/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:10 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 11 -name n1_11 -include dft/scalar/n.h */ /* * This function contains 140 FP additions, 110 FP multiplications, * (or, 30 additions, 0 multiplications, 110 fused multiply/add), * 62 stack variables, 10 constants, and 44 memory accesses */ #include "dft/scalar/n.h" static void n1_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP989821441, +0.989821441880932732376092037776718787376519372); DK(KP959492973, +0.959492973614497389890368057066327699062454848); DK(KP918985947, +0.918985947228994779780736114132655398124909697); DK(KP830830026, +0.830830026003772851058548298459246407048009821); DK(KP876768831, +0.876768831002589333891339807079336796764054852); DK(KP778434453, +0.778434453334651800608337670740821884709317477); DK(KP715370323, +0.715370323453429719112414662767260662417897278); DK(KP521108558, +0.521108558113202722944698153526659300680427422); DK(KP634356270, +0.634356270682424498893150776899916060542806975); DK(KP342584725, +0.342584725681637509502641509861112333758894680); { INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(44, is), MAKE_VOLATILE_STRIDE(44, os)) { E T1, T1f, T4, T1u, Tg, T1q, T7, T1t, Ta, T1s, Td, T1r, Ti, TP, T26; E TG, T1X, T1O, T1w, TY, T1F, T17, To, T1i, TA, T1k, Tr, T1h, Tu, T1j; E Tx, T1g, TC, TU, T21, TL, T1S, T1J, T1m, T13, T1A, T1c; T1 = ri[0]; T1f = ii[0]; { E T5, T6, Tp, Tq; { E T2, T3, Te, Tf; T2 = ri[WS(is, 1)]; T3 = ri[WS(is, 10)]; T4 = T2 + T3; T1u = T3 - T2; Te = ri[WS(is, 5)]; Tf = ri[WS(is, 6)]; Tg = Te + Tf; T1q = Tf - Te; } T5 = ri[WS(is, 2)]; T6 = ri[WS(is, 9)]; T7 = T5 + T6; T1t = T6 - T5; { E T8, T9, Tb, Tc; T8 = ri[WS(is, 3)]; T9 = ri[WS(is, 8)]; Ta = T8 + T9; T1s = T9 - T8; Tb = ri[WS(is, 4)]; Tc = ri[WS(is, 7)]; Td = Tb + Tc; T1r = Tc - Tb; } { E Th, TO, T25, TF, T1W; Th = FNMS(KP342584725, Ta, T7); Ti = FNMS(KP634356270, Th, Td); TO = FNMS(KP342584725, T4, Ta); TP = FNMS(KP634356270, TO, Tg); T25 = FMA(KP521108558, T1q, T1u); T26 = FMA(KP715370323, T25, T1r); TF = FNMS(KP342584725, Td, T4); TG = FNMS(KP634356270, TF, T7); T1W = FMA(KP521108558, T1s, T1q); T1X = FNMS(KP715370323, T1W, T1t); } { E T1N, T1v, TX, T1E, T16; T1N = FNMS(KP521108558, T1t, T1r); T1O = FMA(KP715370323, T1N, T1q); T1v = FNMS(KP521108558, T1u, T1t); T1w = FNMS(KP715370323, T1v, T1s); TX = FNMS(KP342584725, T7, Tg); TY = FNMS(KP634356270, TX, T4); T1E = FMA(KP521108558, T1r, T1s); T1F = FMA(KP715370323, T1E, T1u); T16 = FNMS(KP342584725, Tg, Td); T17 = FNMS(KP634356270, T16, Ta); } { E Tm, Tn, Ty, Tz; Tm = ii[WS(is, 3)]; Tn = ii[WS(is, 8)]; To = Tm - Tn; T1i = Tm + Tn; Ty = ii[WS(is, 5)]; Tz = ii[WS(is, 6)]; TA = Ty - Tz; T1k = Ty + Tz; } Tp = ii[WS(is, 2)]; Tq = ii[WS(is, 9)]; Tr = Tp - Tq; T1h = Tp + Tq; { E Ts, Tt, Tv, Tw; Ts = ii[WS(is, 4)]; Tt = ii[WS(is, 7)]; Tu = Ts - Tt; T1j = Ts + Tt; Tv = ii[WS(is, 1)]; Tw = ii[WS(is, 10)]; Tx = Tv - Tw; T1g = Tv + Tw; } { E TB, TT, T20, TK, T1R; TB = FMA(KP521108558, TA, Tx); TC = FMA(KP715370323, TB, Tu); TT = FNMS(KP521108558, Tr, Tu); TU = FMA(KP715370323, TT, TA); T20 = FNMS(KP342584725, T1i, T1h); T21 = FNMS(KP634356270, T20, T1j); TK = FMA(KP521108558, To, TA); TL = FNMS(KP715370323, TK, Tr); T1R = FNMS(KP342584725, T1j, T1g); T1S = FNMS(KP634356270, T1R, T1h); } { E T1I, T1l, T12, T1z, T1b; T1I = FNMS(KP342584725, T1g, T1i); T1J = FNMS(KP634356270, T1I, T1k); T1l = FNMS(KP342584725, T1k, T1j); T1m = FNMS(KP634356270, T1l, T1i); T12 = FMA(KP521108558, Tu, To); T13 = FMA(KP715370323, T12, Tx); T1z = FNMS(KP342584725, T1h, T1k); T1A = FNMS(KP634356270, T1z, T1g); T1b = FNMS(KP521108558, Tx, Tr); T1c = FNMS(KP715370323, T1b, To); } } ro[0] = T1 + T4 + T7 + Ta + Td + Tg; io[0] = T1f + T1g + T1h + T1i + T1j + T1k; { E Tk, TE, Tj, TD, Tl; Tj = FNMS(KP778434453, Ti, T4); Tk = FNMS(KP876768831, Tj, Tg); TD = FMA(KP830830026, TC, Tr); TE = FMA(KP918985947, TD, To); Tl = FNMS(KP959492973, Tk, T1); ro[WS(os, 10)] = FNMS(KP989821441, TE, Tl); ro[WS(os, 1)] = FMA(KP989821441, TE, Tl); } { E T23, T28, T22, T27, T24; T22 = FNMS(KP778434453, T21, T1g); T23 = FNMS(KP876768831, T22, T1k); T27 = FMA(KP830830026, T26, T1t); T28 = FMA(KP918985947, T27, T1s); T24 = FNMS(KP959492973, T23, T1f); io[WS(os, 1)] = FMA(KP989821441, T28, T24); io[WS(os, 10)] = FNMS(KP989821441, T28, T24); } { E T1U, T1Z, T1T, T1Y, T1V; T1T = FNMS(KP778434453, T1S, T1k); T1U = FNMS(KP876768831, T1T, T1i); T1Y = FMA(KP830830026, T1X, T1u); T1Z = FNMS(KP918985947, T1Y, T1r); T1V = FNMS(KP959492973, T1U, T1f); io[WS(os, 2)] = FNMS(KP989821441, T1Z, T1V); io[WS(os, 9)] = FMA(KP989821441, T1Z, T1V); } { E TI, TN, TH, TM, TJ; TH = FNMS(KP778434453, TG, Tg); TI = FNMS(KP876768831, TH, Ta); TM = FMA(KP830830026, TL, Tx); TN = FNMS(KP918985947, TM, Tu); TJ = FNMS(KP959492973, TI, T1); ro[WS(os, 2)] = FNMS(KP989821441, TN, TJ); ro[WS(os, 9)] = FMA(KP989821441, TN, TJ); } { E TR, TW, TQ, TV, TS; TQ = FNMS(KP778434453, TP, Td); TR = FNMS(KP876768831, TQ, T7); TV = FNMS(KP830830026, TU, To); TW = FNMS(KP918985947, TV, Tx); TS = FNMS(KP959492973, TR, T1); ro[WS(os, 8)] = FNMS(KP989821441, TW, TS); ro[WS(os, 3)] = FMA(KP989821441, TW, TS); } { E T1L, T1Q, T1K, T1P, T1M; T1K = FNMS(KP778434453, T1J, T1j); T1L = FNMS(KP876768831, T1K, T1h); T1P = FNMS(KP830830026, T1O, T1s); T1Q = FNMS(KP918985947, T1P, T1u); T1M = FNMS(KP959492973, T1L, T1f); io[WS(os, 3)] = FMA(KP989821441, T1Q, T1M); io[WS(os, 8)] = FNMS(KP989821441, T1Q, T1M); } { E T10, T15, TZ, T14, T11; TZ = FNMS(KP778434453, TY, Ta); T10 = FNMS(KP876768831, TZ, Td); T14 = FNMS(KP830830026, T13, TA); T15 = FMA(KP918985947, T14, Tr); T11 = FNMS(KP959492973, T10, T1); ro[WS(os, 4)] = FNMS(KP989821441, T15, T11); ro[WS(os, 7)] = FMA(KP989821441, T15, T11); } { E T1C, T1H, T1B, T1G, T1D; T1B = FNMS(KP778434453, T1A, T1i); T1C = FNMS(KP876768831, T1B, T1j); T1G = FNMS(KP830830026, T1F, T1q); T1H = FMA(KP918985947, T1G, T1t); T1D = FNMS(KP959492973, T1C, T1f); io[WS(os, 