cOECe/bsMX5OSEjAzc2txPsr6T5Lmy6AqlWr4u7uzvLlywF94SunmV1R+ZKUlESdOnUAWLBgQamOpUmTJiQmJho/37x5k+7duzN9+nRjDRSAi4sL9vb27NixAyklCxcupGfP/C1686pXrx6bNm1Cq9WSlZXFpk2bjM0IQd8E1tPTs1TpLQ+ZWh3XUjOpVsWyRAUtRVEU5eEhBPhpTvGWxRK2WI3hxxdb81SIG/vP3WTMsgRaTIth1JI9/HHoX25ri//tpChQsQpbu4HGQgh3IYQl+gEuVucLsxp4RuiFAElSyovomw+GCCGqGEYs7AgcudcJHhMwBmsz6zzLrM2sGRMw5o7j9PT05K233qJDhw74+vry6quvFrvNwIED+eijj/D3988zoIKlpSXR0dGMHj2a1q1b06lTJzIyMhg5ciQLFiwgJCSE48ePY2tbfNvkVq1aMXHiRLy8vHB3d6d37964uLgwffp0wsLC8PX1JSAgoNgf5blFRkYyYsSIYgfIyNG8eXOmTZtG586d8fHxoVOnTly8eLHQ8DlNEZs2bYqfnx/R0dF5+sCVREn2Wdp05Vi8eDHz58/H19cXT09P47D0hZ1P0A9T379/f9q1a4eTk5PJeFevXs3kyZMLLLe1taVhw4bGwUbmzp3LyZMnee+994x91XIKjF9++SVDhw6lUaNGNGzYkMcffxzQD7ji6urK8uXLeeGFF4wFqH79+tGwYUO8vb3x9fXF19eXHj16AHDp0iVsbGyMtV4V2eVkfbNg1VdLURSlkihkOHmNlS2Bbo5M7tGc7RM7Ej08hL6Bddh26hovfB9Pi2kxTFixn20nr5KtU8PJK4UTOXPhVARCiG7AJ+hHE/xWSvm+EGIEgJRynqEgNRfoin7o92ellHGGbd8FBgBaYC8wVEpZZG8LDw8PeezYsTzLjhw5kueNfHF+Pf0rn+75lH9T/+UR20cYEzCG7g26l3j7+6Usza9iY2OZOXMmv/zyy11O1b1zP5qbVRSlOdaVK1cSHx/PtGnT7nGq/jN79myqVq3K888/X+a47uV5zcjK5sSlZGrYWVG7WuEDtuRX2ntGSVWmZoRCiHgpZYvyTkdFZOo5pehVpu9Iaam8KVxZ8yYrW8fWk1dZve8Cfxz8l9TMbGpVtSLCtza9/OvQ3KUq+p+rDx513RSuLM+pCtXwVEr5G/BbvmXzcv1fAi8Vsu07wDv3NIEmdG/QvUIWrhTFlN69exubqN4v1apVM05hUJFdupWBEAJne1WrpSiKophmYaYh1KMmoR41Se+Vzfqjl1i19wLfbU3k67/O0KSWHb39Xem1JQIX7bmCEaj5uyqdClXYUiqm0NBQ9abjITJ06ND7ur9nn332vu7vTqRlaklKz6JWVWsszCpS62pFURSlorKxNCPcpzbhPrW5kZrJLwcusmrveT5Ye5QPmUErzWH6mP3F45pd2ApDYys1f1elo35VKIpSqUkp+TcpA3ONBic7VaulKIqilJ6jrSVPh7jx44ut2TQ+lDHmP3FOOjMu60WCbn/Ja5kvsD27GTr5YDYxVO6cqtlSFKVSS7mtJeW2ltrVbDDTqIegoiiKUjZuNWx5xfwnxpj9RJz04MfsdvySHcKPug7UFZfpF3OCfi1cqVOK/sHKg0sVthRFqbSklFxMysDSXEN1W8vyTo6iKIryEBECgsQxgjTHeMd8IX/oglie3YFP1h/nk/XHadvIiSda1KWzZy2szNV0Iw8rVdhSFKXSupGWRUZWNvWqV0HzgI4epSiKolR8NiKTXmZb6WW2lXNjLrI87hwr4s8xeuleqlWxoI+/KwOD69KkVuUYSbkyUX22HlCrV69mxowZAKxatYrDhw8b102ePJmYmJhSx5mYmIiXl9ddSV+3bt24efNmkWGioqK4cCH/vNWm19WvX5+rV68WCJc7H4qTmJiIjY0Nfn5+NG/enBEjRqDT6UyG/e6774xzT1laWuLt7Y2fnx8TJ07k0qVLhIeH4+vrS/PmzenWrZvJOFq3vjvzasfGxhIeHn5X4iqtxMRElixZUupwcXFxvPzyy/cyaWWm00ku3cqgiqUZDjYW5Z0cRVEU5WFSyPxdWNrh6liFsZ2asPn1MBY+F0ybhk58vyORzrM30/fLbfwYf46MLDVp8sNC1WyVkZQyz3wK+T/fC1qtloiICCIiIgB9YSs8PJzmzZsDMHXq1Hu6/5L47bffig0TFRWFl5cXtWvXLtW63HLnQ0k0bNiQhIQEtFotjz76KKtWraJPnz4Fwj377LPGUfTq16/Pxo0bjZMIv/DCC3Tq1IkxY/STV+/fv9/kvrZt21bidFVUOYWoJ598slThWrRoQYsWFXvapGupt8nK1lHX0e6BnRNFURRFqaBKMLy7mUbQvokz7Zs4cy3lNj/tOc/SXX/z2vJ9TP3lMH0C6jC4pRuNahZScFMeCKpmqwyufDaXS9OnkzMxtJSSS9Onc+WzuWWKd+HChfj4+ODr62ucnygyMpJXX32VsLAwJkyYQFRUFKNGjWLbtm2sXr2a8ePH4+fnx6lTp4iMjGTFihUA7N69m9atW9O6dWuCg4NJTk4mMTGRdu3aERAQQEBAQLGFgtjYWNq3b0/v3r0L1AgtXboUb29vvLy8mDBhgnGbnJqoxMREmjVrxrBhw/D09KRz586kp6ezYsUK4uLiGDx4MH5+fqSnpxu3LWzdZ599RkBAAN7e3hw9ehTAmA8Ay5cvx8vLC19fX7p27VrkMZmbm9O6dWtOnjzJlStX6Nu3L0FBQQQFBbF169Yit7148SKurq7Gzz4+PibD2dnZGfOvQ4cOPPHEEzRp0oSJEyeyePFigoOD8fb25tSpU4D+HI8YMYJ27drRpEkTk5NIp6am8txzzxEUFIS/vz8///yzMR969epFjx49cHd3Z+7cucyaNQt/f39CQkK4fv06AKdOnaJr164EBgbSrl07Yz5GRkby8ssv07p1axo0aGC8fiZOnMhff/2Fn58fs2fPLvTayR8ud23c9evX6dWrFz4+PoSEhBgLp1OmTOG5554jNDSUBg0aMGfOnCLz/W7SZuu4nHybqtYW2Fmrd06KoihK+aphZ8Ww9g1Y/1oHlg4LoX0TZxbtOMtjszYx6Ksd/HbgIlnv14MpDgX//lenvJOvFEVKWWn/mjRpIvM7fPhwgWWm6HQ6efH99+Vhj6by4vvvm/x8Jw4ePCibNGkir1y5IqWU8tq1a1JKKYcMGSK7d+8utVqtlFLK7777Tr700kvGdcuXLzfGkfP59u3b0t3dXe7atUveunVLJiUlyaysLJmamirT09OllFIeP35cBgYGSimlPHPmjPT09CyQpo0bN0orKyt56tQpqdVq5WOPPSaXL18uz58/L+vWrSsvX74ss7KyZFhYmFy5cqWUUko3Nzd55coVeebMGWlmZib37t0rpZSyf//+8vvvv5dSStmhQwe5e/duk/mQf52bm5ucM2eOlFLKzz//XD7//PMF8sHLy0ueO3dOSinl33//XSDO3MeXmpoqW7RoIX/77Tc5aNAg+ddff0kppTx79qxs2rRpnu1yjiXH2rVrpYODgwwNDZXTpk2T58+fN3kMtra2xvxzcHCQFy5ckBkZGbJ27dpy8uTJUkopP/nkEzlmzBgppf68denSRWZnZ8vjx4/LOnXqyPT0dLlx40bZvXt3KaWUb7zxhjH/bty4IRs3biwvXrwov/vuO9mwYUN569YtefnyZVm1alX55ZdfSimlfOWVV+Ts2bOllFI++uij8vjx41JKKXfs2CHDwsKM++7Xr5/Mzs6Whw4dkg0bNjSmPWffOflm6trJHy7351GjRskpU6ZIKaVcv3699PX1lVJK+c4778hWrVrJjIwMeeXKFVm9enWZmZlpMi9z3Lp1q8j1JXX+Rprc/89NmZ6pLXNcJb1nlNbGjRvvSbwVERAnK8Azoax/QFfgGHASmFhImFAgATgEbCouTlPPKUWvMn1HSkvlTeEepLy5kpwhP994QraZsV66TfhFBk9YKD95a4i8NLmulO9Uzft3FzxIeXO/leU5pV7p3iEhBLXeeAOAGwu/58bC7wFwfOZpar3xxh03S9qwYQP9+vUzNlmrXr26cV3//v0xMyv5aDXHjh3DxcWFoKAgkpOTqVq1KqCvHRk1ahQJCQmYmZlx/PjxYuMKDg6mQYMGAAwaNIgtW7ZgYWFBaGgozs7OAAwePJjNmzfTq1evPNu6u7vj5+cHQGBgIImJiSU+htxymvsFBgby008/FVjfpk0bIiMjeeKJJ+jUqZPJOE6dOoWfnx9CCHr27Mnjjz/OkCFD8vR5u3XrFsnJydjbm+6k2qVLF06fPs3atWv5/fff8ff35+DBg8Z8MCUoKAgXFxdA35Sxc+fOAHh7e7Nx40ZjuCeeeAKNRkPjxo1p0KCBseYpx59//snq1auZOXMmABkZGZw7p5+hPiwsDHt7e+zt7XFwcKBHjx7Gfezfv5+UlBS2bdtG//79jfHdvn3b+P9evXqh0Who3rw5ly5dMnkcWVlZpb52tmzZwo8//gjAo48+yrVr10hKSgKge/fuWFlZYWVlRc2aNbl06VKeWsO76uI+kDpuSwuuSVccRTLWV06D0ICL773Zp1JpCCHMgM+BTsA5YLcQYrWU8nCuMNWAL4CuUsq/hRA1yyWxiqI8EJzsrBgZ2ogX2jck9thlFnw/n9na/szV9qa7ZgeR5n/gpzlV3slUiqEKW2WQU+DKKWgBZSpoQdF9vmxtbe9KXLNnz6ZWrVrs27cPnU6HtbV1sXHlj0cIkfOWtlhWVv9NFGtmZpanyWBp5MRjZmaGVqstsH7evHns3LmTX3/9lbZt27Jv3z5q1KiRJ0xOn63cdDod27dvx8am5PNdVK9enSeffJInn3yS8PBwNm/eTN++fYtNO4BGozF+1mg0eY7FVD7nJqXkxx9/xMPDw7gsOTmZgwcPFrsPnU5HtWrVChy/qTQWdm7v5NoxFVfOceW/Nkyd17tG6pu+/isdEeioxY08yxWljIKBk1LK0wBCiGVAT+BwrjBPAj9JKf8GkFJevpMdZWVlce7cOTIyMsqY5Aebg4MDR44cKe9kVEgqbwr3oOZNbeCNHoGMx4wUqpEm+3KF/mwiCzuRjs3hwyZ/81lbW+Pq6oqFhRoIqryowlYZSKnvo5XbpenTy1Tg6tixI71792bs2LHUqFGD69ev56ndMsXe3p7k5OQCy5s2bcqFCxfYvXs3TZs2JTk5GRsbG5KSknB1dUWj0bBgwQKys4sf8WbXrl2cOXMGNzc3oqOjGT58OC1btmTMmDFcvXoVR0dHli5dyujRo0t8rIWlu7h1hTl16hQtW7akZcuW/Pzzz/zzzz8FClumdO7cmblz5zJ+/HgAEhISjDVxpmzYsIGQkBCqVKlCcnIyp06dol69eqVKa2GWL1/OkCFDOHPmDKdPn8bDw4MdO3YY13fp0oXPPvuMzz77DCEEe/fupVGjRiWKu2rVqri7u7N8+XL69++PlJL9+/fj61t4rU7+81DYtVPU+Wrfvj2LFy/m7bffJjY2FicnJ2Mt6/2WIq1JwpZa4gYWQo30pNxVdYB/cn0+B7TMF6YJYCGEiAXsgU+llAvzRySEGA4MB3B2diY2NjbPejs7O2rVqkWdOnUq9eAu2dnZpWrtUZmovCncA503Nf/7PagDUrRm3NKakSUFaAR2lmBvKTAz3BeklCQlJbFv3z5SUlKKjT4lJaXA/UYpO1XYukM5Ba0bC783Nh3M+Qx3XsPl6enJW2+9RYcOHTAzM8Pf35+oqKgitxk4cCDDhg1jzpw5xoENACwtLYmOjmb06NGkpqZia2tLTEwMI0eOpG/fvixfvpywsLAS1Zi1atWKiRMncuDAAeNgGRqNhunTpxMWFoaUkm7dutGzZ88SH2vOgBA2NjYFapbyryuJ8ePHc+LECaSUtGvXrshCRG5z5szhpZdewsfHB61WS/v27Zk3b16h4ePj4xk1ahTm5ubodDqGDh1KUFBQifZVHA8PDzp06MClS5eYN29egZqjt99+m1deeQUfHx+klNSvX5+lS5eWOP7Fixfz4osvMm3aNLKyshg4cGCR+eTj44O5uTm+vr5ERkYWeu3kD+fv72+MY8qUKTz77LP4+PhQpUoVFixYUMpcuTukhIuyOhZocSapXNKgPNRM3fDzV+uaA4FAR8AG2C6E2CGlzNMeV0r5FfAVgIeHhwwNDc0TyZEjR3B1da3UBS2gyObelZ3Km8I90Hlz4WSejw7oa7yShQ1XLVy5kaEl6TZUt7XAyc4SS3Mz7O3tSUlJKdEIwbGxseS/3yhlJ0raFOxh5OHhIY8dO5Zn2ZEjR2jWrFmJtr/y2Vyyk28ZC1Y5BTAz+6o4jx51L5J8x8pyc4mNjWXmzJkmR8erqB7Em2lkZCTh4eH069evVNs9iMd6p8pyrNfPn+CcdKauuIKjyPeGr7a/6Y1KoDT3jNKoTA89IUS8lLJizxVQDCFEK2CKlLKL4fMbAFLK6bnCTASspZRTDJ/nA2ullMsLi7esz6mHWWW695WWypvCPdB5Y+h7XICh73F6ZjZXU25zMy0LkFS1saCmvRWJp06U6J5RmZ47pVWW55Sq2SoD59Gj8vSLyunDVdnfNipKRZOtk1yS1anCbapRfFMKRbkDu4HGQgh34DwwEH0frdx+BuYKIcwBS/TNDGff11QqivLgKmYwJxtLM+pWr8IjVXVcTb3N9ZRMktKzSEq+zbaTV2nVsIb6jVoO1DxbZVTcgAYPg9DQ0AeqVutBFRUVVepaLaVkrqbcJgszXMQ1CnxFhboNKmUnpdQCo4A/gCPAD1LKQ0KIEUKIEYYwR4C1wH5gF/CNlPJgeaX5Tt28eZMvvvjC+Dn3vHr5DR06NM9or0WZMmUKderUwc/PDy8vL1avXl1o2N69e9OmTRsaNWqEg4MDfn5++Pn5sW3bNn755Rf8/f3x9fWlefPm/N///V+B7VevXs2MGTNKlK7i5J7b8n5btWpVifI3f7jJkycTExNzL5OmlCMLcw0uDjY0dbHnEQdrsnSSJ7/ZSe8vtrHu8CV0usrbqq08qJotE4oaEVBRlAdLplbHleTbONhYYFuj+V2NuzI3w1YKklL+BvyWb9m8fJ8/Aj66n+m623IKWyNHjiw27DfffFOquMeOHcu4ceM4cuQI7dq14/Lly2g0BV+IrFy5kuTkZOLj4/M0c8/KysLNzY1du3bh6urK7du3TU43EhERQURERKnSVhGtWrWK8PBwmjcv+t6WP9zUqVPvR/KUcmam0VDT3ppHqloxrZcX/7f5FMMWxtH0EXtGPdqIx71cMNOo37v3mips5WNtbc21a9eoUUNVtSrKw+DfJP3w2C4OJR/avySklFy7dq1Ew98ryr3y7ppDHL5w667G2bx2Vd7p4Vno+okTJxrnLOzUqRPdu3cnJSWFfv36cfDgQQIDA1m0aBFCCEJDQ5k5cyb+/v48//zzxMXFIYTgueeeY+zYsYXuo1mzZpibm3P16lUSEhJ45513uH37Ng0bNuS7777Dzs7O5HbJyclotVrjSLRWVlZ5psrIERUVRVxcHHPnziUyMhIbGxuOHj3K2bNn+e6771iwYAHbt2+nZcuWxkGq7OzseOGFF9i4cSOOjo4sW7aswPyK8fHxvPrqq6SkpODk5ERUVBQuLi6Ehobi7+9PfHw8V65cYeHChUyfPp0DBw4wYMAApk2bBsCiRYuYM2cOmZmZtGzZki+++AIzMzPs7OwYM2YMv/zyCzY2Nvz888+cOnWK1atXs2nTJqZNm8aPP/7Ihg0b+Oqrr8jIyKBJkyZ8//33JCQkFAj33nvvGfsIr1+/nnHjxqHVagkKCuLLL7/EysqK+vXrM2TIENasWUNWVhbLly+nadOmRV47SsUkhOCpEDcGBtVlzf4LzN1wklFL9tKo5glGJ88mXBeLmZDg8S5MMQx0ZmkHb54v34Q/JFRhKx9XV1fOnTvHlStXyjspd1VGRkal+lFYmY5XHWvhbhtqtapam3Pq1t2fYyRn/hJFqUxmzJjBwYMHjXP2xcbGsnfvXg4dOkTt2rVp06YNW7dupW3btsZtEhISOH/+PAcP6ltN3rx5s8h97Ny5E41GgxCCadOmERMTg62tLR988AGzZs1i8uTJJrerXr06ERERuLm50bFjR8LDwxk0aJDJ2rHcbty4wYYNG1i9ejU9evRg69atfPPNNwQFBRmnA0lNTSUgIICPP/6YqVOn8u677zJ37lxjHFlZWYwePZqff/4ZZ2dnoqOjeeutt/j2228B/QjBmzdv5tNPP6Vnz57Ex8dTvXp1GjZsyNixY7l8+TLR0dFs3boVCwsLRo4cyeLFi3nmmWdITU0lJCSE999/n9dff52vv/6aSZMmERERkWdgpWrVqjFs2DCSk5P54IMPmD9/PqNHjy4QLkdGRgaRkZGsX7+eJk2a8Mwzz/Dll1/yyiuvAODk5MSePXv44osvmDlzZqlrKpWKxdxMQ29/VyJ86/D7wYt8tv4kY9KH8Zl4nDHmP2Gbu7FGpurffLeowlY+FhYWuLu7l3cy7rrY2Ng8w3E/7CrT8apjNU2nk0R8voVrKZmsf60DVSzV7U55+BRVA3U/BQcHG188+Pn5kZiYmKew1aBBA06fPs3o0aPp3r07nTt3NhnP7NmzWbRoEfb29kRHR7Nz504OHz5MmzZtAMjMzKRVq1ZFpuWbb77hwIEDxMTEMHPmTNatW1fsFCo9evRACIG3tze1atXC29sb0E/HkpiYiJ+fHxqNhgEDBgDw1FNP0adPnzxxHDt2jIMHD9KpUydAP5+Ti4uLcX1Os0Vvb288PT2N6xo0aMA///zDli1biI+PN04lkp6eTs2aNQF9QS2nX1xgYCDr1q0zeRwHDx5k0qRJXL9+nbS0NLp06VLkcR87dgx3d3eaNGkCwJAhQ/j888+Nha2cYwwMDOSnn34qMi7lwWGmEYT71Kablwu/v9OFT7R9GZ31Mq7Hb6PNDqSTJr5g/2bljqlfH4qiPJSWx//DwfO3+HSgnypoKco9ZmVlZfy/mZkZWq02z3pHR0f27dvHH3/8weeff84PP/xgrPHJLafPVo41a9bQqVOnUs0nCPoCjbe3N08//TTu7u7FFrZy0q/RaPIci0ajKXAsOfJ3NZBS4unpWejckMXtQ0rJkCFDmD59eoFtLSwsjPszlb85IiMjWbVqFQ0aNODHH38sdoLa4vqd5qSzqH0qDy6NRtDdbCddNbv4VRfC+7oXGJ71Gr7iJK+bR9OmvBP4kFDDcCmK8tBJSs/iw7XHCKrvSIRv7fJOjqI8VOzt7UlOTi7VNlevXkWn09G3b1/ee+899uzZU6LtQkJC2Lp1KydP6idzTUtL4/jx44WGT0lJyVPASEhIwM3NrVRpLYxOpzOOOrhkyZI8NXegn5T+ypUrxsJWVlYWhw4dKnH8HTt2ZMWKFVy+fBmA69evc/bs2SK3yX8ukpOTcXFxISsri8WLFxcaLkfTpk1JTEw05u/3339Phw4dSpxm5eFgJiQRZtv5X9OzfGj+f1yVDgzOeoun5+/k4Pmk8k7eA08VthRFeeh8EnOcG2mZTInwVAPdKMpdVqNGDdq0aYOXlxfjx48v0Tbnz58nNDQUPz8/IiMjTdbemOLs7ExUVBSDBg3Cx8eHkJAQjh49Wmh4KSUffvghHh4e+Pn58c477xRbq1VStra2HDp0iMDAQDZs2FCg35ilpSUrVqxgwoQJ+Pr6GoeiL6nmzZszbdo0OnfujI+PD506deLixYtFbjNw4EA++ugj/P39OXXqFO+99x4tW7akZ8+eeQazyB8uh7W1Nd999x39+/fH29sbjUbDiBEjSpxm5eFiJuAJ802stxrHJPPvOXA+ifDPtjBm2V7O3Ugr7+Q9sERlHrrYw8NDHjt2rLyTcV9UtlnBK9PxqmPN6/ilZB7/9C8GBtXl/d7e9ydh90BlOq9CiHgpZYvyTkdFZOo5deTIEZo1a1ZOKao4kpOTsbe3v2/7s7OzIyXlwRg04H7nzYOkMuZNkfeM/9UxDoYR6/Euocfe0S+3tOPWq4nMiz3F/C1nkMBzbdwZGdaQqtZ3f8Cpiq4szynVkUFRlIeGlJIpqw9hZ2XOuM4Fh3tWFEVRFCWX3MO7x8bCoP+aDVYFXu/alKdC3Jj5xzHmbTrF8rh/GNfFgyda1FVzdJWQakaoKMpD49cDF9l26hrjOjfB0dayvJOjKMpD5EGp1VKUu612NRtmDfBjzai2NHC25Y2fDhAxdwu7E6+Xd9IeCKqwpSjKQyH1tpZpvxzBs3ZVnmx5dzrEK4qiKIqi5+3qwA8vtGLOIH+up2bSf952Xo1O4Ery7fJOWoWmCluKojwU5mw4wb+3Mnivl5dq2qAoiqIo94AQggjf2qx/rQMvhTVkzf4LPDozlqitZ8jWVd5xIIqiCluKojzwTl5OZv5fZ3iihSsB9RzLOzmKoiiK8lCrYmnO+C5N+eOV9vjVq8aUNYfp9flWNVS8CWqADEVRHmhSSiatOkgVSzMmdG1a/AaKoiiKotwVDZztWPhcML/sv8i7aw4TMXcLz7Vx59V93amSZaJPl6Vd3kE5KgFVs6UoygPt54QL7Dh9nQmPN6WGnVV5J0dRKq2hQ4dy+PDhuxJX/fr1uXr1apFhZs6cmedz69at78q+c0tMTMTLy6vYMEuWLClVvKGhofzxxx95ln3yySeMHDmyVPHY2dmVKnxZfPLJJ6SllW6upcjISONE0EVZtWoVU6dOBWDWrFk0b94cHx8fOnbsmGdi5wULFtC4cWMaN27MggULjMvPnDlDy5Ytady4MQMGDCAzM9O4LjY2Fj8/Pzw9PY0TNmdmZtK+fXu0Wm2pjkcxTQhBD9/arH+1AwOC6vHNljN0TXmb7dkmhpvPrHwDzajClqIoD6yk9Cym/XoY37rVGBRUr7yToygVz//qwBSHgn//q3PXd/XNN9/QvHnzux5vYT7++OM8n0szgfDddCeFrUGDBrFs2bI8y5YtW8agQYPyLMvOzi5z+u6WOylsldSHH35oLGj6+/sTFxfH/v376devH6+//joA169f591332Xnzp3s2rWLd999lxs3bgAwYcIExo4dy4kTJ3B0dGT+/PkA3Lx5k5EjR7J69WoOHTrE8uXLAf0E1B07diQ6OvqeHE9l5VDFgul9vFk2PASBZFDW27ydFUmqrNwvQlVhS1GUB9bMP45xPTWT93t5oVGDYihKQYW9RS7D2+XU1FS6d++Or68vXl5exh+soaGhxMXFAfoalwkTJhAYGMhjjz3Grl27CA0NpUGDBqxevRqAqKgoRo0aZYw3PDyc2NjYAvvr1asXgYGBeHp68tVXXwEwceJE0tPT8fPzY/DgwcZ9gr5p8fjx4/Hy8sLb29uYvpyJwvv160fTpk0ZPHgwUhbs0B8fH4+vry+tWrXi888/Ny5PTEykXbt2BAQEEBAQYCzcTZw4kb/++gs/Pz9mz55daLjc+vXrxy+//MLt27eNcV+4cIG2bdsSGxtLWFgYTz75JN7e3oXmQY7XXnuNgIAAOnbsyJUrVwA4ffo0Xbt2JTAwkHbt2nH06FEALl26RO/evfH19cXX19dk2v78809atWpFQEAA/fv3JyUlhTlz5nDhwgXCwsIICwsrsM3UqVMJCgrCy8uL4cOHm8zXwhw/fhwrKyucnJwACAsLo0qVKgCEhIRw7tw5AP744w86depE9erVcXR0pFOnTqxduxYpJRs2bKBfv34ADBkyhFWrVgGwZMkS+vTpQ716+pdxNWvWNO63V69eLF68uMTpVEoupEEN1lpO5Hmz31iU/RiPZ84gTtekvJNVblRhS1GUB9K+f26yaOdZnmlVH686DuWdHEWpNNauXUvt2rXZt28fBw8epGvXrgXCpKamEhoaSnx8PPb29kyaNIl169axcuVKJk+eXKr9ffvtt8THxxMXF8ecOXO4du0aM2bMwMbGhoSEhAI/mH/66ScSEhLYt28fMTExjB8/nosXLwKwd+9ePvnkEw4fPszp06fZunVrgf09++yzzJkzh+3bt+dZXrNmTdatW8eePXuIjo7m5ZdfBmDGjBm0a9eOhIQExo4dW2i43GrUqEFwcDBr164F9LVaAwYMQAj9S6Ndu3bx/vvvG5tlmsqDnHwOCAhgz549dOjQgXfffReAMWPG8NlnnxEfH8/MmTONtUYvv/wyHTp0YN++fezZswdPT8886bp69SrTpk0jJiaGPXv20KJFC2bNmsXLL79M7dq12bhxIxs3bixwPKNGjWL37t0cPHiQ9PR0fvnll6JOaR5bt24lICDA5Lr58+fz+OOPA3D+/Hnq1q1rXOfq6sr58+e5du0a1apVw9zcPM9y0Bfkbty4QWhoKIGBgSxcuNC4vZeXF7t37y5xOpXSsRGZvG2xiB8s30MieCJzMh9kDeC2rHzDRVS+I1YU5YGnzdbxxk8HqGlvxWudK+/bMkUpD97e3owbN44JEyYQHh5Ou3btCoSxtLQ0FsK8vb2xsrLCwsICb29vEhMTS7W/OXPmsHLlSgD++ecfTpw4QY0aNQoNv2XLFgYNGoSZmRm1atWiQ4cO7N69m6pVqxIcHIyrqysAfn5+JCYm0rZtW+O2SUlJ3Lx509i35+mnn+b3338HICsri1GjRpGQkICZmRnHjx83uf+ShstpStizZ0+WLVvGt99+a1wXHByMu7t7sXmg0WgYMGAAAE899RR9+vQhJSWFnTt30r9/f+P2OTVoGzZsMBY4zMzMcHDI+6Jqx44dHD58mDZt2gD6vk2tWrUqNK9zbNy4kQ8//JC0tDSuX7+Op6cnPXr0KHY7gIsXL+Ls7Fxg+aJFi4iLi2PTpk0AJmvLhBCFLgfQarXEx8ezfv160tPTadWqFV5eXgQEBGBmZoalpSXJycnY29uXKK1K6QVpjvG75USmaZ/iy+ye/KXzYc6VFBo437/+huVNFbYURXngRG1L5PDFW3w5OAB7a4vyTo6iVCpNmjQhPj6e3377jTfeeIPOnTsXqK2ysLAw/uDVaDRYWVkZ/58zKIG5uTk6nc64TUZGRoF9xcbGEhMTw/bt26lSpQqhoaEmw+VWVBO2nHSAvrCRf4AEKaUx3fnNnj2bWrVqsW/fPnQ6HdbW1mUK16tXL1599VX27NlDenp6ntodW1tb4/9LkwdCCHQ6HQ4ODiQkJJgMUxQpJZ06dWLp0qUl3iYjI4ORI0cSFxdH3bp1mTJlSrHnKDcbGxuSkvIOFx4TE8P777/Ppk2bjOfM1dU1TzPTc+fOERoaipOTEzdv3kSr1WJubs65c+eoXbu2cRsnJydsbW2xtbWlffv2HDx40JjXt2/fLvT8KGVkaWdsrmwnMphh8Q0dNXsYrx1B+GdbeK+nF30C6hT6fXuYqGaEiqI8UM7fTGfWuuM82rQmXb0eKe/kKA8oIcQIIcTXQoiBQohfhBAvlneaHhQXLlygSpUqPPXUU4wbN449e/bcUTz169cnISEBnU7HP//8w65duwqESUpKwtHRkSpVqnD06FF27NhhXGdhYUFWVlaBbdq3b090dDTZ2dlcuXKFzZs3ExwcXKI0VatWDQcHB7Zs2QKQp4liUlISLi4uaDQavv/+e+PgFfb29iQnJxcbLj87OztCQ0N57rnnCgyMUdI80Ol0xtH+lixZQtu2balatSpubm7GwSCklOzbtw+Ajh078uWXXwL6wTdu3bqVZ18hISFs3bqVkydPApCWlmasmct/nDlyClZOTk6kpKSUaPTB3Jo1a2bcH+iber7wwgusXr06Tx+rLl268Oeff3Ljxg1u3LjBn3/+SZcuXRBCEBYWZtzvggUL6NmzJwA9e/bkr7/+QqvVkpaWxs6dO/Hw8ADg2rVrODs7Y2GhXtjdE2+ehylJef46vbeR3ydG4F3HgdeW7+O1H/aRnllxBoG5V1RhS1GUB4aUknd+PoiU8G6EZ6V4I6bcM48Cw4FRUspwwLec03NvWBbSVKew5SVw4MABgoOD8fPz4/3332fSpEl3FE+bNm1wd3c3Nks01W+na9euaLVafHx8ePvttwkJCTGui4yMxMfHxzhARo7evXvj4+ODr68vjz76KB9++CGPPFLyFzPfffcdL730Eq1atcLGxsa4fOTIkSxYsICQkBCOHz9urH3y8fHB3NwcX19fZs+eXWg4UwYNGsS+ffsYOHBgoWGKygNbW1sOHTpEYGAgGzZsMNYwfvPNN8yfPx9fX188PT35+eefAfj000/ZuHEj3t7eBAYGcujQoTz7cnZ2JioqikGDBuHj40NISIhxcI3hw4fz+OOPFxggo1q1agwbNgxvb2969epFUFCQyeOYPHmycXCU3Nq3b8/evXuNNZLjx48nJSWF/v374+fnR0REBADVq1fn7bffJigoiKCgICZPnkz16tUB+OCDD5g1axaNGjXi2rVrPP/884C+INe1a1d8fHwIDg5m6NChxhEzN27cSLdu3QrNd+XecHGwYcmwEF55rDErE87T6/OtnL7ycA8HL0ozYszDxsPDQx47dqy8k3Ff5IzCVFlUpuOtTMf64bIYvki4zVvdmjGsfYPyTs49VZnOqxAiXkrZ4j7v80sp5YtCiB5SyjVCiE+llGPKGGdX4FPADPhGSjkj3/pQ4GfgjGHRT1LKqUXFaeo5deTIEZo1MzF/TSWj+toU7kHLmzFjxtCjRw8ee+yxe76vnLzp06cP06dPN9Z0PcxKes+438+dTcev8MqyvWRlS2b296Grl8t923dpleU5VaaaLSHEw1/3pyhK+TLME5T0Tm0WHUzFW5zm2fWB92SeIKVS+RRASrnG8PmnskQmhDADPgceB5oDg4QQpiad+ktK6Wf4K7KgpSiVxZtvvnnP5vAyJTMzk169elWKglZF1qGJM7+83I6GNe0YsWgPs9cdR6d7+CqBytqMsEAbHlUAUxTlrjJ0sJ2hHUSK1ozpFl9jLnSVchZ65e6RUh7N+b8Q4h0p5aYyRhkMnJRSnpZSZgLLgJ5ljFNRKoVatWoZmwveD5aWljzzzDP3bX9K4epUsyF6eAh9Aurw6fr/b+++w6Oo1geOf89uKiQ0k2AglNAJSTYEQpMqHRWkCYgFVBAV608F9aqI9V64Yr1ysQGKdEG8VhADItIJSIdAhBB6SW+bPb8/NlnTs6mb8n6eZ5/szpyZec/sZmffmTPnHOeRr/aQlGYuesEqpLS9EeaXfpb4Jgo7mmCozPnDgCRgktZ6T+a8esAnQGBmXPdprXMOkiGEqJK2WdqxNONmhnpfJTD+L0eHI6qfl5VStYAGwB5gmdb6WjHX0Rg4k+11NNA1n3LdlVL7gBjgaa31wdwFlFJTsd5Phre3d56BfuvWrZtvRwU1TUZGhuyHAsi+KVhN3DcpKSn5DhieW0JCgl3lysNt3hqXti4sP3Ceg39d5MlOrtR3qx5dS9iVbCmlbtBaX7FznSW6/petCcZArAepnUqpdVrrQ9mKDQVaZz66Ah/x98HsXeBHrfUYpZQLUKskcQghKpdk7cLM9Kk0VRe4/cZ4qFnHSFExNJAC/ASEAluVUuO11vuKsY78TjTmPh7uAZpprROUUsOAtViPZzkX0noBsACs92zlvofi8OHDVep+nPJS1e5LqkiybwpWE/eNm5sbHTt2LLKco+8V7gcMPnqR6Uv2MGevZuF9nWjTsOq/V0WmjEqp1cBrSqklSql+eWeroMwnbtmm3aOUmq6UKrgv07zsaYIxAlisrbYB9ZRSvkqpOkBv4FMArXWa1vp6MbYthKik3jGPJkrfyFtOH+NqqH5tuUWlcERr/bLWepXW+nmsx5p5xVxHNNAk22s/rFevbLTWcVrrhMzn3wPOSimvUsQthBDVSr+2Pix/sDvpFs3oj7ayNfKyo0MqNXuubB3RWr8AoJT6EPg11/zeSqlOgAuZZ+KAI0AUUJw7D+1pgpFfmcaAGbgEfK6UMgG7gce11om5N1JU84zqypGXhh2hJtW3Otf1VGwGCzJupU+DWNKajCPBtRHhbV/5u0A1rTdU7/e1ErqslOqktd4NoLU+ppTyLuY6dgKtlVL+wFlgPHBn9gJKqRuBC1prrZTqgvWEp72tRoQQokYIbFyXNQ/3YPLnO5n02U7ev7MjgztU4XE1tdaFPrAmLv8HDADezTXPAgzGmry8nDUt2/xw4CWgtx3bGYv1Pq2s13cD7+cq8x3QM9vrX4BOQGesCVfXzOnvAq8Wtc02bdromuLXX391dAgVqibVt7rWNTU9Qw+et0l3mfmFjn2podYv19G/fjVP65frWB+vN3J0iOWqur6v+QF26SK+r8vzgXWMrcPAl8AM4CtgXQnWMww4BkQCL2ROmwZMy3w+HTgI7AO2AT2KWmd+x6lDhw6VbodXkG+++Ua/+eabWmut16xZow8ePGib9+KLL+r169cXe52nTp3SHTp00FprHRcXV6r4hg4dqq9du1Zomc8//1yfPXs233n33nuvXrlyZY5ptWvXLnK73bt3tzvG4sgeq7375uWXX9Zz5swpstyePXv0/fffr7XW+ssvv9RBQUE6KChId+/eXUdERNjK/fDDD7pNmza6ZcuWtvdea61XrFihAwICtFJK79y50zY9LS1N33PPPTowMFC3a9dOv/HGG7Z5/fv311evXrWrHsVR0L75/PPP9SOPPFLm2ysOez6TJfnfsfc7o7Idd64npunbP9yiWzz3nV6zJ9qhsZTmOGXPla0hQBhwE+CtlFqktb7371xN/5Q7f8v2fI3W+l2l1BPA5iK2U2QTjELKaCBaa709c/oqYGYR2xNCVGIf/nqCI+fj+eSegdQJOG+dGB4OE2IdGpeofrTW+5RSnbEOdNwe2AgsLcF6vge+zzVtfrbnHwAflC7a4ov99lsuznsH87lzOPn64vPkE9S97bZy3abZbGb48OG2HubWrl3LrbfeahtQdvZsx/d6//333xdZZuHChQQGBtKoUaMy2+7WrVvtLpv1Y81gKLqjgPKINcsbb7xhG7za39+fTZs2Ub9+fX744QemTp3K9u3bycjI4JFHHmH9+vX4+fkRFhbG8OHDCQgIIDAwkK+//poHH3wwx3pXrlxJamoqf/75J0lJSQQEBDBhwgSaN2/O3XffzX/+8x9eeOGFMq9PeTKbzTg5Fa//uaz32Z7PZGX436kodWs588X9XZmyaBdProggMc3MxK7NHB1WsRX536u1vqS1/l5r/YrW+s5siRbkf0Nw9mlHlFIvYO1dsCi2JhiZHVyMB3IPNb4OuEdZdQNitdbntNbngTNKqaxmi/2BQwghqqSDMbF8+OsJRnZszICAho4OR1RzSqnpWJu+/xeYCKDzaYZeFcV++y3nXnwJc0wMaI05JoZzL75E7LffFr1wIRYvXkxwcDAmk4m7774bgEmTJvHUU0/Rr18/ZsyYwcKFC5k+fTpbt25l3bp1PPPMM4SEhBAZGcmkSZNYtWoVADt37qRHjx6YTCa6dOlCfHw8UVFR9OrVi9DQUEJDQ4tMUMLDw+nduzcjR44kICCAadOmYbFYAFi6dClBQUEEBgYyY8YM2zLNmzfn8uXLREVF0b59e6ZMmUKHDh0YNGgQycnJrFq1il27djFx4kRCQkJITk4u1j6aM2cOYWFhBAcH8/LLL9ume3h4FFomK56HH36Y0NBQzpw5k2O9u3fvpk+fPnTq1InBgwdz7ty5ImP9+OOPCQsLw2QyMXr06GKNaRUfH8/+/fsxmUwA9OjRg/r16wPQrVs3oqOjAdixYwetWrWiRYsWuLi4MH78eL755hsA2rdvn++YVkopEhMTMZvNJCcn4+LiQp06dQAYPnw4S5f+fc5j2LBhxMTkPgcPffv2ZdeuXQBcvnyZ5s2bA9bkc9SoUQwZMoTWrVvz7LPP2pb58ccfCQ0NxWQy0b9//zzrvHTpEqNHjyYsLIywsDB+//13Wx179OhBx44d6dGjB1kDji9cuJCxY8dy2223MWjQoDzre/vttwkMDCQwMJB33nkHyP99zvpMArz66qu0a9eOgQMHMmHCBObOnQuQ43+nefPmvPzyy4SGhhIUFMSRI0fybLuq83B14vPJYfRr68MLaw7w5bYq2CNxSS+JlceDoptgKKw9FkYCfwKdsy0bAuwC9mPt4al+UduTZoTVV02qb3Wra5o5Qw99Z7Pu9Op6fS0xNce86lbXwtSkuuL4ZoSngBszn/sCnwOzHBlT1qO0zQiP9btZH2rbLs/jWL+b7V5HbgcOHNBt2rTRly5d0lprfeXKFa21tVndLbfcos1ms9Y6Z7Os3E3usl6npqZqf39/vWPHDq211rGxsTo9PV0nJibq5ORkax2OHdOdOnXSWhfcjPDXX3/Vrq6uOjIyUpvNZj1gwAC9cuVKffbsWd2kSRN98eJFnZ6ervv166fXrFmjtda6WbNm+tKlS/rUqVPaaDTqvXv3aq21Hjt2rP7iiy+01lr36dMnR7O37O69917dvHlzbTKZbI+sZoQ//fSTnjJlirZYLDojI0PfcsstetOmTVprXWSZU6dOaaWU/uOPP/JsMy0tTXfv3l1fvHhRa631smXL9OTJk/PEmrup3OXLl23PX3jhBf3ee+9pre1rRrhx40Y9atSofOfNmTPH1rxw5cqVtudaa7148eI8zfJy78+0tDQ9btw47eXlpWvVqqX/+9//5ijfqlWrHLHnJ/s6L126pJs1a6a1tn7+/P399fXr13VycrJu2rSpPn36tD558qT28/PTJ0+e1Fr//fnN/nmdMGGC/u2337TWWv/111+6Xbt2Wuu/P59aa71+/Xrbfvn8889148aNbevKbteuXTowMFAnJCTo+Ph4HRAQoPfs2ZPv+5z1mdy5c6c2mUw6KSlJx8XF6VatWtnep+z/S82aNbO9lx9++GGO/Z9dVW1GmF1qeoa+7/MdutmM/+nlO05X+PZLc5wq7ThbZUoX3QRDA48UsGwE1nu3hBBV2H9+jeTQuTj+e3cn6tVycXQ4omZIAC4CaK3PKaXuByKAWQ6MqUyYz50r1nR7bNy4kTFjxuDlZe1IsUGDBrZ5Y8eOxWi0pzGL1dGjR/H19SUsLAzAdlUjMTGR6dOnExERgdFo5NixY0Wuq0uXLrRo0QKACRMmsGXLFpydnenbty/e3tb+TiZOnMjmzZu5/fbbcyzr7+9PSEgIAJ06dSIqKsqu+OfMmcOYMWNsr7OuWv3888/8/PPPtu62ExISOH78OL1797aVLahM06ZNadasGd26dcuzvaNHj3LgwAEGDhwIWMeM8vX1LTLOAwcO8I9//IPr16+TkJDA4MGD7aofwLlz52z7L7tff/2VTz/9lC1btgBknbjIwTo