4)] = FNMS(KP989821441, T1H, T1D); io[WS(os, 7)] = FMA(KP989821441, T1H, T1D); } { E T1o, T1y, T1n, T1x, T1p; T1n = FNMS(KP778434453, T1m, T1h); T1o = FNMS(KP876768831, T1n, T1g); T1x = FNMS(KP830830026, T1w, T1r); T1y = FNMS(KP918985947, T1x, T1q); T1p = FNMS(KP959492973, T1o, T1f); io[WS(os, 5)] = FMA(KP989821441, T1y, T1p); io[WS(os, 6)] = FNMS(KP989821441, T1y, T1p); } { E T19, T1e, T18, T1d, T1a; T18 = FNMS(KP778434453, T17, T7); T19 = FNMS(KP876768831, T18, T4); T1d = FNMS(KP830830026, T1c, Tu); T1e = FNMS(KP918985947, T1d, TA); T1a = FNMS(KP959492973, T19, T1); ro[WS(os, 6)] = FNMS(KP989821441, T1e, T1a); ro[WS(os, 5)] = FMA(KP989821441, T1e, T1a); } } } } static const kdft_desc desc = { 11, "n1_11", {30, 0, 110, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_11) (planner *p) { X(kdft_register) (p, n1_11, &desc); } #else /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 11 -name n1_11 -include dft/scalar/n.h */ /* * This function contains 140 FP additions, 100 FP multiplications, * (or, 60 additions, 20 multiplications, 80 fused multiply/add), * 41 stack variables, 10 constants, and 44 memory accesses */ #include "dft/scalar/n.h" static void n1_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP654860733, +0.654860733945285064056925072466293553183791199); DK(KP142314838, +0.142314838273285140443792668616369668791051361); DK(KP959492973, +0.959492973614497389890368057066327699062454848); DK(KP415415013, +0.415415013001886425529274149229623203524004910); DK(KP841253532, +0.841253532831181168861811648919367717513292498); DK(KP989821441, +0.989821441880932732376092037776718787376519372); DK(KP909631995, +0.909631995354518371411715383079028460060241051); DK(KP281732556, +0.281732556841429697711417915346616899035777899); DK(KP540640817, +0.540640817455597582107635954318691695431770608); DK(KP755749574, +0.755749574354258283774035843972344420179717445); { INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(44, is), MAKE_VOLATILE_STRIDE(44, os)) { E T1, TM, T4, TG, Tk, TR, Tw, TN, T7, TK, Ta, TH, Tn, TQ, Td; E TJ, Tq, TO, Tt, TP, Tg, TI; { E T2, T3, Ti, Tj; T1 = ri[0]; TM = ii[0]; T2 = ri[WS(is, 1)]; T3 = ri[WS(is, 10)]; T4 = T2 + T3; TG = T3 - T2; Ti = ii[WS(is, 1)]; Tj = ii[WS(is, 10)]; Tk = Ti - Tj; TR = Ti + Tj; { E Tu, Tv, T5, T6; Tu = ii[WS(is, 2)]; Tv = ii[WS(is, 9)]; Tw = Tu - Tv; TN = Tu + Tv; T5 = ri[WS(is, 2)]; T6 = ri[WS(is, 9)]; T7 = T5 + T6; TK = T6 - T5; } } { E T8, T9, To, Tp; T8 = ri[WS(is, 3)]; T9 = ri[WS(is, 8)]; Ta = T8 + T9; TH = T9 - T8; { E Tl, Tm, Tb, Tc; Tl = ii[WS(is, 3)]; Tm = ii[WS(is, 8)]; Tn = Tl - Tm; TQ = Tl + Tm; Tb = ri[WS(is, 4)]; Tc = ri[WS(is, 7)]; Td = Tb + Tc; TJ = Tc - Tb; } To = ii[WS(is, 4)]; Tp = ii[WS(is, 7)]; Tq = To - Tp; TO = To + Tp; { E Tr, Ts, Te, Tf; Tr = ii[WS(is, 5)]; Ts = ii[WS(is, 6)]; Tt = Tr - Ts; TP = Tr + Ts; Te = ri[WS(is, 5)]; Tf = ri[WS(is, 6)]; Tg = Te + Tf; TI = Tf - Te; } } { E Tx, Th, TZ, T10; ro[0] = T1 + T4 + T7 + Ta + Td + Tg; io[0] = TM + TR + TN + TQ + TO + TP; Tx = FMA(KP755749574, Tk, KP540640817 * Tn) + FNMS(KP909631995, Tt, KP281732556 * Tq) - (KP989821441 * Tw); Th = FMA(KP841253532, Ta, T1) + FNMS(KP959492973, Td, KP415415013 * Tg) + FNMA(KP142314838, T7, KP654860733 * T4); ro[WS(os, 7)] = Th - Tx; ro[WS(os, 4)] = Th + Tx; TZ = FMA(KP755749574, TG, KP540640817 * TH) + FNMS(KP909631995, TI, KP281732556 * TJ) - (KP989821441 * TK); T10 = FMA(KP841253532, TQ, TM) + FNMS(KP959492973, TO, KP415415013 * TP) + FNMA(KP142314838, TN, KP654860733 * TR); io[WS(os, 4)] = TZ + T10; io[WS(os, 7)] = T10 - TZ; { E TX, TY, Tz, Ty; TX = FMA(KP909631995, TG, KP755749574 * TK) + FNMA(KP540640817, TI, KP989821441 * TJ) - (KP281732556 * TH); TY = FMA(KP415415013, TR, TM) + FNMS(KP142314838, TO, KP841253532 * TP) + FNMA(KP959492973, TQ, KP654860733 * TN); io[WS(os, 2)] = TX + TY; io[WS(os, 9)] = TY - TX; Tz = FMA(KP909631995, Tk, KP755749574 * Tw) + FNMA(KP540640817, Tt, KP989821441 * Tq) - (KP281732556 * Tn); Ty = FMA(KP415415013, T4, T1) + FNMS(KP142314838, Td, KP841253532 * Tg) + FNMA(KP959492973, Ta, KP654860733 * T7); ro[WS(os, 9)] = Ty - Tz; ro[WS(os, 2)] = Ty + Tz; } } { E TB, TA, TT, TU; TB = FMA(KP540640817, Tk, KP909631995 * Tw) + FMA(KP989821441, Tn, KP755749574 * Tq) + (KP281732556 * Tt); TA = FMA(KP841253532, T4, T1) + FNMS(KP959492973, Tg, KP415415013 * T7) + FNMA(KP654860733, Td, KP142314838 * Ta); ro[WS(os, 10)] = TA - TB; ro[WS(os, 1)] = TA + TB; { E TV, TW, TD, TC; TV = FMA(KP540640817, TG, KP909631995 * TK) + FMA(KP989821441, TH, KP755749574 * TJ) + (KP281732556 * TI); TW = FMA(KP841253532, TR, TM) + FNMS(KP959492973, TP, KP415415013 * TN) + FNMA(KP654860733, TO, KP142314838 * TQ); io[WS(os, 1)] = TV + TW; io[WS(os, 10)] = TW - TV; TD = FMA(KP989821441, Tk, KP540640817 * Tq) + FNMS(KP909631995, Tn, KP755749574 * Tt) - (KP281732556 * Tw); TC = FMA(KP415415013, Ta, T1) + FNMS(KP654860733, Tg, KP841253532 * Td) + FNMA(KP959492973, T7, KP142314838 * T4); ro[WS(os, 8)] = TC - TD; ro[WS(os, 3)] = TC + TD; } TT = FMA(KP989821441, TG, KP540640817 * TJ) + FNMS(KP909631995, TH, KP755749574 * TI) - (KP281732556 * TK); TU = FMA(KP415415013, TQ, TM) + FNMS(KP654860733, TP, KP841253532 * TO) + FNMA(KP959492973, TN, KP142314838 * TR); io[WS(os, 3)] = TT + TU; io[WS(os, 8)] = TU - TT; { E TL, TS, TF, TE; TL = FMA(KP281732556, TG, KP755749574 * TH) + FNMS(KP909631995, TJ, KP989821441 * TI) - (KP540640817 * TK); TS = FMA(KP841253532, TN, TM) + FNMS(KP142314838, TP, KP415415013 * TO) + FNMA(KP654860733, TQ, KP959492973 * TR); io[WS(os, 5)] = TL + TS; io[WS(os, 6)] = TS - TL; TF = FMA(KP281732556, Tk, KP755749574 * Tn) + FNMS(KP909631995, Tq, KP989821441 * Tt) - (KP540640817 * Tw); TE = FMA(KP841253532, T7, T1) + FNMS(KP142314838, Tg, KP415415013 * Td) + FNMA(KP654860733, Ta, KP959492973 * T4); ro[WS(os, 6)] = TE - TF; ro[WS(os, 5)] = TE + TF; } } } } } static const kdft_desc desc = { 11, "n1_11", {60, 20, 80, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_11) (planner *p) { X(kdft_register) (p, n1_11, &desc); } #endif