8asF27NiB0WgkJiaGa9eu0atXLwYMGGB7H318fIiJieGGG26wO97s+vfvT926dQEICAjgr7/+IiYmht69e+Pv7w/k/Pxm2bBhA4cO/d1AKi4ujvj4eGJjY7n33ns5fvw4SinS09NtZQYOHJjvurZs2cLIkSOpXbs2AKNGjeK3335j+PDhBb7PW7ZsYcSIEbi7uwNwWyHNfkeNGgVYP7dff/11kfukqnJxMvDh2TFMMUxjxmoLruumMsKYecXbxQOeP+vYAAtRomRLKXWz1npj1t+yDkoIUTMdOBvL+xuPMyKkUdXueUhUNR8BK5VSM7TWJ4CmgP3trCoxJ19faxPCfKaXlNa6wB/RWT8oS7uuefPm0bBhQ/bt24fFYsHNzS2fpXPKvR6lVL4JQH5cXV1tz41GY7GbDOamtea5557Lc4+SPWWioqIK3I9aazp06MAff/xRrHgmTZrE2rVrMZlMLFy4sFg9nbq7u5OSkpJj2v79+3nggQf44YcfbImQn59fjiaP0dHRRd4/9tVXXzFkyBCcnZ3x8fHhpptuYteuXbZkKyUlxZZwFMTJycnWZDR3nLnfV7PZXOjnN4vFYuGPP/7Is+1HH32Ufv36sWbNGqKionKMSVXYe1aQkiyTW1Yds+pXnbmlX2eB89tMSnuWJ9MfpjYpDDDugbQER4dWqJIOzTw3118hhCiVVHMGT6/cR4PaLrwyvIOjwxE1iNb6P8AS4BOl1FXgBHBUKTVWKZVn0OGqxOfJJ1C5EhXl5obPk0+UeJ39+/dnxYoVXLli7bX+6tWrRS7j6elJfHzeEcnbtWtHTEwMO3fuBKz3B5nNZmJjY/H19cVgMPDFF1+QkZFR5DZ27NjBqVOnsFgsLF++nJ49e9K1a1c2bdrE5cuXycjIYOnSpfTp08fuuhYUd1EGDx7MZ599RkKC9Ufg2bNnuXjxYrHL5Na2bVsuXbpkS7bS09M5ePBgkbHGx8fj6+tLeno6S5YsKVZd2rdvz4kTJ2yvT58+zahRo/jiiy9o06aNbXpYWBjHjx/n1KlTpKWlsWzZMlsHKQVp2rQpGzduRGtNYmIi27Zto127doA14Th//rztHqz+/ftz9mzeqxfNmzdn9+7dALZ7mQrTpUsXNm3axKlTp4D8P7+DBg3igw/+7ssmIiICgNjYWBo3bgxY79OyR+/evVm7di1JSUkkJiayZs0aevXqVegyPXv25NtvvyUlJYWEhAS+++47u7ZVE7irND5zmUMHFcWj6dPZZ2nh6JCKVNJkK0vhpwaEEMJO7/1ynCPn43lrdJA0HxQVTmv9tda6L+ADhGLtkbAH1k4zqqy6t92G76uzcWrUCJTCqVEjfF+dXareCDt06MALL7xAnz59MJlMPPXUU0UuM378eObMmUPHjh2JjIy0TXdxcWH58uU8+uijmEwmBg4cSEpKCg8//DCLFi2iW7duHDt2zK4rZt27d2fmzJkEBgbi7+/PyJEj8fX15c0336Rfv36YTCZCQ0MZMWKE3XWdNGkS06ZNK3YHGYMGDeLOO++ke/fuBAUFMWbMmDyJkD1lcnNxcWHVqlXMmDEDk8lESEiIrfOQwmJ99dVX6dq1KwMHDrQlM7nNnz+f+fPn55nerl07YmNjbbHNnj2bK1eu8PDDDxMSEkLnztY7OJycnPjggw8YPHgw7du354477qBDB+uJszVr1uDn58cff/zBLbfcYmvG+Mgjj5CQkEBgYCBhYWFMnjyZ4OBgwNoRSLdu3WxXrk6cOJFvM72nn36ajz76iB49etg6lyiMl5cXCxYsYNSoUZhMJsaNG5enzHvvvceuXbsIDg4mICDAtl+effZZnnvuOW666Sa7TgAAhIaGMmnSJLp06ULXrl154IEHbE1HC5LVk6PJZGLUqFF07tzZ1hxSQG2Vyqcuc7hBxXF/2jOctvg4OqRCqeJcqrQtpNQerXWoUmqv1rrwT0wl1rZtW53Vk0x1Fx4enuNyd3VXk+pbHeq69/Q1Rn+0ldGhfswZayqwXHWoq71qUl2VUru11nLPbT7yO04dPnyY9u3bOyiiyiM+Ph5PT0/A+v8yd+5c/ve//zk4qsoh+74pC/PmzcPT05MHHnigzNZZlMcff5zhw4fTv39/Dhw4wGeffcbbb79d6vWW9b4pLwkJCXh4eJCUlETv3r1ZsGABoaGhJVqXvd8Zlf64Mytnwhlp8WV02iwaqHhW/+Ne6tcuvxO1pTlOlfbKlhBClEpSmpmnVuzDt647L94W4OhwhBBC5PLQQw/luP+pIgQGBtq6ZQ8MDCyTRKsqmTp1KiEhIYSGhjJ69OgSJ1rVWUvDOT5x+TfR2pvHlu0lw1L8C0gVoVL1RiiEqHne+uEIpy4n8tWUrtRxc3Z0OKKGko6fqra+fftW7jPyVZybm5ttPLWKMmXKlArdXmXz1VdfOTqEysfFI09nGJ0Nx5jttpSZx+9h3vpjPD0473hujlbSZCurpsW/a1QIITJtPnaJxX/8xf09/enR0svR4YiabS7We7Wy/gohhKhMCujefTwQsXo/H/x6gmC/ugyqZL0Zl6gZoda6d/a/QghRXNcS03hm1T5a+XjwTCU8EyVqLOn4SQghqphZwzsQ7FeX/1uxj5OXKldX8HLPlhCiwmmteX7Nn1xNTOOdcSG4Ods/CKoQQgghRHZuzkY+uqsTRqPiyeURmDMsjg7JRpItIUSFW73nLD8cOM9TA9sS2Fi6sxVCCCFE6TSu585rtweyLzqW/4RHFr1ABZFkSwhRoc5cTWLWuoN08W/A1N6VfzBCIUTJrFu3jrfeeguAtWvXcujQIdu8l156iQ0bNhR7nVFRUQQGBpZJfMOGDeP69euFllm4cCExMTH5Tp8wYUKOaZcvX8bb25vU1FS7Y5g0aZJdA/GWhfDwcNuYXMVZ5tZbby2yXHJyMn369CEjI4OIiAi6d+9Ohw4dCA4OZvny5bZyp06domvXrrRu3Zpx48aRlpYGwJEjR+jevTuurq7MnTs3x7rnzZtHhw4dCAwMZMKECaSkpADW8bU2bpS+bEROtwY3YripEe/9cpwDZ2MdHQ4gyZYQogKZMyw8tmwvSsHbd5gwGuT2GFFpVN+On/avgHmBMKue9e/+FeW+SbPZzPDhw5k5cyaQN9maPXs2AwYMKPc4CvP9999Tr169QssUlGyNGjWK9evXk5SUZJu2atUqhg8fnqeLdHsHvy1vJUm27PXZZ58xatQojEYjtWrVYvHixRw8eJAff/yRJ554wpbUzpgxgyeffJLjx49Tv359Pv30UwAaNGjAe++9x9NPP51jvWfPnrUNMHzgwAEyMjJYtmwZAI8++qgtmRciu9kjOtCgtgtPLo8gJd3x/3/FSraUUndm/h1fPuEIIaqz9345zt7T13ljZBB+9Ws5OhwhbKptx0/7V8C3j0HsGUBb/377WKkTrsWLFxMcHIzJZLJ1CT5p0iSeeuop+vXrx4wZM1i4cCHTp09n69atrFu3jmeeeYaQkBAiIyNzXNHZuXMnPXr0wGQy0aVLF+Lj44mKiqJXr16EhoYSGhpaZJIQHh5O7969GTlyJAEBAUybNg2LxXrPxtKlSwkKCiIwMJAZM2bYlmnevDmXL18mKiqK9u3bM2XKFDp06MCgQYNITk5m1apV7Nq1i4kTJxISEkJycrJt2Tp16tC7d2++/fZb27Rly5bZrnY1b96c2bNn07NnT1auXMnHH39MWFgYJpOJ0aNH50jSNmzYQK9evWjTpo1tUOaMjAyeeeYZwsLCCA4O5r///a+t/L/+9S+CgoIwmUy2ZDa7S5cucddddxEWFkZYWBi///47UVFRzJ8/n3nz5hESEsJvv/2WY5kdO3bQo0cPOnbsSI8ePcg9kHZRlixZwogRIwBo06YNrVu3BqBRo0b4+Phw6dIltNZs3LiRMWPGAHDvvfeydu1aAHx8fAgLC8PZOe/wH2azmeTkZMxmM0lJSTRq1AiAZs2aceXKFc6fP1+sWEX1V6+WC/8aE8zxiwm898txR4dT7K7fGyul7gD8yiMYIUT1tf3kFT749QRjOvlxm6mRo8MRomb4ZTakJ+eclp5snR58R4lWefDgQV5//XV+//13vLy8uHr1qm3esWPH2LBhA0ajkYULFwLQo0cPhg8fzq233mr7oZ0lLS2NcePGsXz5csLCwoiLi8Pd3R0fHx/Wr1+Pm5sbx48fZ8KECezatavQuHbs2MGhQ4do1qwZQ4YM4euvv6ZHjx7MmDGD3bt3U79+fQYNGsTatWu5/fbbcyx7/Phxli5dyscff8wdd9zB6tWrueuuu/jggw+YO3cunTt3zrO9CRMm8NVXXzFu3DhiYmI4duwY/fr1s813c3Njy5YtAFy5csU2btQ//vEPPv30Ux599FHA2jRy06ZNREZG0q9fP06cOMHixYupW7cuO3fuJDU1lZtuuolBgwZx5MgR1q5dy/bt26lVq1aOfZ/l8ccf55FHHmHQoEGcPn2awYMHc/jwYaZNm4aHh0eeq0cA7dq1Y/PmzTg5ObFhwwaef/55Vq9eXej+zpKWlsbJkydp3rx5vu9JWloaLVu25MqVK9SrVw8nJ+tPTz8/P86ezb8r7yyNGzfm6aefpmnTpri7uzNo0CAGDRpkmx8aGsrvv//O6NGj7YpV1Bx92/owqmNjPvntFOPCmtDshtoOi8XuZEsp9TLgBrwJ/Esp9ZLWena5RSaEqDauJ6Xx5PIImjSoxazhHRwdjhA1R2x08abbIevqhJeXdWy8Bg0a2OaNHTsWo9H+3kWPHj2Kr68vYWFhgPWKEUBiYiLTp08nIiICo9HIsWPHilxXly5daNHCeh/ohAkT2LJlC87OzvTt2xdvb28AJk6cyObNm/MkW/7+/oSEhADQqVMnoqKiitzerbfeysMPP0xcXBwrVqxgzJgxOeo+btw42/MDBw7wj3/8g+vXr5OQkMDgwYNt8+644w4MBgOtW7emRYsWHDlyhJ9//pn9+/fbrv7FxsZy/PhxNmzYwOTJk6lVy9oyIPu+z7JhwwYOHDiAwWBtvBQXF0d8fOGtY2NjY7n33ns5fvw4SinS09OLrH+Wy5cv59sc89y5c9x9990sWrQIg8GA1jpPGaUKb0p+7do1vvnmG06dOkW9evUYO3YsX375JXfddRdgvSKWXzNPIQBmDG3HjwfP8/p3h1lwT94TJhXF7mRLa/2KUuoZ4C7AT2s9t6hlhBA12BuNIS0BreHZ9Ce5ZOnIapeX8fj3pQIHJhRClLG6fplNCPOZXkJa6wJ/JNeuXbyzxwWta968eTRs2JB9+/ZhsVhwc3Mrcl2516OUyvcHfn6y32dlNBpzNBksiLu7O0OGDGHNmjUsW7aMefPm5ZiffV9MmjSJtWvXYjKZWLhwIeHh4UXG/f777+dIygB+/PHHIhMUi8XChg0b8PHxKbIOWV588UX69evHmjVriIqKom/fvnYv6+7ubuu0IktcXBy33HILr732Gt26dQPAy8uL69evYzabcXJyIjo62tYksCAbNmzA39/fliyPGjWKrVu32pKtlJQU3N3d7Y5V1CwN67jxSL9WzPnpKFuOX6Znay+HxFHcDjJitNbLAPmlJIQoXJq1v4EvMgbysyWMGU7LCDacsk0XQlSA/i+Bc64fo87u1uklXWX//qxYsYIrV64A5NuULTdPT898r660a9eOmJgYdu7cCUB8fDxms5nY2Fh8fX0xGAx88cUXdnUysWPHDk6dOoXFYmH58uX07NmTrl27smnTJi5fvkxGRgZLly6lT58+dte1oLizTJgwgbfffpsLFy7Ykor8xMfH4+vrS3p6OkuWLMkxb+XKlVgsFiIjIzl58iRt27Zl8ODBfPTRR7YrTMeOHSMxMZFBgwbx2Wef2e75ym/fDxo0iAULFtheR0REFFmX2NhYGjduDGBr/mmv+vXrk5GRYUu40tLSGDlyJPfccw9jx461lVNK0a9fP9vVukWLFtnu8ypI06ZN2bZtG0lJSWit+eWXX2jfvr1t/rFjx8qsd0pRPd3f058mDdyZ/b+DDht7q1jJltZ6SebfpeUTjhCiOjlkacpr5on0NURwn/EHR4cjRB7VvuOn4DvgtvegbhNAWf/e9l6J79cC6NChAy+88AJ9+vTBZDLx1FNPFbnM+PHjmTNnDh07diQy8u/xb1xcXFi+fDmPPvooJpOJgQMHkpKSwsMPP8yiRYvo1q0bx44ds+uKWffu3Zk5cyaBgYH4+/szcuRIfH19efPNN+nXrx8mk4nQ0NAif+BnN2nSJKZNm5ang4wsgwYNIiYmhnHjxhV6xenVV1+la9euDBw4kHbt2uWY17ZtW/r06cPQoUOZP38+bm5uPPDAAwQEBBAaGkpgYCAPPvggZrOZIUOGMHz4cDp37kxISEiebtIB3nvvPfbu3UtwcDABAQHMnz8fgNtuu401a9bk20HGs88+y3PPPcdNN91UYGK7a9cuHnjggXznDRo0yHZ/2ooVK9i8eTMLFy4kJCSEkJAQW8L3z3/+k7fffptWrVpx5coV7r//fgDOnz+Pn58fb7/9Nq+99hp+fn7ExcXRtWtXxowZQ2hoKEFBQVgsFqZOnQpAeno6J06cyPd+OiGyuDkbeWFYAMcuJPDVjtMOiUHZe4m9Omrbtq0ubo87VVV4eHixmgVUdTWpvpW1rgkvN2R42mskaHe+d30OLxX398xZJRv7orLWtTzUpLoqpXZrrR3yiymzefxfQNPSNo9XSg0B3gWMwCda63z7pVZKhQHbgHFa60IHWcrvOHX48OEcZ/drqvj4eDw9PQHr/8vcuXNtvfnVdNn3TUXYu3cvb7/9Nl988UWFbXPNmjXs2bOHV199tVjLVfS+qQzs/c6orscdrTUTP9mOv1dtXh8ZVKJ1lOY4VexxtpRSQ5VS25VSR5VSK5RS3UuyYSFE9aW15oX0+4nSN/Key/s5Ey0hKonMjp8aAF8BDZRSJW5bp5QyAh8CQ4EAYIJSKqCAcv8EfirptoSobDp27Ei/fv0qdEwxs9nM//3f/1XY9kTVpZTis0lhJU60Sqskgxr/B3gK6AYsAOYopSYUvogQoiZZvvMM31hu4kmnVXQzHHF0OELkS2v9CnAVa8dPV0vZw24X4ITW+qTWOg1YBuTXXu1RYDVwsRTbErn07dtXrmo52H333VesnihLa+zYsUUOSi1EFjfnivts5lbccbYALmitf898vkEp9QewHZD7uIQQHIqJ4+V1B+lpPMTDxm/yFnDxqPighChYjNZ6WRmcNGwMZO/2Lxromr2AUqoxMBK4GQgraEVKqanAVABvb+8cPdcB1K1bt8iuvGuCjIwM2Q8FkH1TsJq4b1JSUvJ8j+QnISHBrnKieEqSbEUppV4DZmeevUsHatanVgiRr7iUdB5espt6tZx557HHMHo84+iQhChUGXb8lF/vCLlvin4HmKG1ziisMwWt9QKsLUdo27atzn0PxeHDh2vcPSf5qYn33thL9k3BauK+cXNzo2PHjkWWq673bDlaSZItDYwCpiiljgNNgSVKqdZa6+NlGp0QosrQWjNj1X7OXEtm2dRueHm4Fr2QEJWEUsoAGLTW5hKuIhpoku21H5B7tNXOwLLMRMsLGKaUMmut15Zwm0IIISq5YidbWusJAEopNyAQMGU+PlFKtdBaNylseSFE9fTZ71H8cOA8zw1tR1jzBo4ORwi7KaWmAy8DaUqpy8D7WutPirmanUBrpZQ/1rEoxwN3Zi+gtfbPts2FwP8k0RJCiOqtJB1kAKC1TtFa79Jaf6q1fkxr3UcSLSFqpp1RV3nz+8MMDGjI1N4tHB2OEMX1f0CQ1roxMAS4SSk1qzgryLwiNh1rL4OHgRVa64NKqWlKqWllHXBVsG7dOt56y9r7/dq1azl06JBt3ksvvcSGDRuKvc6oqKgyG8R22LBhXL9+vdAyCxcuJCYm9wVKq0mTJuHv709ISAihoaH88ccfBa6na9euhISE0LRpU7y9vW3jT0VFRfHZZ58RFBREcHAwgYGBfPNN3ntdZ82alWdMrebNm3P58uVS17Ekcr+f9li4cCHTp08vsty5c+e49dZbAVi/fj2dOnUiKCiITp06sXHjRlu53bt3ExQURKtWrXjsscfIGspo8+bNhIaG4uTkZBtAOcuzzz5Lly5daN++fY5lxo8fz/Hj0jhLlI8SJ1tCCAFwMS6Fh5fswa++O/++w1TowJ5CVFIJZPYOqLU+B9yPtbl8sWitv9dat9Fat9Rav545bb7Wen4+ZScVNcZWWfnu5HcMWjWI4EXBDFo1iO9Oflfu2zSbzQwfPpyZM2cCeX+cz549mwEDBpR7HIX5/vvvi+zNrrBkC2DOnDlERETw1ltv8eCDDxZYbvv27URERDB79mzGjRtHREQEERERODk58frrr7Nlyxb279/Ptm3bCA4OLmmV8rCnjtnZ23V7SZIte7399ttMmTIFAC8vL7799lv+/PNPFi1axN13320r99BDD7FgwQKOHz/O8ePH+fHHHwFo2rQpCxcu5M47c1xYZuvWrfz+++/88ccfHDhwgJ07d7Jp0ybbuv71r3+VS32EkGRLCFFi6RkWpn+1l/iUdObf3Yk6bs6ODkmIkvgIWKmUapX5uimQ5MB4ysx3J79j1tZZnEs8h0ZzLvEcs7bOKnXCtXjxYoKDgzGZTLYfwJMmTeKpp56iX79+zJgxw3YlY+vWraxbt45nnnmGkJAQIiMjmTRpku2qw86dO+nRowcmk4kuXboQHx9PVFQUvXr1IjQ0lNDQULZu3VpoPOHh4fTu3ZuRI0cSEBDAtGnTsFgsACxdupSgoCACAwOZMWOGbZmsK0NRUVG0b9+eKVOm0KFDBwYNGkRycjKrVq1i165dTJw4kZCQEJKTkwvcfu/evTlx4gQAX375JV26dCEkJIQHH3yw0ATm4sWLeHp64uFh7aXVw8MDf3//AssXpKBtZr/6VVAZDw8PXnrpJbp27Zrn6lxkZCRDhgyhU6dO9OrViyNHjuT7fmb37bff0rVrVzp27MiAAQO4cOFCseqyevVqhgwZAljH72rUqBEAHTp0ICUlhdTUVM6dO0dcXBzdu3dHKcU999zD2rVrbXUODg7GYMj5E1cpRUpKCmlpaaSmppKenk7Dhg0B6NWrFxs2bMBsLuktm0IUTJItIUSJvf7dYXZEXeWtUcG0u7GOo8MRokS01v8BlmC99/gqcAI4qpQaq5Rq7djoSufdPe+SkpGSY1pKRgrv7nm3xOs8ePAgr7/+Ohs3bmTfvn28++7f6zp27BgbNmzg3//+t21ajx49GD58uO0qUMuWLW3z0tLSGDduHO+++y779u1jw4YNuLu74+Pjw/r169mzZw/Lly/nscceKzKuHTt28O9//5s///yTyMhIvv76a2JiYpgxYwYbN24kIiKCnTt32n6UZ3f8+HEeeeQRDh48SL169Vi9ejVjxoyhc+fOLFmyhIiICNzd3Qvc9rfffktQUBCHDx9m+fLl/P7770RERGA0GlmyZEmBy5lMJho2bIi/vz+TJ0/m22+/LbDsvHnzbM0PQ0JCbFfc8tvm8uXLcyxbWFyJiYkEBgayfft2evbsmWO5qVOn8v7777N7927mzp3Lww8/XOj7CdCzZ0+2bdvG3r17GT9+fLGuGJ06dYr69evj6pq3g6XVq1fTsWNHXF1dOXv2LH5+frZ5fn5+nD17ttB1d+/enX79+tGmTRt8fX0ZPHgw7du3B8BgMNCqVSv27dtnd6xC2KskvREKIQRr9kazcGsU993kz+0dGzs6HCFKRWv9NfC1UsoJCAA6Aj2Ah7COi1UlnU88X6zp9ti4cSNjxozBy8sLgAYN/u4QZ+zYscUa2Pbo0aP4+voSFmYddqxOHetJm8TERKZPn25LDI4dO1bkurp06UKLFtZ7RidMmMCWLVtwdnamb9++eHt7AzBx4kQ2b97M7bffnmPZrHuvADp16kRUVJRd8T/zzDO89tpreHt78+mnn/LLL7+we/duW32Sk5Px8fEpcHmj0ciPP/7Izp07+eWXX3jyySfZvXs3s2bNylP2ySef5Omnn7a9bt68OUC+26xbt26OZQuLy2g0Mnr06DzbS0hIYOvWrYwdO9Y2LTU1tch9Eh0dzbhx4zh37hxpaWnFulJ37tw523uV3cGDB5kxYwY///wzgO1eq+yKasJ+4sQJDh8+bBs6YeDAgWzevJnevXsD4OPjQ0xMDJ06dbI7XiHsIcmWEKLYDpyNZebqP+nq34DnhrVzdDhClJnMji72Zz4WOTicUrux9o2cSzyX7/SS0loX+MO2du3aZbKuefPm0bBhQ/bt24fFYsHNza3IdeVej1Iq3x/l+cl+JcVoNBbaZDC7OXPmMGbMGNvrX3/9lXvvvZc333zTruWz4uzSpQtdunRh4MCBTJ48Od9kqyBa6zzbzD1ob35lsri5ueWbIFssFurVq0dERITdsQA8+uijPPXUUwwfPpzw8PBi1cXd3Z2UlJxXYqOjoxk5ciSLFy+2XUXz8/MjOjo6R5ms5oYFWbNmDd26dcPDwwMPDw+GDh3Ktm3bbMlWSkpKoVcvhSgpaUYohCiWKwmpPPjFbhrUduHDiaE4G+VrRIjK6vHQx3Ez5kxU3IxuPB76eInX2b9/f1asWMGVK1cAuHr1apHLeHp65kkAANq1a0dMTAw7d+4ErEmC2WwmNjYWX19fDAYDX3zxhV0dN+zYsYNTp05hsVhYvnw5PXv2pGvXrmzatInLly+TkZHB0qVL6dOnj911LSjugvTv359Vq1Zx8eJFwLpv/vrrrwLLx8TEsGfPHtvriIgImjVrZvf2Ctrm6dOnSxUXWK8y+vv7s3LlSsCasGU1sytsv8TGxtK4sbW1w6JFxTtf0aZNmxxXFa9fv84tt9zCm2++yU033WSb7uvri6enJ9u2bUNrzeLFixkxYkSh627atCmbNm3CbDaTnp7Opk2bbM0IwdoEtkOHDsWKVwh7yK8kIYTd0jMsPLRkD5cTUvnv3Z1k4GIhKrlbWtzCrB6z8K3ti0LhW9uXWT1mcUuLW0q8zg4dOvDCCy/Qp08fTCYTTz31VJHLjB8/njlz5tCxY8ccHSq4uLiwfPlyHn30UUwmEwMHDiQlJYWHH36YRYsW0a1bN44dO2bXFbPu3bszc+ZMAgMD8ff3Z+TIkfj6+vLmm2/Sr18/TCYToaGhRf4oz27SpElMmzatyA4ysgQEBPDaa68xaNAggoODGThwIOfO5b2ymCU9PZ2nn36adu3aERISwvLly3PcA2eP/LZ5/vz5IssUFleWJUuW8Omnn2IymejQoYOtW/qC3k+wdlM/duxYevXqZWtqmtu6det46aWX8kyvXbs2LVu2tHU28sEHH3DixAleffVV271qWQnjRx99xAMPPECrVq1o2bIlQ4cOBawdrvj5+bFy5UoefPBBWwI1ZswYWrZsSbdu3TCZTJhMJm677TYALly4gLu7O76+vkXuEyGKS9l7ib06atu2rT569Kijw6gQ4eHh9O3b19FhVJiaVN+KrOs/1v7Jl9tO8864EIfcpyXva/WklNqtte7s6Dgqo/yOU4cPH85xRr6mio+Px9PTE7D+v8ydO5f//e9/Do6qcsi+b6qaNWvWsHv3bl577bVyWX9++2bevHnUqVOH+++/v1y26Wj2fmfUpONOcZXmOCX3bAkh7LJk+198ue00D/ZuIR1iCCGEKBcjR460NVGtKPXq1csxhpcQZUmSLSFEkbZGXublbw7St603zw6RDjGEEJVL37595Yx8NfLAAw9U6PYmT55codsTNYskW0KInN5oDGkJtpdRloY8lPYqzQ1xvDdhIEZD4d3rCiGEEEIIK+kgQwiRU7ZEK1bX4v70p1FoPnX6F3XcnB0YmBBCCCFE1SJXtoQQ+UrXRh5Jf5y/dEO+cH6TZoaLjg5JCCGEEKJKkStbQog8tIaXzfeyxRLEG06f0t142NEhCSGEEEJUOZUq2VJKDVFKHVVKnVBKzcxnvlJKvZc5f79SKjTXfKNSaq9SSvp+FaIUPs0YxlcZA3jI+A13OG1ydDhCiFLIPcRLRQ35sm7dOt566y0A1q5dy6FDh2zzXnrpJTZs2FDsdUZFRREYGFgm8Q0bNozr168XWmbhwoXExMTYNa958+Zcvnw5T7ns+6EoUVFRuLu7ExISQkBAANOmTcNiseRb9vPPP7eNPeXi4kJQUBAhISHMnDmTixcvcuutt2IymQgICGDYsGH5rqNHjx52xVWU8PBwbr311jJZV3FFRUXx1VdfFbvcrl27eOyxx8ozNCGAStSMUCllBD4EBgLRwE6l1Dqt9aFsxYYCrTMfXYGPMv9meRw4DNSpkKCFqIZ+yAjjdfOdDDNs5xmnFY4ORwhRCpfe/4CM+DgaPvccSim01lx4802MnnXwfnR6uW3XbDYzfPhwhg8fDliTrVtvvZWAgAAAZs+eXW7bttf3339fZJmFCxcSGBhIo0aNijUvu+z7wR4tW7YkIiICs9nMzTffzNq1axk1alSecpMnT7b1ote8eXN+/fVX2yDC9913HwMHDuTxxx8HYP/+/flua+vWrXbHVVllJVF33nmnXeWyBjLu3LkznTvL8H6i/FWmK1tdgBNa65Na6zRgGZB7mPcRwGJttQ2op5TyBVBK+QG3AJ9UZNBCVCd7Tl/jifRH6KhO8LbzfzCobGfAXTwcF5gQoti01mTEx3Ft8RdcePNNW6J1bfEXZMTHleoK1+LFiwkODsZkMtnGJ5o0aRJPPfUU/fr1Y8aMGSxcuJDp06ezdetW1q1bxzPPPENISAiRkZFMmjSJVatWAbBz50569OiByWSiS5cuxMfHExUVRa9evQgNDSU0NLTIpCA8PJzevXszcuTIPFeEli5dSlBQEIGBgcyYMcO2TNaVqKioKNq3b8+UKVPo0KEDgwYNIjk5mVWrVrFr1y4mTpxISEgIycnJtmULmvf+++8TGhpKUFAQR44cAbDtB4CVK1cSGBiIyWSid+/ehdbJycmJHj16cOLECS5dusTo0aMJCwsjLCyM33//vdBlz58/j5+fn+11cHBwvuU8PDxs+69Pnz7ccccdtGnThpkzZ7JkyRK6dOlCUFAQkZGRgPU9njZtGr169aJNmzb5DiKdmJjIfffdR1hYGB07duSbb76x7Yfbb7+d2267DX9/fz744APefvttOnbsSLdu3bh69SoAkZGRDBkyhE6dOtGrVy/bfpw0aRKPPfYYPXr0oEWLFrbPz8yZM/ntt98ICQlh3rx5BX52ssrddNNNzJs3L8fVuKtXr3L77bcTHBxMt27dbMnprFmzuO++++jbty8tWrTgvffeK3S/C5GfSnNlC2gMnMn2OpqcV60KKtMYOAe8AzwLFDpkulJqKjAVwNvbm/Dw8NLEXGUkJCTUmLpCzapvWdX1YpKFV7clU8fdlUndQ9jmsipvIQfvU3lfhbCfUoqGzz0HwLXFX3Bt8RcA1L/nbtuVrpI4ePAgr7/+Or///jteXl62H8kAx44dY8OGDRiNRhYuXAhYm6oNHz6cW2+9lTFjxuRYV1paGuPGjWP58uWEhYURFxeHu7s7Pj4+rF+/Hjc3N44fP86ECRPYtWtXoXHt2LGDQ4cO0axZM4YMGcLXX39Njx49mDFjBrt376Z+/foMGjSItWvXcvvtt+dY9vjx4yxdupSPP/6YO+64g9WrV3PXXXfxwQcfMHfu3DxXQMaMGZPvPC8vL/bs2cN//vMf5s6dyyef5Dz/O3v2bH766ScaN25cZBPGpKQkfvnlF2bPns3jjz/Ok08+Sc+ePTl9+jSDBw/m8OGC76WdMmUKkydP5oMPPmDAgAFMnjy5yCtw+/bt4/DhwzRo0IAWLVrwwAMPsGPHDt59913ef/993nnnHcB6hWjTpk1ERkbSr18/Tpw4kWM9r7/+OjfffDOfffYZ169fp0uXLgwYMACAAwcOsHfvXlJSUmjVqhX//Oc/2bt3L08++SSLFy/miSeeYOrUqcyfP5/WrVuzfft2Hn74YTZu3AjAuXPn2LJlC0eOHGH48OGMGTOGt956i7lz59oSv6SkpHw/O1nlli5diqenZ47v15dffpmOHTuydu1aNm7cyD333ENERAQAR44c4ddffyU+Pp62bdvy0EMP4ewsPfNWKftXwC+zITYa6vpB/5eI/cudi/PewXzuHE6+vvg8+QR1M696lrXKlGzl962f+7RbvmWUUrcCF7XWu5VSfQvbiNZ6AbAAoG3btrqmDIIYHh5eowZ8rEn1LYu6XklIZfRHW3Fycmb5Qz1o4V05r2LJ+ypE8WQlXFmJFlCqRAtg48aNjBkzxtZkrUGDBrZ5Y8eOxWg02r2uo0eP4uvrS1hYGAB16ljvAkhMTGT69OlERERgNBo5duxYkevq0qULLVq0AGDChAls2bIFZ2dn+vbti7e3NwATJ05k8+bNeZItf39/QkJCAOjUqRNRUVF21yG7rOZ+nTp14uuvv84z/6abbmLSpEnccccd+TYNBOuVnZCQEJRSjBgxgqFDh3LvvffmuOctLi6O+Ph4PD3zP788YMAATp48yY8//sgPP/xAx44dOXDggG0/5CcsLAxfX1/A2pRx0KBBAAQFBfHrr7/ayt1xxx0YDAZat25NixYtbFeesvz888+sW7eOuXPnApCSksLp06cB6NevH56ennh6elK3bl1bk76goCD2799PQkICW7duZezYsbb1paam2p7ffvvtGAwGAgICuHDhQr71SE9PL/ZnZ8uWLaxevRqAm2++mStXrhAbGwvALbfcgqurK66urvj4+HDhwoUcVw1FJbd/BXz7GKRnXpmOPYNe8wgJO+pijrEmzeaYGM69+BJAuSRclSnZigaaZHvtB+S+K7WgMmOA4UqpYYAbUEcp9aXW+q5yjFeIaiEpzcx9i3ZxLjaFr6Z0q7SJlhCi+LKaDmZ34c03S5Vwaa0LXLZ27dplsq558+bRsGFD9u3bh8Viwc3Nrch15V5P1j1q9nB1dbU9NxqNOZoMFkfWeoxGI2azOc/8+fPns337dr777jtCQkKIiIjghhtuyFEm656t7CwWC3/88Qfu7u52x9KgQQPuvPNO7rzzTm699VY2b97M6NGji4wdwGAw2F4bDIYcdclvP2entWb16tW0bds2x/Tt27cXuQ2LxUK9evXy1D+/GAt6b0vy2clvXVn1yv3ZyO99FZXYL7P/TrQyKZ2Gd8BV4iIb2qbplBQuznuHurfdVuh3XElUpnu2dgKtlVL+SikXYDywLleZdcA9mb0SdgNitdbntNbPaa39tNbNM5fbKImWEEUzZ1h49Ku9/Bl9nfcmdKRTs/qODkkIUUay36NV/567aXf4EPXvuTvHPVwl0b9/f1asWMGVK1cAcjQjLIinpyfx8fF5prdr146YmBh27twJQHx8PGazmdjYWHx9fTEYDHzxxRdkZGQUuY0dO3Zw6tQpLBYLy5cvp2fPnnTt2pVNmzZx+fJlMjIyWLp0KX369LG7rgXFXdS8gkRGRtK1a1dmz56Nl5cXZ86cKXohYNCgQXzwwQe21wUlI1k2bdpEUlISYN2nkZGRNG3atFixFmTlypVYLBYiIyM5efJknqRq8ODBvP/++7bP1969e+1ed506dfD392flypWA9TO8b9++QpfJ/T4U9Nkp7P3q3bs3S5YsAaytCry8vGxXWUUVFxud72TnWtbPxV9esDFYMW6Ggam3X+C7yP9x4c03ufT+B/kuVxKVJtnSWpuB6cBPWHsUXKG1PqiUmqaUmpZZ7HvgJHAC+Bh42CHBClENaK15fs2f/HLkIq+MCGRwhxsdHZIQogwppTB61slxj1bD556j/j13Y/SsU+Iztx06dOCFF16gT58+mEwmnnrqqSKXGT9+PHPmzKFjx462zhYAXFxcWL58OY8++igmk4mBAweSkpLCww8/zKJFi+jWrRvHjh2z64pZ9+7dmTlzJoGBgfj7+zNy5Eh8fX1588036devHyaTidDQUEaMyN33VsGyOoTI3UFGUfMK8swzz9g66+jduzcmk8mu5d577z127dpFcHAwAQEBzJ8/v9DyERERdO7cmeDgYLp3784DDzxga6pZWm3btqVPnz4MHTqU+fPn57ly9OKLL5Kenk5wcDCBgYG8+OKLxVr/kiVL+PTTTzGZTHTo0MHWwUZBgoODcXJywmQyMW/evAI/O1nlevTowbx583KsY9asWbb9O3PmTBYtWlSsmEUlVjf/Jp/pSUZ+aw+Hmypu3q+55xfN5Tpw/JXny6QToexURY23URm1bdtWHz161NFhVIiadv9HTapvSes656cjfPhrJI/1b81TA9uUfWDlQN7X6kkptVtrXeX7YFZKDQHeBYzAJ1rrt3LNHwG8ClgAM/CE1npLYevM7zh1+PBh2rdvb3dcuZvElHUTGUfJfs9SeHh4jk4SarrC7ucqjUmTJuXb0UlVUl77pjKz9zujWh53ct+zBWjlQsyOutw12I3LdeDeDRZu2fV3PhTe3YNpn+3I8T1ZmuNUpbmyJYSoOJ9tOcWHv0YyoUtTnhzQ2tHhCFHlZRsrcigQAExQSgXkKvYLYNJahwD3UUFDlRR1j40QQlRbwXfAbe9B3SaAgrpNUCM/xGPaPK7UUaAUiwbkTIc+6pNSpt+TlamDDCFEBVi9O5rZ/zvEkA438trtgfLDS4iyYRsrEkAplTVWpK0LOa11Qrbytcnb464oob59+1a/M/KVUFZ3/kJUKcF3WB/Z1A2GG1e9z7mEGO7dYMkx76FNbuh7y64FgFzZEqIGWX/oAs+u3k/PVl68OyEEo0ESLSHKSEHjQOaglBqplDoCfIf16laJ1ORbAIQQ9pPvioI93vEx7t9o4JZdmu86K+6YaeSnLs70/SOhVJ0I5SZXtoSoIX4/cZlHvtpDYOO6/PfuTrg62T8WjhCiSPaMFYnWeg2wRinVG+v9WwPyrEipqcBUAG9v7zyDW3t4eBAdHU3dunVr9JXpjIyMYvcGWFPIvilYTdo3WmtiY2NJTEzM8z2Sn4SEBLvKVRe18aD10Gc4cHMCtTw1jxmc8Znow9lhyZw1GDmyaVOZbEeSLSFqgN1/XWPK4l3431CbRZPDqO0q//pClDF7xoq00VpvVkq1VEp5aa0v55q3AFgA1g4ycjePS09PJzo6mrNnz5ZV7FVSSkqKXWMo1USybwpW0/aNm5sbJpMJZ2fnIstWyw4y7FDenQjJLy4hqrmDMbFM/nwHPp6ufPFAF+rVcnF0SEJUR7axIoGzWMd8vDN7AaVUKyBSa62VUqGAC3CluBtydnbG39+/DEKu2sLDw+nYsaOjw6iUZN8UTPaNyK28OxGSZEuIauzYhXju+mQ7Hq5OfPlAV3w8a87ZPCEqktbarJTKGivSCHyWNVZk5vz5wGjgHqVUOpAMjNNyQ4UQQlRrkmwJUZ280RjSrB2enbTcyJ1pL+GM5iuPufjVj3BsbEJUc1rr74Hvc02bn+35P4F/VnRcQgghHEeSLSGqk8xE6y+LD3emvQAovnJ5jebmAm8dEUIIIYQQ5USSLSGqmb8sPoxPe5FUXFjq8hqtDJJoCSGEEEI4giRbQlQjZyzeTEj7B8m48JXL67QznCl6ISGEEEIIUS5kUGMhqonTV5IYn/YPknBlicsbBBhOOzokIYQQQogaTa5sCVENRF1OZMLH20jBjSUub9DB8JejQxJCCCGEqPHkypYQVdz5RAvjFvxBqtnCV7Xfzj/RcvGo+MCEEEIIIWo4ubIlRBV29Hw8b2xPwcXFma+mdKXdjTscHZIQQgghhMgkyZYQVdSBs7Hc/el2DAqWTe1OKx+5eiWEEEIIUZlIsiVEFbQr6iqTF+6kjpszjwc7SaIlhBBCCFEJyT1bQlQxvx2/xN2f7sDLw5UV07rjU0v+jYUQQgghKiP5lSZEFfLjgfPcv3AXzW6oxYoHu9O4nrujQxJCCCGEEAWQZoRCVBHLdpzm+TV/EtKkHp9P6kLdWs6ODkkIIYQQQhRCki0hKjmtNR9tiuRfPx6lTxtvProrlFou8q8rhBBCCFHZyS82ISoxi0Xz6neH+Pz3KIabGjF3rAkXJ2n9K4QQQghRFUiyJURl8EZjSEvIMSlVO/FUxqN8Zw7jvpv8+cct7TEYlIMCFEIIIYQQxSXJlhCVQa5EK1bX5sH0J9hm6cDzw9oxpVcLlJJESwghhBCiKpFkS4hKJlp7MTntWaL0jcxz/pCRvb93dEhCCCGEEKIEJNkSohI5YGnOfWnPkIwLi5zfoofxkKNDEkIIIYQQJSR32gtRSazPCGVs2ks4Y2aVyyuSaAkhhBBClIGLcSlkWLRDti3JlhAOprXmU/MQpqY/RRt1ljWuL9HWEO3osIQQQgghqrxUcwb3fLaDR5bsccj2JdkSwoHSzBaeX/Mnr5rvYbBhF8tcXsVHxf5dwMXDccEJIYQQQlRxb/98jCPn47kjzM8h25d7toRwkGuJaTy0ZDfbTl7lkX4t+b+BwzAYXnF0WEIIIYQQ1cK2k1dY8NtJ7uzalJvbNXRIDHJlSwgHOHI+juEfbmHP6evMG2fimcHtZAwtIao4pdQQpdRRpdQJpdTMfOZPVErtz3xsVUqZHBGnEELUBHEp6fzfin00a1CLF4a1d1gccmVLiAr244HzPLUiAg9XJ5ZP7UbHpvUdHZIQopSUUkbgQ2AgEA3sVEqt01pn7+nmFNBHa31NKTUUWAB0rfhohRCietNa8/I3Bzkfl8Kqad2p7eq4lEeSLSEqSIZF886GY7y/8QSmJvVYcHcnGtZxc3RYQoiy0QU4obU+CaCUWgaMAGzJltZ6a7by2wDH3EAghBDV3KdbTrFm71meGNDa4Se1JdkSogLEJqXzxPK9/Hr0End09mP2iEDcnI2ODksIUXYaA2eyvY6m8KtW9wM/5DdDKTUVmArg7e1NeHh4GYVYvSQkJMi+KYDsm4LJvilYddk3ey+aeW9PKp0bGgk2niU8PMah8UiyJUQ5OxgTy0Nf7uFcbDKv3R7IxK5NUUruzxKimsnvnzrfQV2UUv2wJls985uvtV6AtYkhbdu21X379i2jEKuX8PBwZN/kT/ZNwWTfFKw67JuDMbF8vPEPgvzq8sXU7ri7OP7EtiRbQpSjlbvO8I+1B6hfy4VlU7vTqZncnyVENRUNNMn22g/IczpVKRUMfAIM1VpfqaDYhBCi2jtzNYkHFu2irrszn9zTuVIkWiDJlhDlIjktg5fXHWDFrmh6tLyB9yZ0xMvD1dFhCSHKz06gtVLKHzgLjAfuzF5AKdUU+Bq4W2t9rOJDFEKI6in6WhLjF2wjKS2DpVO64VOJ7omXZEuI0nijMaQl5JgUafHlEfOTHLH4Mb1fK54Y0Bono4yyIER1prU2K6WmAz8BRuAzrfVBpdS0zPnzgZeAG4D/ZDYlNmutOzsqZiGEqA7OXk9mwsfbiE9JZ8kD3QhoVMfRIeUgyZYQpZEr0fo6oyf/SL8PV9JZODmMvm19HBSYEKKiaa2/B77PNW1+tucPAA9UdFxCCFFdnbmaxF2fbud6Ujpf3t+VIL+6jg4pD0m2hCgDidqVl9InsdrShy7qMO+6fIhv21OODksIIYQQonrI1ZrogKU5k9KeJR1nFj88EFOTeo6LrRCSbAlRSvst/jyePp0o3ZDHjKt5zGkNTsri6LCEEEIIIaqPbInW5owgHkp/gnoksMzlNVo1vcOBgRWuUt1IopQaopQ6qpQ6oZSamc98pZR6L3P+fqVUaOb0JkqpX5VSh5VSB5VSj1d89KKmybBoPjLfxqi0V0jRLix1eY2nnFdLoiWEEEIIUQ60hi/MA7gv/RmaqIt87foyrQyOHUerKJXmypZSygh8CAzE2oXuTqXUOq31oWzFhgKtMx9dgY8y/5qB/9Na71FKeQK7lVLrcy0rRJmJvpbEUyv2scM8gWGG7bzp/Al1VaKjwxJCCCGEqJZStDMvmiezMqMv/Qx7edf5A+qoZEeHVaRKk2wBXYATWuuTAEqpZcAIIHvCNAJYrLXWwDalVD2llK/W+hxwDkBrHa+UOgw0zrWsEKWmtebrPWeZte4gGpjr9jmj9XryjFHs4uGI8IQQQgghqp3oa0k8nPYS+3VLHjN+zRNOqzGofMeNr3QqU7LVGDiT7XU01qtWRZVpTGaiBaCUag50BLbntxGl1FRgKoC3tzfh4eGlDLtqSEhIqDF1hfKpb2yqZuHBVPZezKBNfQNTglzxqjWdTUzPf4EK2t816b2VugohhBA1y7f7Ynh+zZ9o7ct/nd9msHGXo0MqlsqUbOW+NgCQO2UttIxSygNYDTyhtY7LbyNa6wXAAoC2bdvqvn37lijYqiY8PJyaUlco2/pqrfnf/nO8su4gCamaF4a1576e/hgN+X0cK15Nem+lrkIIIUTNkJhq5uV1B1m1O5qQJvV479qzNDVH5S1YyVsTVaZkKxpoku21H5D7jrcCyyilnLEmWku01l+XY5yiBrkUn8qLaw/w48HzmPzqMnesidYNPR0dlhBCCCFEtbXl+GVmrN5PTGwyj97cisf6t8bZuM/RYZVIZUq2dgKtlVL+wFlgPHBnrjLrgOmZ93N1BWK11ueUUgr4FDistX67IoMW1VPWvVmvfneIpLQMZgxpx5Re/jgZK1UHnkIIIYQQ1UZcSjpvfHeYZTvP0MKrNisf7E7n5g0cHVapVJpkS2ttVkpNB34CjMBnWuuDSqlpmfPnA98Dw4ATQBIwOXPxm4C7gT+VUhGZ057XWn9fgVUQ1cSZq0m8sPYAm49donOz+rw1OohWPnI1SwghhBCiPGit+SYihte/P8yVhFQe7NOCJwe0wc3Z6OjQSq3SJFsAmcnR97mmzc/2XAOP5LPcFvK/n0sIu6VnWPh0yyne2XAMo1LMHtGBu7o2w1BJ7s0SQgghhKhujl+I58VvDrDt5FVMfnX59N7OBPvVc3RYZaZSJVtCVJg3GucYiXy3pTUvpN/HEd2MgQENeWV4BxrVc3dggEIIIYQQ1deVhFTe2XCcr3acxsPViddHBjI+rGml6YCsrEiyJWqmzETrqvbkn+bxLM/ohy9XmO/8NkPu+cXBwQkhhBBCVE/JaRks+iOKDzeeICk9g7u6NuXxAW1oUNvF0aGVC0m2RI2UoRVfZfRnrvkOEnHjQeO3POb0NbVVqqNDE0IIIYSo2nK1IAJI00aWqyG873wfF+NTubmdD88Pa08rn8rddXtpSbIlapwdp64yK+11Dunm9DAcYJbTItoYzjo6LCGEEEKI6iFbopWmjazO6M2HGSOI1j50ubE2H04MJayK9zJoL0m2RI1x9noyb3x/mO/2n6MRHnzg/C63GLajqlfTYCGEEEIIh0vRzqzM6MNH5uHE4IVJneBV58/p++AmVA368SXJlqj24lPS+Sg8kk+2nMKg4IkBrXnwt0m4qzRHhyaEEEIIUa1cT0rjC/PtLDQP5gp1CVXHeNPpE3ob9ltPcNegRAsk2RLVWHqGhWU7z/DuhmNcTkhjZMfGPDO4rbWXwR0ukJZPsuVSvdsNCyGEEEKUh5OXEli4NYpVu6NJMt9BP8NeHnT6lq7qSE3Lr3KQZEtUO1prdp43M3veZk5eTqRL8wZ8em97TE3q/V3oeblHSwghhBCiNDIsms3HLrH4jyh+PXoJF6OB20yNmHJgIu0MZxwdXqUgyZaoVn4/cZl//XiEfdGptPZx5pN7OtO/vU+NahsshBBCCFGeriSksnJ3NEu2/8WZq8l4ebjyxIDWTOzaDG9PVzhxDfK7W6MGtiCSZEtUPfl0J7rL0oZ/Z4znj4x2NK7nzv2BLjw3oRdORoODghRCCCGEqD4yLJotJy6zfOdp1h+6QHqGpqt/A2YMaceggBtxccr2m0taENlIsiWqnmyJ1l5LS94xj2aTJQQvYnnp1gAmdmvKH1t+k0RLCFGhlFJDgHcBI/CJ1vqtXPPbAZ8DocALWuu5FR+lEEIUT+SlBFbvjmbN3rOci02hfi1n7u3enHFhTWjd0NPR4VV6kmyJKmmPpRXvmkexyRJCfeKZ6fQV9xjXU6vnRUeHJoSogZRSRuBDYCAQDexUSq3TWh/KVuwq8Bhwe8VHKIQQ+cjeWqjtKzBrBACXnHz5X78fWBsRw74z1zEo6NPGmxduac/AgIa4OhkdGHTVIsmWqDK01vxx8gofpj3P75ZA6hPPDKel3GP8mdoq1dHhCSFqti7ACa31SQCl1DJgBGBLtrTWF4GLSqlbHBOiEELkkq21UILZwApzH761dGdrSgcyvj1Ee986PD+sHbeHNManjpsDA626JNkSlZ7Fotlw+AIfbYpk7+nreNOYF5y+5E7jL5JkCSEqi8ZA9q63ooGuJVmRUmoqMBXA29ub8PDwUgdXHSUkJMi+KYDsm4LJvskpvuWr7In1YHesBwcP1SJDP4i3SxpD68XSvXVjGntmgOUMh/ac4VDRqxP5kGRLVFqp5gzW7j3Lx7+d4sTFBJo0cOfVER0Y+2Nn3FS6o8MTQojs8uvyVJdkRVrrBcACgLZt2+q+ffuWIqzqKzw8HNk3+ZN9UzDZNxB9LYn1hy6w/tAFtkc2JwMjTdRFBnml8nDsvwlUp1BxwG2xjg61WpBkS1Q6VxPTWLLtLxb98ReXE1IJ8K3Du+NDuCXI19rpxa+ukJZPslUDuxMVQlQa0UCTbK/9gBgHxSKEEDYWi2Zf9HU2HrnIhsMXOXwuDoDWPh48ZFzHEOMOOqi/2NToFYLiTzk42upHki1RaRw5H8fC36NYs/csqWYLfdp4M7V3C3q0vCHnOFnSnagQovLZCbRWSvkDZ4HxwJ2ODUkIUVNdS0xj8/FLbDp6ic3HL3E5IQ2jQdGpaX2eH9aOgQE34u9VG2YNd3So1Z4kW6Li5DM+Vro2st5wE4tufJ7tp67i5mxgVKgf993UXLoTFUJUGVprs1JqOvAT1q7fP9NaH1RKTcucP18pdSOwC6gDWJRSTwABWus4R8UthKhC8vkdBYCLB+kzzrD39HV+O36Jzccv82f0dSwa6tVypndrb/q396FPG2/q1XLJs2xB6xRlQ5ItUXGy/TOf0w1YZu7H0oybuUh9Gl9L5rmh7RgX1iTvF4EQQlQBWuvvge9zTZuf7fl5rM0LhRCi+LL9jrJoxRHdhK2WDvyeFsj2V34mKS0Dg4KQJvV49ObW9GnrjcmvHkZDfreUZsreWig8HCbIfVplTZItUWHM2kC4JYRlGf3YaOmIBvoY9vOm8RP6Pvtr4V8GQgghhBA1lMWiOWJpyg5LO7ZZAthuac81rC2AWqgYRof6cVOrG+je0ou67s4OjlZkJ8mWKHcnLyWwcnc0q1Pf5yL18eYaDxnXMd74K00Ml6yFJNESQgghhACsPTIfOBvLzqhr7Iq6yo5TV4lLewsAP3WRAcbddDMcprvhII3UVbhdrkhVVpJsiXIRm5TOd3+eY/WeaHb/dQ2Dgn6GU9xh/JybDXtxVhmODlEIIYQQolK4GJ/C3tPX2fPXNXb/dY39Z2NJM1sAaOFdm6GBvnTd9xxdDEfwU5cdHK0oDkm2RJlJSc8g/Ogl1u49y8YjF0nLsNDax4Pnhrbj9o6Nafi2dMwlhBBCiBqgkM4sUp45zcGYWCLOxBJx5jp7T18j+lqydbbRQGDjOtzbvRmdmjWgc/P6eHm4Wpc9sKUCKyDKiiRbomhF9H6zNfIK3+6L4acD54lPNePl4cLEbk0Z1dGPwMZ1/u62XXq8EUIIIURNkPl7J1U7cVQ34U+LP3/qFuxLbcGxl38iw2Id87xRXTc6Nq3PpB7NCWlSj8DGdXFzNua/TvkdVSVJsiWKlusfO00b2WrpwI+JXfjp9Q1cS0rH09WJwYE3MtzUiB4tb7AOPpybjI8lhBBCiGoqIdXMkXNxHIyJ42D6FA5amnNMNyE98+d2PeIJMpzi5j4tCGlSH5NfXXzquNm/AfkdVSVJsiXskqRd2WQJ5ueMzvxiCSWO2niQRP823twa3IjebbxwdSrgTIwQQgghRDVhsWjOXk/m8Lk4jp6P5/D5OA7FxBF1JclWpgGd6GCI4n7D9wQZThGkTtFEXUQpYPBzjgteVDhJtkSBzsUm88vhi/yS9gy/WzqQhgv1iGegYRfDjDu4yXAAt/Fyk6YQQgghqqhCbpXQz0VzKSGV4xcSOHYhnqPn4zl6IZ5j5+NJTLN29KUUNGtQi/a+dRgd6kd73zp0aFyHG9++ESUdLQsk2RLZpGdY2Hv6OuFHL7LxyEWOnI8HoKlqxETjLwwy7CLMcBQnZXFwpEIIIYQQZSAtAYtWnNU3EKkbcUI3JlI35nhqY068up7rSem2ovVrOdP2Rk/Gdm5Cm4aetPf1pE1DT2q75vNzWhItkUmSreos+9matq/ArBHW5y4e8PxZtNb8dSWJ305cZsvxS2w9cYX4VDNGg6Jzs/o8N7QdN7fzodV//OTsjBBCCCEcq5CrUPbczxSXks7J2Ayu7z3LycuJRF5K4GTqG5zSvqTgaitXj3jaqGiGBfnSxseDNg09ad3QEy8Pl787/SqKdGYhMkmyVZ3l809+XtdnW3IAW1ft4/cTVzh73drVaON67twS7Evftt70aOVFHbdso4+7yheGEEIIIRwsv98iuabHJqXz19VEoq4kcfpKIqcuJxF1JZGoy4lcSUyzFvojAoMCv/q1aKGu091wiFYqhpaGGFqqGG4gznqSeeTTJY9VOrMQmSTZqsa0hmjtzQ7djm/O+PBK6r85pX0BqHvwAt1b3MCDfVrQq7U3zW+oVfDZGvnCEEIIIUQlkKaNnNM3cEb7cEZ7c1r7WB/vb+H01SRik9NzlG9Yx5XmN9RmYEBDmnvVJvH8KYb37UqTBrWsXazPut0xFRE1hiRb1Uia2cLBmFj2ZI5Aviv1Ay7QAIDasRl0VyeYaNxAN8Nh2r8YgdEgbQOFEEIIUQ5K2OQvJT2Ds9eTOXstOc/f6JT3OE8DLPw9vIwTZvzUZZrUcsbUxJemDWrRtEFt/L1q07RBLdxdcvaUHB5+htYNPcusmkIURZKtyqqILymLRfPX1ST2R18n4oz1cTAmjjSztfOKxvXc6Wo4TGfDMboYjhDT7gFuPvbvv9cjiZYQQgghyks+v2FStRMXU9w5d+oq52KTORebwrnrycTEpnAuNpmY6ylczWrql8mgwLeuO43ru9PNcBg/ddGaXKmLNDVc5EauYlQa7o8tWZxyb5UoZ5JsVVbZ/vHN2sAp7csh3YwDic05sGAbB2JiiU8xA+DmbCCocV3u6daM0Gb1CW1anxvrusGskbZ1nJfcSgghhBD5KWXHExkWzZXEVC7GpXIxPoULcalcMI/igq7PBV2f87oBF3R9rlDXusB//7At6+nmhG9dN3zruhPUuB6N67nZkqvG9dy5sa4bzsbMK1mzhpRFbXOSWyVEOZNkq5K5nJDKsfPxHDEP4ahuwhFLU47oJqTiAoALabRPz2C4qREmv3oENq5Lm4YeOBkNeVcmZ2uEEEIIUZR8fitoDXGpFi5fSuBKQhqX4lO5nJDKpfjMR4I1sboYl8qVxDQyLDrXGsbgRSw+6hoN1TVMhkhuVFe5kWv43vMJjeq50bCOG57ZO+QqivyuEVWQJFtlzY6zQxaL5lxcCpEXE4i8lMCJiwkcv2j9+/fl83toQBztDae5y7CBDoYo2qu/aKVicH7kqn2xZD9bEx4OE0p4iV0IIYQQjleKK1BaaxLTMriakMaVxFSuJaVxJSGNq4lpXEm/kyvakyvU5YquwxVdh8vUIQ0X+PemHOsxKPDycMXb0/oI8K2Dj6cb3p6uNKzjRsM61r9e8xrjojLyD6aNd8nqL1ehRBUkyVZZy/wStGjFeerzl6Uhp3VDTqXfyF9f7ubU5UROXU4k1fz3wMB13Jxo09CTQQENadPQk7Y3etL6i1C8iZXxrYQQQoiqqJRN8/KVub50bSSW2lzXHsRSm2vJnlzfHc31pDSuJaVx8EQqK87u5lpiOtcyp11LTCctw5Lval0ZhBexNFDxeKlY2hrOcAOxeKs4vEbP5QYPF7w9XfHycKV+LRf7OtgqKNESooaRZKuc9Ev7N3/pG22vnTHT5EI8zW+oTc9WXjT3qk0rHw9aenvkP0iekqtQQgghRIUox8Qov+kWiyYhzUxccjrxKWbiU6zP41LSM/9aX8fmesSlvMd1PEjCLe96V+4DwGhQ1HLS+KTEU7+WC00a1MLkV496tZ25obYLDWq70qC2Mw1qu2a+dqHWGzcUfHK349KS1V+a/AkBSLJVbqYYv0OhaaYu0kxdwFddwen/rtm/AvmSEkIIIXLKnhS1fQVmjbA+L01SBHYNlqu1JiXdQmKamcRUM4mpGSSkWp9n/5uQaiYhxUxC+gPEa3cScCdBuxNPLeJ1LeJxJ+H574sMqZaLkTpuztR1tz786tei3qWD1CWRuiqReiRQVyVQl0TqqwTqP/47dWs54+nqxObNm+jbt6/99S+PVjTS5E8IQJKtcnOX0y+lW4F8SQkhhKgo5XFlp4KvFgGYMywkp2eQnJ5Banrm87QM27SUtAyS0jJIyvHcTHL6JJJwJUm7Zf51JQnr88Q3NpCUmkFimpk8fUAUoJaLEY+MjnioZDxJxkMl48U5PA3JeJBMnT7T8XRzpo67E55uzni6OVHX3dk6zc2JOu7Of/fAl92s/gVv9IZa9gWXHznBK0S5qVTJllJqCPAuYAQ+0Vq/lWu+ypw/DEgCJmmt99izrBBCCFGeSnMMczg7ruwUxWLRpGVYrA+zhbRUF9K1D2k4k4oTaTiTjhNpyU6kHb5AqtlaLtWckfk385Ge8fdzszVpSsn6m/Y8KdqZVFy4eqQRhrR3SNEupOJC8vPfY7Y3G8rGxclArYzu1CKVWiqFWqTiTioN1TVqkUKtNl2p7epEbVcjtVyc8Mj8W9vVmDndCY/MR21XJ2q7GK09BM+qW/BGB71f7DjLlZzgFaLcVJpkSyllBD4EBgLRwE6l1Dqt9aFsxYYCrTMfXYGPgK52Llsx5OyQEELUOKU5hlV0rAXJ0IpH0h/HjJF0jJhxIl0bSf/P75gzNOmZiVTW8/SspCrDQnqGzqfr7w8K3tiiXYXG4upkwNXJgJuzEVdnAy5G63M37YyrSqcuibi5edE0/SiuhjTcSMOt13TcnY24Oxtxczbg7uKU7XnWdCO1Mp9nTSsyMRrzuv07sbzJbwwhqpxKk2wBXYATWuuTAEqpZcAIIPuBagSwWGutgW1KqXpKKV+guR3LVgw5OySEEDVRiY9hWutzFR9uXgY0J7UvTmTgjBlnMnBWZlxdnXA2GnA2qsy/BpwMChcng23638+tSZKLkwHn757ARZlxIR0XrH9dSbdOm7oeFydrEuXqbLQt45o5LU+nUVlm3Wp7Gt78Ffoe/ejveUMKSe4coTwSI/mNIUSVU5mSrcbAmWyvo8l7xi+/Mo3tXBYApdRUYGrmy1Sl1IFSxFyVeAGXHR1EBapJ9ZW6Vk81qa5tHR1AGSjNMSxHsuWI41QnX0Mn67NH8szbfc6yu3TrzGv3q/VLvc5LSU/hXevvpGz3K6pE6wToeKOho0GR5yYpi8ay9xW1t6TrzV8cvFDu47rUpO+P4pJ9UzDZNwUr8XGqMiVb+X3z5G6TUFAZe5a1TtR6AbAAQCm1S2vduThBVlU1qa5Qs+orda2ealpdHR1DGSjNMSznhBp6nCoupdSuv65bZN/kQz43BZN9UzDZNwUrzXGqMiVb0UCTbK/9gBg7y7jYsawQQghRXkpzDBNCCFFN5dOvqMPsBForpfyVUi7AeGBdrjLrgHuUVTcgNrOtuz3LCiGEEOWlNMcwIYQQ1VSlubKltTYrpaYDP2HtNvczrfVBpdS0zPnzge+xdpl7Amu3uZMLW9aOzS4o+5pUWjWprlCz6it1rZ6krlVIaY5hRajy+6Ycyb4pmOybgsm+KZjsm4KVeN8oa6dIQgghhBBCCCHKUmVqRiiEEEIIIYQQ1YYkW0IIIYQQQghRDmpEsqWUGqKUOqqUOqGUmllAmb5KqQil1EGl1KaKjrGsFFVXpdQzmfWMUEodUEplKKUaOCLW0rKjrnWVUt8qpfZlvq/23B9RKdlR1/pKqTVKqf1KqR1KqUBHxFkWlFKfKaUuFjS2UGbnAu9l7ov9SqnQio6xrNhR13ZKqT+UUqlKqacrOr6yZEddJ2a+n/uVUluVUqaKjtGRatJxqrhq0nGtuGrScbC4atJxs7hq0nG2uMrluKy1rtYPrDcqRwItsHYRvw8IyFWmHnAIaJr52sfRcZdXXXOVvw3Y6Oi4y/F9fR74Z+Zzb+Aq4OLo2MuprnOAlzOftwN+cXTcpahvbyAUOFDA/GHAD1jHLOoGbHd0zOVYVx8gDHgdeNrR8ZZzXXsA9TOfD63K72sJ9k2NOU6Vx77JVb7KHtfK6XNTLY6D5bRvqs1xswT7p8YcZ8th3xT7uFwTrmx1AU5orU9qrdOAZcCIXGXuBL7WWp8G0FpfrOAYy4o9dc1uArC0QiIre/bUVQOeSikFeGA9yJgrNswyYU9dA4BfALTWR4DmSqmGFRtm2dBab8b6XhVkBLBYW20D6imlfCsmurJVVF211he11juB9IqLqnzYUdetWutrmS+3YR2DqqaoScep4qpJx7XiqknHweKqUcfN4qpJx9niKo/jck1IthoDZ7K9js6cll0boL5SKlwptVspdU+FRVe27KkrAEqpWsAQYHUFxFUe7KnrB0B7rIOG/gk8rrW2VEx4Zcqeuu4DRgEopboAzai+P1bt/pyLKut+rGdVa4qadJwqrpp0XCuumnQcLC45bpaOHGfLUKUZZ6scqXym5e7v3gnoBPQH3IE/lFLbtNbHyju4MmZPXbPcBvyutS7szEZlZk9dBwMRwM1AS2C9Uuo3rXVcOcdW1uyp61vAu0qpCKwH1L1U37OXxfmciypGKdUPa7LV09GxVKCadJwqrpp0XCuumnQcLC45bpaOHGfLUE1ItqKBJtle+2E9w5O7zGWtdSKQqJTaDJiAqnYQs6euWcZTtZta2FPXycBb2trI9oRS6hTWdtk7KibEMlNkXTMPnJPBemMrcCrzUR0V53MuqhClVDDwCTBUa33F0fFUoJp0nCqumnRcK66adBwsLjlulo4cZ8tQTWhGuBNorZTyV0q5YP0yXperzDdAL6WUU2YzhK7A4QqOsyzYU1eUUnWBPljrXVXZU9fTWM8Ck9kOuy1wskKjLBtF1lUpVS9zHsADwOZqfOZyHXBPZm9J3YBYrfU5RwclSkcp1RT4Gri7Blytya0mHaeKqyYd14qrJh0Hi0uOm6Ujx9kyVO2vbGmtzUqp6cBPWHun+UxrfVApNS1z/nyt9WGl1I/AfsACfKK1zrfLx8rMnrpmFh0J/Jx5hrRKsrOurwILlVJ/Yr0kPkNrfdlhQZeQnXVtDyxWSmVg7bHsfocFXEpKqaVAX8BLKRUNvAw4g62u32PtKekEkETmmcmqqKi6KqVuBHYBdQCLUuoJrD1qVbkfBHa8ry8BNwD/sZ5kxqy17uyYaCtWTTpOFVdNOq4VV006DhZXTTtuFldNOs4WV3kcl1VmN4ZCCCGEEEIIIcpQTWhGKIQQQgghhBAVTpItIYQQQgghhCgHkmwJIYQQQgghRDmQZEsIIYQQQgghyoEkW0IIIYQQQghRDiTZEkIIIYQQQohyIMmWEEIIIYQQQpSDaj+osRDib0qpyUBXYDDWwR73aq3/69iohBBCCCs5TonqRgY1FqKGUUo1AP6ltX7A0bEIIYQQuclxSlQn0oxQCAdSSk1RSkVkPizZnr+dOV9l/p2V/XUpdQL2lMF6hBBCVHNynBKidOTKlhCVgFKqMbBVa90s1/S7gEZAA+AqEKO1/rKU25oJ/Kq13l6a9QghhKg55DglRMnIlS0hKodA4M/cEzMPWGeAZ4HTpT2AZTIB+8tgPUIIIWoOOU4JUQJyZUuISkAp9TTgpbWemWv6nYAff58xjNZaf5WrzG+AZz6rfVprvaGcQhZCCFGDyHFKiJKR3giFqBwCgfX5TF+qtdZKqVla63/l1xZea92r/MMTQghRw8lxSogSkCtbQlQCSqndwH1a630lWNauM4ZKqUL/2bXWZXFTsxBCiGpIjlNClIwkW0I4mFLKAFwHvLXWqeW8raFAK+A3rXVEeW5LCCFE9SDHKSFKTjrIEMLxWmFt416uB7BMTYFEOYAJIYQoBjlOCVFCkmwJ4WBa62Na64AK2lwjwEUpVauCtieEEKKKk+OUECUnzQiFEEIIIYQQohxIb4RC1BCF3XgsNx0LIYRwNDlOiepIki0hao4wwE1rvcXRgQghhBD5kOOUqHbkni0hao4goK5SaoKjAxFCCCHyIccpUe1IsiVEzeELdNJaL1VKTVdKPZbf4JNCCCGEg8hxSlQ70oxQiJojEbiolArJfO0BKEB6yRFCCFEZyHFKVDuSbAlRQ2it3816rpTqCVwDagEJDgtKCCGEyCTHKVEdSdfvQgghhBBCCFEO5J4tIYQQQgghhCgHkmwJIYQQQgghRDmQZEsIIYQQQgghyoEkW0IIIYQQQghRDiTZEkIIIYQQQohyIMmWEEIIIYQQQpQDSbaEEEIIIYQQohxIsiWEEEIIIYQQ5eD/AYeRkOaZVS/EAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(1,2, figsize=(14,5))\n", "\n", "ax[0].plot(temps, p_sat, color='tab:blue', label='this PeTS implementation')\n", "ax[0].scatter(df['T*'], df['p*'], marker='s', color='tab:orange', label='simulation data Vrabec et al. (2006)')\n", "ax[0].scatter(T_c_vrabec, p_c_vrabec, marker='o', color='tab:orange', label='critical point Vrabec et al. (2018)')\n", "ax[0].scatter(T_c, p_c, marker='o', color='tab:red', label='critical point Heier et al. (2018); unclear origin')\n", "ax[0].scatter(T_c_pets_heier, p_c_pets_heier, marker='o', color='tab:green', label='critical point PeTS Heier et al. (2018)')\n", "ax[0].scatter(T_c_pets/epsilon_k, p_c_pets/(epsilon_k * KB / sigma**3), marker='x', color='tab:red', label='critical point this PeTS implementation')\n", "ax[0].set_title('Vapor-Liquid Coexistence - Vapor Pressure')\n", "ax[0].set_xlabel(r'$T* = \\frac{T}{\\frac{\\epsilon}{k_\\mathrm{B}}}$')\n", "ax[0].set_ylabel(r'$p* = \\frac{p}{\\frac{\\epsilon}{\\sigma^3}}$')\n", "ax[0].set_xlim(0.6, 1.2)\n", "ax[0].set_ylim(0.0, 0.11)\n", "ax[0].legend(loc='upper left')\n", "ax[0].grid()\n", "\n", "ax[1].plot(temps, rho_sat[:,0], color='tab:blue', label='this PeTS implementation')\n", "ax[1].plot(temps, rho_sat[:,1], color='tab:blue')\n", "ax[1].scatter(df['T*'], df['rho^L*'], marker='s', color='tab:orange', label='simulation data Vrabec et al. (2006)')\n", "ax[1].scatter(df['T*'], df['rho^V*'], marker='s', color='tab:orange')\n", "ax[1].scatter(T_c, rho_c, marker='o', color='tab:red', label='critical point Heier et al. (2018); unclear origin')\n", "ax[1].scatter(T_c_vrabec, rho_c_vrabec, marker='o', color='tab:orange', label='critical point Vrabec et al. (2018)')\n", "ax[1].scatter(T_c_pets_heier, rho_c_pets_heier, marker='o', color='tab:green', label='critical point PeTS Heier et al. (2018)')\n", "ax[1].scatter(T_c_pets/epsilon_k, rho_c_pets*NAV*sigma**3, marker='x', color='tab:red', label='critical point this PeTS implementation')\n", "ax[1].set_title('Vapor-Liquid Coexistence - Saturated Densities')\n", "ax[1].set_xlabel(r'$T* = \\frac{T}{\\frac{\\epsilon}{k_\\mathrm{B}}}$')\n", "ax[1].set_ylabel(r'$\\rho* = \\rho \\sigma^3$')\n", "ax[1].set_xlim(0.6, 1.1)\n", "ax[1].set_ylim(0.0, 0.9)\n", "ax[1].legend(loc='center left')\n", "ax[1].grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Binary Phase Diagram - Pressure-Composition of Pseudo Pure Fluid (Binary Mixture of the Same Component)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "dia_p = PhaseDiagram.binary_vle(eos=pets, temperature_or_pressure=1*epsilon_k)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKoAAAFDCAYAAAAak+b+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABF6UlEQVR4nO3dd3yV5fnH8c+VzXKPIoIT92gRV91araNKbV21VWtb0VZr/dW2IuLGvTeiUkcddVWx0toqrhZRcKGACmIVFCcWZOQkJ7l/fyRoGoMmQHKeJJ/365UXOee5nuTKeSC5+eZ+7jtSSkiSJEmSJEmFVlToBiRJkiRJkiQwqJIkSZIkSVJGGFRJkiRJkiQpEwyqJEmSJEmSlAkGVZIkSZIkScoEgypJkiRJkiRlgkGVJEmSmhQRIyLiw4h4dRHHIyKujIipETEhIvq1dY+SJKljMaiSJEnSotwM7PkVx/cC+ta/DQSua4OeJElSB2ZQJUmSpCallJ4CZn1FyQDg1lRnLLBcRPRsm+4kSVJHZFAlSZKkxdULmN7g8Yz65yRJkhZLSaEbKKSVVloprbnmmoVuQ5IktaLnn3/+45TSyoXuo4OKJp5LTRZGDKTu9kC6deu2xQYbbNCafUmSpDY2/+0XmTGnls+qYMUu8PH81NQ44Wt16qBqzTXXZPz48YVuQ5IktaKIeLvQPXRgM4DeDR6vDrzXVGFKaTgwHKB///7JMZgkSR3D1KlTGTJkCH9+/nlW6BJcskcZd7xSvdgfz1v/JEmStLhGAofX7/63DTA7pTSz0E1JkqTW9/777/OrX/2KDTfckIceeohTdihj2vHd+e225Uv0cTv1jCpJkiQtWkTcCewMrBQRM4DTgVKAlNIwYBSwNzAVmA8cWZhOJUlSqzm3F1TN/fzh7MrERWNyXDa2mqpUzFFHHcWpp55Kzz/2/5+6xWVQJUmSpCallH70NccTcGwbtSNJkgqhPnzK5RPXjqvinKer+GRB4uCNSxj6wGTWXXfdurrB735+yvNnxvOL++kMqiRJkiRJktSkmtrEnyZUc9oTOd6ZnfjO2sWcv1sFW6xWDAtDqqXIoEqSJEmSJEn/I6XEww8/zMnXz+PVD2vZomcRN+3Xhe+s3bpRkoupS5IkSZIk6XNjxoxhxx13ZN9996UyD38+oAvPHdWt1UMqcEaVJEmSJElS59NokXSAiR/WMPjxGka+Vsk3vvENrrvuOn7+7h8oLY42a8sZVZIkSZIkSZ1Ng5Dqndm1HPngAjYbNo8n3qpk6NChTJ06lWOOOYbSLj2aPr+se6u05YwqSZIkSZKkTuiT+bWc968qrn6uigScsHUZg3coY8VTTvmiqMFufm3BoEqSJEmSJKkTmTdvHlc8neOCf+f4LAeHb17KmTuXs8Zyhb/xrvAdSJIkSZIkqdVVV1czbNgw1l13XU4ZnWOnNUqY8Mtu3Pz9LpkIqcAZVZIkSZIkSR1aSol77rmHIUOGMGXKFLbbbjvu2WsO2/fJXiyUjbisXkTsGRGvR8TUiBjUxPENIuKZiMhFxO+aOF4cES9GxF/bpmNJkiRJkqQMObcXnLHs52+PHd6NrVYv4eCDD6asrIyRI0fy9NNPs/26yzV9fistkt5cmYnOIqIYuAbYHZgBjIuIkSmlSQ3KZgHHA99fxIf5DTAZWKYVW5UkSZIkScqm+t38XphZw6BHK/nntBp6LxPcPKCCn9z3MsXFxXV1bbxIenNlaUbVVsDUlNK0lFIVcBcwoGFBSunDlNI4oLrxyRGxOrAPcGNbNCtJkiRJkpQ1U2fVcsi989li+Dyen1nLJXuU88avu3PEN8u+CKkyLDMzqoBewPQGj2cAW7fg/MuBPwA9lmJPkiRJkiRJmff+++9z9tlnM3zYXMqK4ZQdyvj9t8tZtiIK3VqLZCmoauqVS806MeJ7wIcppecjYuevqR0IDATo06dPC1uUJEmSJEnKjjlz5nDRRRdx6aWXksvlGNivlFN3LKdnjyzdRNd8WQqqZgC9GzxeHXivmeduB+wXEXsDFcAyEfGnlNJPGhemlIYDwwH69+/frCBMkiRJkiSpoM7t9fn6UwC5fOK68VWc83Q1H8+v5aCDDmLo0KH0vb1/AZtcclkKqsYBfSNiLeBd4BDg0OacmFI6GTgZoH5G1e+aCqkkSZIkSZLapfqQqqY2cfsr1Zz2eI63Zye+s3Yx5989ni222KKurqz7/wRanyvwbn7NlZmgKqWUj4jjgEeAYmBESmliRBxTf3xYRHwDGE/drn61EXECsFFKaU6h+pYkSZIkSWptKSUenpLn5MdyvPphLf16FnHDvl3YfZ0SWBhSQWZ382uuzARVACmlUcCoRs8Na/D++9TdEvhVH+MJ4IlWaE+SJEmSJKnNjRkzhpNuns+/3qlh3RWKuOuHXThw4xKKon0tlN4c7XNlLUmSJEmSpA5u0qRJfP/732e77bZjyie1XLt3BZN+1Y2DNyntkCEVZGxGlSRJkiRJUqfSaJF0gOmzazn9qRpueSlHt27dGDp0KCfMu4BuZR0znGrIGVWSJEmSJEmF0iCk+mR+Lb/7RyV9r5rL7S8v4De/+Q3Tpk3jlFNOoVv3Hk2f304WSW8uZ1RJkiRJkiQV0PzqxBVjq7jg3znm5ODwzUs5c+dy1rj00i+K2vki6c1lUCVJkiRJklQA1dXVjBhfxZlP5pg5N7HveiWcu1s5m6xSXOjWCsZb/yRJkiRJktpQSol77rmHjTfemGMermSt5Yt4+siujPxR104dUoFBlSRJkiRJUpsZPXo0W2+9NQcddBClpaU8eEgX/nVkV7bv401v4K1/kiRJkiRJS1cTO/m9OLOGQaPz/GNqjt69e/PHP/6Rww47jOIL+nypFuhwi6Q3l0GVJEmSJEnS0tQgeHpzVi1DHq/krlfzrNAluPjiizn22GOpqKioK+gki6Q3l0GVJEmSJEnSUvbB3FrOfirH9c9XU1oEg7cv4w/blbPsiScWurVMM6iSJEmSJElaSubMmcPFj1dy6TNVVObhqH6lnLZTOT17uEx4cxhUSZIkSZIkLaFcLsd1113HOeecw8cfV3HQxiUM3aWcvit27l38WsqgSpIkSZIkqTmaWCS9pjZx++RiThu3LG+//Ta77bYb5689lv6rGVAtDuedSZIkSZIkNUeDkCqlxMNvVPOt6+dxxL3/ZcUVV+Qf//gHjz76KP3XXLbp8zvpTn4t4YwqSZIkSZKkFnhmep6THs3x9Ds1rLN8cNcPu3Dg3eMoKqqfD+ROfovNoEqSJEmSJKkZJn1Uw+DHcjz4ep5VuwXX7l3BL/qVUlocUORNa0uDQZUkSZIkSdJXmD59OmeccQY3/3Ee3Urh7F3KOWGbMrqXRaFb63AMqiRJkiRJkpowa9YszjvvPK666ipSSvxm6zIG71DGSl2dPdVaDKokSZIkSVLn1mg3v/nViSvGVnHBmCrm5OCwww7jrLPOYo3bv/2lXf8AF0lfigyqJEmSJElS51YfPuVrEyNerOaMJ3LMnJv43nolnHvvC2y66aZ1dS6S3uoMqiRJkiRJUqeWUuK+yXlOGZ3jjU9q+XbvYu4+sJzt+5TAwpBKbcKgSpIkSZIkdVqjR49m0I3zGPdeLRutXMQDB3dhv/VLiHCh9EJw9S9JkiRJktTpvPjii3z3u99lt9124/25iRH7VTDhmG4M2KDUkKqAnFElSZIkSZI6pkaLpAO8OauWU5+s4c4JC1hhhRW4+OKLOfbTM6koMZzKAmdUSZIkSZKkjqlBSPXB3FqOG7WADa6ZywOTFjB48GDefPNNTjzxRCq69mj6fHfza3POqJIkSZIkSR3WnFzikjE5Lnmmiso8/KJfKaftVM5q55zzRZG7+WWGQZUkSZIkSepwcrkcw8bmGPp0FR/PTxy4UQlDdy1nvRWLC92avoK3/kmSJEmSpA6jpqaG2267jQ022IATHsmx2apFPPeLbtx9YFdDqnYgU0FVROwZEa9HxNSIGNTE8Q0i4pmIyEXE7xo83zsiHo+IyRExMSJ+07adS5IkdUzNGJ8tGxEPRcTL9eOwIwvRpyRJKSVGjRrFt771LQ4//HCWX355HvlJVx49rCtb9jKgai8yc+tfRBQD1wC7AzOAcRExMqU0qUHZLOB44PuNTs8DJ6aUXoiIHsDzEfHPRudKkiSpBZo5PjsWmJRS2jciVgZej4jbU0pVBWhZktRZNNrNb+yMPCc9muOpt2tYZ511uPPOOznooIMoOr/3l3b9A1wkPcMyE1QBWwFTU0rTACLiLmAA8PlAKKX0IfBhROzT8MSU0kxgZv37n0XEZKBXw3MlSZLUYl87PgMS0CMiAuhO3S8W823dqCSpk6kPnyZ/VMPg0TkeeC3Pqt2Ca/au4Bd/mURZWVldnYuktztZCqp6AdMbPJ4BbN3SDxIRawLfAp5dOm1JkiR1Ws0Zn10NjATeA3oAB6eUatumPUlSZzV9di1nPJHj5per6VYKZ+1czv9tW0b3soCFIZXapSwFVdHEc6lFHyCiO3AfcEJKac4iagYCAwH69OnT0h4lSZI6k+aMz74LvATsCqwD/DMinm48FnMMJklaGmbNmsV5553HVVfNJQHHb1XG4B3KWLlbppbg1hLI0pWcAfRu8Hh16n4z1ywRUUpdSHV7Sun+RdWllIanlPqnlPqvvPLKi92sJElSJ9Cc8dmRwP2pzlTgLWCDxh/IMZgkaUnMnz+f888/n7XXXptLLrmEgzcp5fXjunPZnhWGVB1MlmZUjQP6RsRawLvAIcChzTmxfk2Em4DJKaVLW69FSZKkTqU547N3gN2ApyNiVWB9YFqbdilJ6jgaLZKer02MeLGaM5+s4r3Pavne977Hueeey6b3bV/AJtWaMhNUpZTyEXEc8AhQDIxIKU2MiGPqjw+LiG8A44FlgNqIOAHYCNgMOAx4JSJeqv+Qg1NKo9r4y5AkSeowmjM+A84Gbo6IV6i7VfCklNLHBWtaktS+1YdUKSXun5xn8Ogcb3xSy7arF3PXw0+xww471NU91N3d/DqozARVAPXB0qhGzw1r8P771E05b+xfNL2GgiRJkpZAM8Zn7wF7tHVfkqSO6/G38gx6rJLn3q1lo5WLeODgLuy3fgmxMKQCd/PrwDIVVEmSJEmSpM7pxRdf5OQ/zeORN2tYfZlgxH4VHL55KcVFzkvpTFxxTJIkSZIkFcy0adM49NBD6devH8+9W8NFu5fzxnHdOfJbZYZUnZAzqiRJkiRJUutptED6Qh9UdWHoZwdy/fXXU1JSwsknn8wfaq9muQrDqc7MoEqSJEmSJLWeRiHVnFzikjE5LnlmDpW11/Hzn/+c008/ndVWWw3OvcVF0js5gypJkiRJktTqcvnEsPFVDH26io/nJw7YqISh97/K+uuv/0WRi6R3egZVkiRJkiSp1dSmxB2vVHPq4zn+89/ErmsVc/5uFWzZqxgahlQSBlWSJEmSJKkVpJT429/+xsnXz2PCB7V86xtFXP+TLuy+djERrkOlprnrnyRJkiRJWqrGjh3LzjvvzD777MPcqsSdP+zC+IHd2GOdEkMqfSVnVEmSJEmSpJZrYje/yR/VcMoTNfxlUiWrrLIKV199NUd9cg5ltfO+fL4LpKsJBlWSJEmSJKnlGoRUM+bUcsYTOf74UjXdSuGss87i//7v/+jevTtwbOF6VLtjUCVJkiRJkhbLrAWJ8/+V46rnqqhNcPxWZQzeoYyVTz210K2pnTKokiRJkiRJLTJ//nyu+leO8/+dY3Yl/GSzUs7apZw1l3MpbC0Z/wZJkiRJkqRmyefz3HDDDfTt25dBj+XYrncJLx3TjVv372JIpaXCGVWSJEmSJOkLTSySnlLi/iklnPLCKrz++utss8023LnHf9lxDWMFLV3GnZIkSZIk6QuNQqrH38qzzU3zOODOTykqKuIvf/kLY8aMYce+yzV9vrv5aQkYfUqSJEmSpC956f0aTn6skr9PrWH1ZYKb9qvg8PsmUFJSHyUMfrewDapDMqiSJEmSJEmfm/ZpLac+Xskdr+RZvgIu2r2cY7cso0tpQIkxglqXf8MkSZIkSRIffvghZ599NtdfO5eSIhi0XRknbV/OchVR6NbUiRhUSZIkSZLUiX322WdccsklXHzxxVRWVvLzb5Zy+s7lrNbDZa3V9gyqJEmSJEnqDBrt5pfLJ65/voqhT1fz0bxaDjjgAIYOHcr69+36pQXVARdJV5swqJIkSZIkqTOoD59qU+LOV/IMebyS//w3scuaxZw/+lm22mqrujoXSVcBGVRJkiRJktQJpJT4+9Q8Jz+W4+UPavnmN4r4+4+7sMc6xcTCkEoqMIMqSZIkSZI6uLFjxzLolvk8+XYNay8f3PGDLhy8SQlF4ULpyhZXRpMkSZIkqYN67bXX+MEPfsC2227L5I9ruWqvCiYf250fbVpqSKVMckaVJEmSJEntWaNF0gHenVPLGU/XMuKFSrp27cqZZ57JbysvpnuZ4ZSyzRlVkiRJkiS1Zw1Cqk8XJE76ZyXrXjWXW16Yz69//WumTZvGaaedRvfuPZo+3938lCHOqJIkSZIkqZ1bUJ248tkqzv93jtmV8JPNSjlrl3LWvPzyL4rczU/tQKZmVEXEnhHxekRMjYhBTRzfICKeiYhcRPyuJedKkiRJktTR5PN5bni+inWvmsugx3J8u3cJLx3TjVv378Kay2Xqv/xSs2Tmb21EFAPXAHsBGwE/ioiNGpXNAo4HLl6McyVJkiRJ6hBSStx///1ssskmDPxrJX2WLeLJn3bl4UO7stmqxYVuT1psmQmqgK2AqSmlaSmlKuAuYEDDgpTShymlcUB1S8+VJEmSJKkjeOKJJ9h222354Q9/SFFREX85uAtjftaVHddwdR+1f1n6W9wLmN7g8Qxg6zY4V5IkSZKk7Gm0m9/L79cw6LFK/j61hl69enHTTTdx+OGHU3LhGl/a9Q9wkXS1S1kKqpraIzMt7XMjYiAwEKBPnz7N/PCSJEmSJLWx+vDprU9rOfXxHHe8Us1yFXDhd8o5buQUunTpUlfnIunqQLIUVM0Aejd4vDrw3tI+N6U0HBgO0L9//+YGYZIkSZIktakP59Uy9Kkqho2vorgITtqujD9sV87yXQIWhlRSB5OloGoc0Dci1gLeBQ4BDm2DcyVJkiRJyozPPvuMSy+9lIuvnMuCavjZt0o5fadyei2TpWWmpdaRmaAqpZSPiOOAR4BiYERKaWJEHFN/fFhEfAMYDywD1EbECcBGKaU5TZ1bkC9EkiRJkqTFUFVVxfXXX8/ZZ5/NRx99xA83LOGcXctZfyV38VPnkZmgCiClNAoY1ei5YQ3ef5+62/qada4kSZIkSZnTaJH02pS485U8pz5RxVuf1rDLLrtw/vnns9Wo3QvYpFQYmQqqJEmSJEnq8OpDqpQSf5+a5+THcrz8QS2br1rE3//+d/bYYw8iAh7t7m5+6nQMqiRJkiRJamPPzshz0qM5nny7hrWWC27/QRcO2aSEou9+94sid/NTJ2RQJUmSJElSG3nttdc45e753D85zyrdgqv2qmDgFqWUFUehW5MywS0DJEmSJElqZe+++y5HHXUUm2yyCf94M8+ZO5cz9dfdOW6rMkMqqQFnVEmSJEmStKQaLZC+0Kc1Xbmg+giuuOIKampqOPbYYzmlbASrdHPeiNQU/2VIkiRJkrSkGoVUC6oTF/47x9oXv8+FF17IAQccwOuvv84VV1zBKssv0/THcJF0yRlVkiRJkiQtLfnaxM0vVXPGEzne/Syx17olnHfveDbffPMvilwkXVokgypJkiRJkpZQSokHXsszeHSO1z6uZetexdz+g3J2WrMEGoZUkr6SQZUkSZIkSUvgySefZNCI+YydUcMGKxVx/0Fd+P4GJUS4SLrUUq5RJUmSpEWKiD0j4vWImBoRgxZRs3NEvBQREyPiybbuUZIK5eWXX2bvvfdm5513ZvrsWm7ct4JXftmN/TcsNaSSFpMzqiRJktSkiCgGrgF2B2YA4yJiZEppUoOa5YBrgT1TSu9ExCoFaVaSWksTu/m99Wktpz5Zwx0TKll22WW54IIL+PWCy+mS5n35fBdIl1rEoEqSJEmLshUwNaU0DSAi7gIGAJMa1BwK3J9SegcgpfRhm3cpSa2pQUj10bxahj5VxXXjqygugj/84SROOukkll9+eeAPhetR6kAMqiRJkrQovYDpDR7PALZuVLMeUBoRTwA9gCtSSre2TXuS1DY+yyUufaaKi5/JsaAafvatUk7fqZxe559f6NakDsegSpIkSYvS1AIrqdHjEmALYDegC/BMRIxNKb3xPx8oYiAwEKBPnz6t0KokLX1VVVVc/2wVZz+V46P5iR9uWMLQXcvZYKXiQrcmdVgupi5JkqRFmQH0bvB4deC9Jmr+nlKal1L6GHgK+NI+7Cml4Sml/iml/iuvvHKrNSxJS0NtbS133HEHG264Icf/vZKNVyli7M+7cu9BXQ2ppFbmjCpJkiQtyjigb0SsBbwLHELdmlQNPQhcHRElQBl1twZe1qZdStLiaGKR9JQSj7xdyskv9+Gll15i8803528/7sp31yl2Fz+pjTijSpIkSU1KKeWB44BHgMnA3SmliRFxTEQcU18zGfg7MAF4DrgxpfRqoXqWpGZrFFI9924Nu946n71umcXs2bO5/fbbeeGFF9hzo+WaDqnczU9qFc6okiRJ0iKllEYBoxo9N6zR44uAi9qyL0laWl7/uIZTRue4b3KelbsGV+5ZwdEPvkZZWVldweB3C9ug1MkYVEmSJEmSOp1359Ry5pM5RrxYTZdSOGOncn67bRk9ygMWhlSS2pxBlSRJkiSp0/j000+54IILuOKqudTUwrFblnHKjmWs0s2VcaQsMKiSJEmSJHV4CxYs4KqrruL888/nv//9L4duUspZu5Sz9vIGVFKWGFRJkiRJkjqORrv55WsTt7xUzelPVvHunFr22msvzjvvPDZ/eO8vLagOuEi6VGBLFFRFRE1KqXhpNSNJkiRJ0hKpD59SSjzwWp5TRueY/HEtW/cq5vaRT7DTTjvV1W3uIulSFi3pjKov7dFpeCVJkiRJKqQn/5Nn0GM5xs6oYf0Vi7j/oC58f4MSYmFIJSmzljSoSk0896XwSpIkSZKk1jZhwgROvmM+o6bk6dUjuGHfCn76zVJKivxvqtReNGvVuIhYsQUfs6nwSpIkSZKkVvHWW29x2GGH8c1vfpMx0/Nc8J1ypvy6O7/oV2ZIJbUzXzujKiLuAz6MiGWAG1NKj//v4dg0pfRKRFSklCrrnzscWAb4JKV0Z+u0LkmSJEnqNBotkg7w0bxahv47cd34KoqLi/n973/PIK5j+S6GU1J71ZwZVa+llH6ZUvoxcEATx3eMiJ8Chzc8B7gbmNGSZiJiz4h4PSKmRsSgJo5HRFxZf3xCRPRrcOz/ImJiRLwaEXdGREVLPrckSZIkKcMahFRzqxJnPZljnSvncvXYeRxxxBFMmTKFCy64gOWX7dH0+e7mJ7ULzVmjas+ImAW8DOSbOD4VWAPoufCJlNJzABFxd0SMBp5IKT31VZ8kIoqBa4DdqQu4xkXEyJTSpAZlewF969+2Bq4Dto6IXsDxwEYppQURcTdwCHBzM74+SZIkSVI7UFWTGP58NWc/lePDeYkfbFjCObuWs8HVN3xRNNjd/KT2rFlBFbAlsB2wckTcklI6ov5YSik90qi+4RpVf0kpXRERJwBfGVQBWwFTU0rTACLiLmAA0DCoGgDcmlJKwNiIWC4iFgZkJUCXiKgGugLvNeNrkyRJkiRlXG1tLXe9Us2pj1cy7dPETmsU8+Ah5Wyz+pLuDyYpa772X3VK6SNgVP1bY03d+Nvwudci4hSgshm99AKmN3g8g7pZU19X0yulND4iLgbeARYA/0gp/aMZn1OSJEmSlFEpJf7xj38waNAgXnppAZuvWsSoQyvYc90SIlyHSuqImrXr36KklL50fsPnUkqPpJTOSSld0owP19R3mcY7CDZZExHLUzfbai1gNaBbRPykyU8SMTAixkfE+I8++qgZbUmSJEmS2tpzzz3Hbrvtxp577sns2bP50/5deOHobuzVt9SQSurAsjRPcgbQu8Hj1fny7XuLqvkO8Fb97C8i4n7g28CfGn+SlNJwYDhA//79GwdhkiRJkqS21Gg3v9c/ruGU0Tnum5xn5ZVX5sorr+Too4+m7OK1vrTrH+Ai6VIHs1hBVUTsmlIavfDPpdTLOKBvRKwFvEvdYuiHNqoZCRxXv37V1sDslNLMiHgH2CYiulJ3699uwPil1JckSZIkqbXUh0/vzqnlzCdzjHixmi6lcPpOZZz40Jv06FG/i5+LpEudwuLOqLoY6NfgzyWWUspHxHHAI0AxMCKlNDEijqk/Poy6dbL2pm6nwfnAkfXHno2Ie4EXqNuZ8EXqZ01JkiRJkrLrv5WJC/6V44pnq8jXwq+2LGPIjmWs0q0IFoZUkjqNJb31b6neGJxS+tKi7fUB1cL3E3DsIs49HTh9afYjSZIkSWodCxYs4Oqrr+a8Kz7jv5Vw6KalnLVLOWsvv0RLKUtq5/wOIEmS1MlExEmF7kFS55XP5xkxYgTrrbcef/jDH9h69WJeOLobf/pBF0MqSZlaTF2SJEmtICLubvgQ+CZwQWG6kdRpNFokPaXEg6/nGTy6mskf5dlqq6247bbb2PmJAQVsUlLWGFRJkiR1fHNSSr9Y+CAiritkM5I6iQYh1VNv5xn0aI5nZtSw/opF3Hfffey///5EBIzp7m5+kj63uEHVwu8iny2tRiRJktRqzmn0+JSCdCGp05nwQQ0nP5Zj1JQ8q/UIhn+vgiO/VUrJD37wRZG7+UlqYLGCqpTSjg3/lCRJUvZExKPAiSmllxs+n1KaVaCWJHUS//nPfzjtLwv404Rqlq2A83cr59dbl9G1dKnuxyWpA3KlOkmSpI7rD8BlEfHHiOhZ6GYkdXwfffQRJ5xwAuuvvz73TKrm998uY9rxPThp+3JDKknN4hpVkiRJHVRK6QVg14j4IfD3iLgfuDCltKDArUnqYObOncull17KxRdfzLx58/jZz37G6T3uYvVlnBshqWUMqiRJkjqwiAjgdeA6YChwVEScnFK6rbCdSWqXGu3kV1WTGP58NWc/VcWH82rZf//9Oeecc9hwww3h3FEuki6pxQyqJEmSOqiI+BewNjARGAv8FHgN+E1E7JBSGljA9iS1R/XBU21K/PnVPEMer2Tap4md1ijmwUefYZtttvmi1kXSJS2GFgVVEXFoSumOiDgkpXRXazUlSZKkpeIYYGJKKTV6/tcRMbkQDUlq31JK/OPNGk5+rJIX369ls1WLGHVoBXuuW0I0DKkkaTG1dEZVr4g4CFi9NZqRJEnS0pNSevUrDu/TZo1I6hDGjRvHoNvmM/qtGtZcLrht/woO3bSUonCRdElLT7NXtouI04EVgDuAFSLitFbrSpIkSa0qpTSt0D1Iah/eeOMNDjzwQLbaaismfFDLFXuW89qx3fnJZmWGVJKWumbPqEopnRkRvwd+AqyeUrq49dqSJEmSJLWZRoukA7z3WS1nPl3LTS/kqKio4PTTT+fE3KX0KDecktR6WrpX6Hv1a1O5Kp4kSZIkdRQNQqr/ViYGP1bJulfO5Y/Pz+eXv/wlb775JmeccQY9evRo+nx38pO0lLRojaqU0u31f97ZOu1IkiRJkgqhMp+4+rkqzn06x6eVcOimJZy9SwVrX3HVF0Xu5CeplbV0MXVJkiRJUgeSz+e59cUqTn8ix4w5iT3XLea83Sr45jeKC92apE6opbf+ERF7RcSzEfF6RNwdEdu2RmOSJEmSpNaTUuKBBx5gs8024+cjK1mtRzD68K787cfdDKkkFczizKi6lroF1ScBWwAXRcQ13g4oSZIkSRnTxCLpAE+9W8qgievxzDPPsN5663HvgV34wYYlhLv4SSqwFs+oAj5IKf07pfRpSulR4LvAKUu5L0mSJEnSkmoUUr3yQQ3fu2M+O934CW+//TbDhw9n4sSJ/PCbyzcdUrlIuqQ2tjgzqv4TEUOBs1JKVUA18NnSbUuSJEmStLT857+1nPZ4jj9NqGbZCjh/t3J+PXIKXbt2rStwkXRJGbE4QVUCfgAcFRFTgD7A7RHRN6U0Zal2J0mSJElabB/Pr+Wcp6q4dnwVRQG/+3YZg7YvZ4UuAQtDKknKkBYHVSmlHwFERAWwCbB5/duNEbF2Sqn30m1RkiRJktQSc+fO5bLLLuOiK+YyrxqO/GYpZ+xczurLLM7qL5LUdhZnRhUAKaVKYHz9myRJkiSpwKqqqrjhhhs4++yz+eCDD/j+BiWcu2s5G67sLn6S2ofFDqokSZIkSQXSaDe/2pS4e2KeIY9X8easGnbccUf+8pe/sO3jBzS565+LpEvKKoMqSZIkSWpv6sOnlBL/nFbDoEcrefH9WjZbtYiHH36Yvfbaq24Xv21dJF1S++INytR9c2/O84uqa0ltZ6trDz362mSvrj306GuTvbr20KOvTWG/ZknqaMa9W8N3bpvPd/80n1kLErftX8GLR3dj7733rgupJKkd6tQzqipfncikDTbk+k33owc1DL3n4s+PDTnwd3xGMUe/MpKgbqvDpupaUtvZ6tpDj7422atrDz362mSvrj306GtTuK954/KKLZCkDuSNN97glHvmc++kPCt1DS7/bjnH9C+jvMRwSlL7l6kZVRGxZ0S8HhFTI2JQE8cjIq6sPz4hIvo1OLZcRNwbEa9FxOSI2LY5n/P6TffjwXV25DOKP//Na0qJzyjmwXV25PpN9/t8INy4riW1na2uPfToa5O9uvbQo69N9uraQ4++NoX9mrVkvm581qBuy4ioiYgD2rI/qTOZOXMmxxxzDBtttBF/m5LntB3LePP47vxmm3JDKkkdRmRlWnxEFANvALsDM4BxwI9SSpMa1OwN/BrYG9gauCKltHX9sVuAp1NKN0ZEGdA1pfTfr/qc5T37pp5HXM6AN5/i6FdGstFrkz8/tnCm1YPr7Pj5c03VtaS2s9W1hx59bbJX1x569LXJXl176NHXpnBf88xbTiA3c4r/g1sMzRmfNaj7J1AJjEgp3ftVH7d///5p/Hg3jpaa1GiRdID/ViYuHJu4/Lka8vk8Rx99NEPKb2bV7ouYd3DG7DZoVJIWLSKeTyn1X5xzszSjaitgakppWkqpCrgLGNCoZgBwa6ozFlguInpGxDLAjsBNACmlqq8LqRpaeAtBQ1H//NfVtaS2s9W1hx59bbJX1x569LXJXl176NHXpu3qFlWrxdKc8RnU/SLxPuDDtmxO6pAahFSV+cTFY3Ksc+VczntyLvvvvz+vvfYaV111FauusEzT57ubn6R2LktBVS9geoPHM+qfa07N2sBHwB8j4sWIuDEiujX3Ey+8haChhbcUfF1dS2o7W1176NHXJnt17aFHX5vs1bWHHn1t2q5uUbVaLF87PouIXsD+wLA27Evq0GpqE398sYr1rprL7/+ZY8vVinhhYDduv/121l577bqiwe/WzZxq/DbYXf4ktW9ZWky9qV+INh57LqqmBOgH/Dql9GxEXAEMAk790ieJGAgMBOhZUsKAN5/6/BaCy1MiIkgpfX67wMJbChrearCwDmh2bWer87XxtfG18bXxtSl8XWd8bZr6mh/7dAZabM0Zn10OnJRSqvmqXcYajsH69OmztPqTOpSUEiNfq2bw6ByTPqply9WKuOX7XdhlrSz9t02SWleWvuPNAHo3eLw68F4zaxIwI6X0bP3z91IXVH1JSmk4MBxgk4ouaeFtAT2o+XyAGxH0oObzgXDD2wca1rWktrPVtYcefW2yV9ceevS1yV5de+jR16awX/NjaAk0Z3zWH7ir/hqsBOwdEfmU0gMNixqOwfr375+NRVKlDHn66acZNGgQY8YsYL0Vi7j3wC78YMOS//n+JkmdQZYWUy+hbrHO3YB3qVus89CU0sQGNfsAx/HFYupXppS2qj/2NPCLlNLrEXEG0C2l9Puv+pwLF/JMDX4L21Dj5xdV15LazlbXHnr0tcleXXvo0dcme3XtoUdfm8J8zbEEi3l2ds0ZnzWqvxn4a3IxdanZXnnlFQYPHsxf//pXevbsyRlbfMrPvlVKSVET39tcJF1SO7Ek46/MzKhKKeUj4jjgEaCYuh1jJkbEMfXHhwGjqAuppgLzgSMbfIhfA7dH3Y5/0xod+0qLGuA2fv6rfpvR3NrOVtceevS1yV5de+jR1yZ7de2hR1+bwn7Narlmjs8kNUej3fze/m8tpz2R47YJ1SyzzLKcd955HH/88XS9vO+Xdv0DXCRdUqeRmRlVheBv8yRJ6vicUZU9jsHUKZ2xLAAfz6/lnKequHZ8FQEcv3UZgx6ayQorrFDY/iRpKeoQM6okSZIkqaOaW5W47JkqLhqTY141/HTzUs7YuZzeyxaBIZUkfc6gSpIkSZJaSXV1NTfccANnXTmXD+Ylvr9BCefsWs5GKxcXujVJyiSDKkmSJElaympra7n77rsZMmQIb775JjuuUcxfDi5n297+F0ySvorfJSVJkiRpcTVaJB3gn2/mGTS6mhfeq2bTTTfl4YcfZq9nD3GTB0lqBoMqSZIkSVpcDUKq8e/VMOjRSh57q4Y1lg1uvfVWDj30UIqLi+GlHu7mJ0nNYFAlSZIkSUtgyic1nDI6xz2T8qzUNbj8u+Uc07+M8sMO+6Jo8LuFa1CS2hGDKkmSJElaDDNnzuSsvy7ghheqqSiBU3cs43ffLmeZcm/xk6TFZVAlSZIkSS0we/ZsLrzwQi6//HKqKqs5pn8pp+5YzqrdiwrdmiS1ewZVkiRJktQMlZWVXHPNNZx77rnMmjWLH/3oR5y90kOss4IBlSQtLQZVkiRJktRQo538amoTt75czelPVjN9dg177LEH5513Hv369Wty1z/ARdIlaTEZVEmSJElSQ/XBU0qJh97IM/ixHBM/qmXL1Yq4+f7H2HXXXb+odZF0SVqqDKokSZIkqZF/vZNn0KM5/j29hvVWLOKeA7vwww1LiIYhlSRpqTOokiRJkqR6r776KiffOZ+/vpGnZ/fg+u9VcOQ3Syktdic/SWoLrvonSZIkqdN7++23OeKII9hss814+u085+5aztTjuzNwizJDKklqQ86okiRJktQ5NLHw+cfzazl3TOKacdVEBCeeeCKDYhgrdvV3+pJUCH73lSRJktQ5NAip5lUlhj6VY50r53LFmHn85Cc/YcqUKVx00UWsuNwyTZ/vTn6S1OqcUSVJkiSp06iuSdz4QjVnPZXj/bmJAeuXcO5u5Wx0zU1fFLmTnyQVjEGVJEmSpA6vtraWe16tZsjjOabOqmWHPsXcd1A53+7tf4kkKUu89U+SJElSh/bPf/6TLbfckkPuW0CXEvjrj7rw5E+7GlJJUgb5nVmSJElS+9bEIukA4z8sY9Abm/PYY4+xxhprcMv3K/jxpqUUF7mLnyRllTOqJEmSJLVvjUKqKZ/UcPC989nyuo956aWXuOyyy3j99dc5fMsVmg6pXCRdkjLDGVWSJEmSOoSZn9Vy1pM5bnyxmvJiOHXHMn730DSWWaZ+Fz8XSZekzDOokiRJktSuza5MXPjvHJc/W0VVDRy9RSmn7ljOqt2LYGFIJUlqFwyqJEmSJLVLlZWVXHvttZxz5VxmLUgcskkJZ+9SwboruMKJJLVXBlWSJEmS2pWamhpuu+02TjvtNKZPn84e6xRz3m4V9OtZXOjWJElLyKBKkiRJUjY12s0vpcRDb+QZPLqaiR/m6d+/PzfffDO7jj2syV3/XCRdktofgypJkiRJ2dQgfPr3O3lOejTHv6fX0HeFIu6++24OOOAAIgJ2dZF0SeooDKokSZIkZdarH9Yw+LEcD72Rp2f3YNg+FfzsW6WUHnhgoVuTJLWCTK0yGBF7RsTrETE1IgY1cTwi4sr64xMiol+j48UR8WJE/LXtupYkSZK0tL399tv89IEFbHbdPJ58O885u5Yz5dfdObp/GaXFUej2JEmtJDNBVUQUA9cAewEbAT+KiI0ale0F9K1/Gwhc1+j4b4DJrdyqJEmSpFbyySefcOKJJ7Leeutx16vV/HbbMqYd353BO5TTrcyASpI6uizd+rcVMDWlNA0gIu4CBgCTGtQMAG5NKSVgbEQsFxE9U0ozI2J1YB/gHOC3bdy7JEmSpOZqtEg6wLyqxOXj4MLngrlz53LEEUdwxrL30GfZzPxuXZLUBrL0Xb8XML3B4xn1zzW35nLgD0BtK/UnSZIkaWloEFJV1ySuG1fFulfNZcijn7HLLrswYcIERowYQZ+Vl2n6fHfzk6QOK0szqpqax5uaUxMR3wM+TCk9HxE7f+UniRhI3W2D9OnTZzHalCRJkrSkalPinol5hjyeY+qsWrbvU8x9B5Xz7Zse+KJosLv5SVJnk6WgagbQu8Hj1YH3mllzALBfROwNVADLRMSfUko/afxJUkrDgeEA/fv3bxyESZIkSWplj07LM+jRSp6fWcsmqxTx0I+6sE/fEiJcg0qSOrss3fo3DugbEWtFRBlwCDCyUc1I4PD63f+2AWanlGamlE5OKa2eUlqz/rzRTYVUkiRJkgrn+eefZ/fdd2f32+bz0fzELd+v4KWju/G99UoNqSRJQIZmVKWU8hFxHPAIUAyMSClNjIhj6o8PA0YBewNTgfnAkYXqV5IkSVLzTJkyhSFDhnD33Xez4oorctl3y/ll/zLKSwynJEn/KzNBFUBKaRR1YVTD54Y1eD8Bx37Nx3gCeKIV2pMkSZL0VRrt5vf+3FrOejLHDS9UU1bRlSFDhvC73/2OZa/Z6Eu7/gEuki5JylZQJUmSJKkdqw+fZlcmLhqT47KxVVTVwMB+pZz60Jt84xvfqKtzkXRJ0iIYVEmSJElaKirziWvHVXHu01V8siBx8MYlDN21gnVXKIKFIZUkSV/BoEqSJEnSEqmpqeFPf/oTp109l3dmJ3Zfu5jzdqtgi9WKC92aJKmdMaiSJEmStFhSSvz1r39l8ODBvPrqq/RfrYgR+3Vht7X9b4YkafH4E0SSJEnSV2u0SDrAv9/Jc9LoPP9+u4q+ffty9913c8CrPyfCnfwkSYuvqNANSJIkScq4BiHVqx/WsN+d89n+j/N585Nqhg0bxsSJEznwwAOJ8h5Nn+9ufpKkZnJGlSRJkqSv9c7sWk5/IsctL1XToxzO2bWc32xdRrejj/6iyN38JElLyKBKkiRJ0iJ98sknnPtIJdeMqwLgt9uWcfL2ZazY1ZszJElLn0GVJEmSpC+ZN28el19+ORdeeCFzP6viiM1LOWPncvosa0AlSWo9/pSRJEnSIkXEnhHxekRMjYhBTRz/cURMqH8bExGbF6JPLT3V1XXrTq277roMGTKEnXfemQnHdGPEgC6GVJKkVueMKkmSJDUpIoqBa4DdgRnAuIgYmVKa1KDsLWCnlNKnEbEXMBzYuu27VYs12skvpcQ9k/IMebyKKZ/UsP3223Pvvfey3XbbNbnrH+Ai6ZKkpc6gSpIkSYuyFTA1pTQNICLuAgYAnwdVKaUxDerHAqu3aYdafA2Cp8em5Rn0WCXj36tl45WLGDlyJN/73veIiLoCF0mXJLURgypJkiQtSi9geoPHM/jq2VI/B/7Wqh1pqXphZg2DHq3kn9Nq6LNscPOACn6yWSnF++5b6NYkSZ2UQZUkSZIWJZp4LjVZGLELdUHV9os4PhAYCNCnT5+l1Z8W09SpUxly73z+PDHPil2CS/co55dbllFR0tQllySp7bgaoiRJkhZlBtC7wePVgfcaF0XEZsCNwICU0idNfaCU0vCUUv+UUv+VV165VZrV13v//ff51a9+xYYbbshDb+QZskMZbx7fnf/bttyQSpKUCc6okiRJ0qKMA/pGxFrAu8AhwKENCyKiD3A/cFhK6Y22b1Ff0sTC53NyiYvGJi59rpaqqiqOOuooTu1yGz17+HtrSVK2+JNJkiRJTUop5YHjgEeAycDdKaWJEXFMRBxTX3YasCJwbUS8FBHjC9SuFmoQUuXyicueybH2FXMZ+sRc9t13XyZPnsy1115LzxWXafp8d/KTJBWQM6okSZK0SCmlUcCoRs8Na/D+L4BftHVf+mo1tYk/TajmtCdyvDM7sfvaxZy3WwVbDL/riyJ38pMkZZBBlSRJktRBpJR4+I1qTn4sx6sf1rJFzyJu2q8L31nbYb8kqX3w1j9JkiSpAxgzZgw77rgj+965gMo8/PmALjx3VDdDKklSu2JQJUmSJLVjEydOZMCAAWy33XZMnTqV6/apYNKvunHQxqUUhTv5SZLaF3+9IkmSJLUHjXbzmz67ltOfyHHLy9V077EMQ4cO5YQTTqDbFet9adc/wEXSJUntgkGVJEmS1B7Uh0+fzK/lvH9VcfVzVSTghK3LGPzXaay44op1dS6SLklqxwyqJEmSpHZgXlXiimeruODfOeZWweGbl3LmzuX0WbYIFoZUkiS1cwZVkiRJUoZVV1dz0003ceZVc3l/bmK/9Us4d9dyNl6luNCtSZK01BlUSZIkSRmUUuLee+/llFNOYcqUKWzXu5h7Dixn+z4O4SVJHZc/5SRJkqRCarRIOsBj0/IMGl3N+Her2XjjjRk5ciTfG/9jwl38JEkdXFGhG2goIvaMiNcjYmpEDGrieETElfXHJ0REv/rne0fE4xExOSImRsRv2r57SZIkaTE0CKlemFnDHrfN4zu3zefDuXluvvlmXn75Zfbdd1+ivEfT57ubnySpA8nMjKqIKAauAXYHZgDjImJkSmlSg7K9gL71b1sD19X/mQdOTCm9EBE9gOcj4p+NzpUkSZIyaeqsWoaMruTPE/Os0CW4ZI9yfrVlGRVHHPFFkbv5SZI6gcwEVcBWwNSU0jSAiLgLGAA0DJsGALemlBIwNiKWi4ieKaWZwEyAlNJnETEZ6NXoXEmSJClT3n//fc5+eAHDX6imrBhO2aGM33+7nGUrvMVPktQ5ZSmo6gVMb/B4BnWzpb6uphf1IRVARKwJfAt4tlW6lCRJkpbQnDlzuOiii7jsssuonF/NwC1KOXXHcnr2yNTKHJIktbksBVVN/dootaQmIroD9wEnpJTmNPlJIgYCAwH69OmzeJ1KkiRJX6eJRdJz+cR1LwbnPFfGxx9/zEEHHcTQVR6m74rFBWpSkqRsydKvbGYAvRs8Xh14r7k1EVFKXUh1e0rp/kV9kpTS8JRS/5RS/5VXXnmpNC5JkiR9SYOQqqY2cevLVax/9Vz+b9QcvvnNbzJ+/Hj+/Oc/07fnsk2f7yLpkqROKEszqsYBfSNiLeBd4BDg0EY1I4Hj6tev2hqYnVKaGXX79N4ETE4pXdqWTUuSJEmLklLi4Sl5Tn4sx6sf1rJFzyJu3K8L37n1n18UuUi6JEmfy0xQlVLKR8RxwCNAMTAipTQxIo6pPz4MGAXsDUwF5gNH1p++HXAY8EpEvFT/3OCU0qg2/BIkSZKkz42ZnuekR3P8650a1l2hiLt+2IUDNy6hKFwoXZKkRclMUAVQHyyNavTcsAbvJ+DYJs77F02vXyVJkiS1qUmTJjF48GAefHA+q3YLrt27gl/0K6W02OGqJElfJ1NBlSRJktReTZ8+ndNPP51bbrmF7t27M3SXck7YpoxuZQZUkiQ1l0GVJEmS1BKNdvP7ZH4t5/2riqvHVZGKyjjhhBM4+eSTWWn45l/a9Q9wkXRJkr6CQZUkSZLUEvXh0/zqxBVjq7jg3znm5ODwzUs588E3WGONNerqXCRdkqQWM6iSJEmSWqC6JjHixWrOfDLHzLmJfdcr4dzdytlklWJYGFJJkqTFYlAlSZIkNUNKifvuu49TrpvHG5/U8u3exdx9YDnb93FILUnS0lJU6AYkSZKkrBs9ejRbb701Bx54IKVF8OAhXfjXkV0NqSRJWsr8ySpJkiTBlxZJB3hxZg2DRuf5x9QcvXv35o9//COHTTue4iJ38pMkqTU4o0qSJEmC/wmp3pxVy4/um0+/4fMY/24Vl1xyCW+88QY//elPKa7o0fT57uYnSdISc0aVJEmSVO+DubWc/VSO65+vprQIBm9fxh+2K2fZ3/72iyJ385MkqdUYVEmSJKnTmzNnDhc/Xsmlz1RRmYej+pVy2k7l9OzhDQiSJLUlgypJkiR1Wrlcjuuuu45zzjmHjz+u4qCNSxi6Szl9VywudGuSJHVKBlWSJEnqdGpqarj99ts57bTTePvtt9ltt904f+2x9F/NgEqSpEIyqJIkSVLH1Wgnv5QSo6bkOXl0Na98kKdfv37ccMMN7L777k3u+ge4SLokSW3IoEqSJEkdV4Pg6ZnpeU56NMfT79SwzvLBXXfdxYEHHkhRUf06VC6SLklSwRlUSZIkqUOb9FENgx/L8eDreVbtFly7dwW/6FdK6cEHF7o1SZLUiEGVJEmSOqTp06dzxoMLuPnlarqVwtm7lHPCNmV0L4tCtyZJkhbBoEqSJEkdyqxZszjvvPO46qqrSPlqfrN1GYN3KGOlrkWFbk2SJH0NgypJkiS1P00sfD6/OnHleDj/2SLmzJnDYYcdxlnL388ayxlQSZLUXvhTW5IkSe1Pg5AqX5sY/nwVfa+ay8n/+IwddtiBl19+mVtuuYU1Vlmm6fPdyU+SpExyRpUkSZLapZQS903Oc8roHG98Usu3exfz5wPK2X7EQ18UuZOfJEntikGVJEmS2p3Rb+UZ9Ggl496rZaOVi3jwkC7su14JES6ULklSe2ZQJUmSpHbjxRdf5OSTT+aRR+bTe5ngjwMqOGyzUoqLDKgkSeoIDKokSZKUeW+++Sannnoqd955JyussAIX717OsVuVUVFiQCVJUkdiUCVJkqTsaLSb3wdzazn7qRzXP19NaXkXBg8ezO9//3uWu3bjL+36B7hIuiRJ7ZxBlSRJkrKjPnyak0tcMibHJc9UUZmHX/Qr5bSRU1lttdXq6lwkXZKkDsmgSpIkSZmRyyeGja9i6NNVfDw/ceBGJQzdtZz1ViyGhSGVJEnqsAyqJEmSVHA1NTXccccdnHbNXP7z38SuaxVzwXcq6L9acaFbkyRJbaio0A00FBF7RsTrETE1IgY1cTwi4sr64xMiol9zz5UkSVLLLcn4rDlSSowaNYp+/fpx+OGHs3xF8MhPuvLoYV0NqSRJ6oQyE1RFRDFwDbAXsBHwo4jYqFHZXkDf+reBwHUtOFeSJEktsCTjs6/03otwxrKM/UU3dl67gn322Yd58+Zx5513Mn5gN/ZYp4QId/OTJKkzykxQBWwFTE0pTUspVQF3AQMa1QwAbk11xgLLRUTPZp4rSZKkllmS8dkiVeZh/z/PZ9ub5vP6R9Vcc801TJo0iUMOOYSi8h5Nn+RufpIkdQpZWqOqFzC9weMZwNbNqOnVzHMlSZLUMksyPpu5qA868aNa3pldy9m7lHPCNmV0/9Wvvjjobn6SJHVqWQqqmprfnZpZ05xz6z5AxEDqpqUD5CLi1WZ3qLayEvBxoZvQ//CaZJPXJXu8Jtm0fqEbaMeWZHz2v0UNxmDlxbDeikU88Fo1D7xWzfPnxfNL3qqWkN+/ssnrkj1ek2zyumTPYo+/shRUzQB6N3i8OvBeM2vKmnEuACml4cBwgIgYn1Lqv2Rta2nzumSP1ySbvC7Z4zXJpogYX+ge2rElGZ/9j8ZjsPHv1fhvJUP8/pVNXpfs8Zpkk9cle5Zk/JWlNarGAX0jYq2IKAMOAUY2qhkJHF6/u8w2wOyU0sxmnitJkqSWWZLxmSRJUotlZkZVSikfEccBjwDFwIiU0sSIOKb++DBgFLA3MBWYDxz5VecW4MuQJEnqMJZkfCZJkrQ4MhNUAaSURlE32Gn43LAG7yfg2Oae2wzDW9qj2oTXJXu8Jtnkdcker0k2eV2WwJKMz76C1yR7vCbZ5HXJHq9JNnldsmexr0nUjS0kSZIkSZKkwsrSGlWSJEmSJEnqxDpFUBURe0bE6xExNSIGNXE8IuLK+uMTIqJfIfrsTJpxTX5cfy0mRMSYiNi8EH12Nl93XRrUbRkRNRFxQFv21xk155pExM4R8VJETIyIJ9u6x86oGd/Dlo2IhyLi5frr4po9rSwiRkTEhxHx6iKO+7O+AByDZY9jsOxx/JVNjsGyx/FX9rTa+Cul1KHfqFv4801gbaAMeBnYqFHN3sDfgAC2AZ4tdN8d+a2Z1+TbwPL17+/lNcnGdWlQN5q69UoOKHTfHfmtmf9WlgMmAX3qH69S6L47+lszr8tg4IL691cGZgFlhe69I78BOwL9gFcXcdyf9W1/TRyDZezNMVj23hx/ZfPNMVj23hx/ZfOttcZfnWFG1VbA1JTStJRSFXAXMKBRzQDg1lRnLLBcRPRs60Y7ka+9JimlMSmlT+sfjgVWb+MeO6Pm/FsB+DVwH/BhWzbXSTXnmhwK3J9SegcgpeR1aX3NuS4J6BERAXSnbqCUb9s2O5eU0lPUvc6L4s/6tucYLHscg2WP469scgyWPY6/Mqi1xl+dIajqBUxv8HhG/XMtrdHS09LX++fUpbBqXV97XSKiF7A/MAy1heb8W1kPWD4inoiI5yPi8DbrrvNqznW5GtgQeA94BfhNSqm2bdrTIvizvu05Bssex2DZ4/grmxyDZY/jr/ZpsX7Ol7RaO9kRTTzXeKvD5tRo6Wn26x0Ru1A3SNq+VTsSNO+6XA6clFKqqftFhVpZc65JCbAFsBvQBXgmIsamlN5o7eY6seZcl+8CLwG7AusA/4yIp1NKc1q5Ny2aP+vbnmOw7HEMlj2Ov7LJMVj2OP5qnxbr53xnCKpmAL0bPF6duoS1pTVaepr1ekfEZsCNwF4ppU/aqLfOrDnXpT9wV/0gaSVg74jIp5QeaJMOO5/mfv/6OKU0D5gXEU8BmwMOklpPc67LkcD5qe7m/KkR8RawAfBc27SoJvizvu05Bssex2DZ4/grmxyDZY/jr/ZpsX7Od4Zb/8YBfSNirYgoAw4BRjaqGQkcXr8i/TbA7JTSzLZutBP52msSEX2A+4HD/K1Em/na65JSWiultGZKaU3gXuBXDpJaVXO+fz0I7BARJRHRFdgamNzGfXY2zbku71D3G1YiYlVgfWBam3apxvxZ3/Ycg2WPY7DscfyVTY7BssfxV/u0WD/nO/yMqpRSPiKOAx6hbqeAESmliRFxTP3xYdTtnrE3MBWYT10Sq1bSzGtyGrAicG39b4/yKaX+heq5M2jmdVEbas41SSlNjoi/AxOAWuDGlFKT28Nq6Wjmv5WzgZsj4hXqpjyflFL6uGBNdwIRcSewM7BSRMwATgdKwZ/1heIYLHscg2WP469scgyWPY6/sqm1xl9RNytOkiRJkiRJKqzOcOufJEmSJEmS2gGDKkmSJEmSJGWCQZUkSZIkSZIywaBKkiRJkiRJmWBQJUmSJEmSpEwwqJIkSZIkSVImGFRJkiRJkiQpEwyqJLVrEfF4ROxe//7QiLiyLc+XJEnSlznGkrS4SgrdgCQtodOBsyJiFeBbwH5tfL4kSZK+zDGWpMUSKaVC9yBJSyQingS6AzunlD6LiLWBU4BlU0oHtOR8YDdgH2AV4JqU0j9arXFJkqQObEnHaJI6J2/9k9SuRcSmQE8gl1L6DCClNC2l9PPFOT+l9EBK6Sjgp8DBrdS2JElSh7akYzRJnZdBlaR2KyJ6ArcDA4B5EfHdr6h9LCJ6teD8IcA1S79rSZKkjq0lYzRJasygSlK7FBFdgfuBE1NKk4GzgTMWUVsErAvM+rrzo84FwN9SSi+07lchSZLUsbRkjCZJTXGNKkkdTkSsCJwD7A7cCDwE/Cyl9NtmnHs8cAQwDngppTSsNXuVJEnqLBqP0VJK5xW4JUkZZFAlSZIkSZKkTPDWP0mSJEmSJGWCQZUkSZIkSZIywaBKkiRJkiRJmWBQJUmSJEmSpEwwqJIkSZIkSVImGFRJkiRJkiQpEwyqJEmSJEmSlAkGVZIkSZIkScoEgypJkiRJkiRlwv8Dw3jVUWSxTiMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(1, 2, figsize=(20,5))\n", "ax[0].scatter(dia_p.liquid.molefracs[:,0], dia_p.liquid.pressure/(epsilon_k * KB / sigma**3), color='tab:red', marker='s')\n", "ax[0].scatter(dia_p.vapor.molefracs[:,0], dia_p.vapor.pressure/(epsilon_k * KB / sigma**3), color='tab:blue', marker='x')\n", "ax[0].set_xlim(0, 1)\n", "ax[0].set_ylim(0, 0.15)\n", "ax[0].set_xlabel(r'$x_1, x_2$')\n", "ax[0].set_ylabel(r'$p* = \\frac{p}{\\frac{\\epsilon}{\\sigma^3}}$')\n", "\n", "\n", "ax[1].plot([0, 1], [0, 1], color='black')\n", "ax[1].scatter(dia_p.liquid.molefracs[:,0], dia_p.vapor.molefracs[:,0], color='tab:orange', marker='s')\n", "ax[1].set_xlim(0, 1)\n", "ax[1].set_ylim(0, 1)\n", "ax[1].set_xlabel(r'$x_1$')\n", "ax[1].set_ylabel(r'$y_1$');" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.6" } }, "nbformat": 4, "nbformat_minor": 5 }