/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:10 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name n1_12 -include dft/scalar/n.h */ /* * This function contains 96 FP additions, 24 FP multiplications, * (or, 72 additions, 0 multiplications, 24 fused multiply/add), * 43 stack variables, 2 constants, and 48 memory accesses */ #include "dft/scalar/n.h" static void n1_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(48, is), MAKE_VOLATILE_STRIDE(48, os)) { E T5, TR, TA, Ts, TS, Tz, Ta, TU, TD, Tx, TV, TC, Tg, T1d, TG; E TJ, T1u, T1c, Tl, T1i, TL, TO, T1v, T1h; { E T1, T2, T3, T4; T1 = ri[0]; T2 = ri[WS(is, 4)]; T3 = ri[WS(is, 8)]; T4 = T2 + T3; T5 = T1 + T4; TR = FNMS(KP500000000, T4, T1); TA = T3 - T2; } { E To, Tp, Tq, Tr; To = ii[0]; Tp = ii[WS(is, 4)]; Tq = ii[WS(is, 8)]; Tr = Tp + Tq; Ts = To + Tr; TS = Tp - Tq; Tz = FNMS(KP500000000, Tr, To); } { E T6, T7, T8, T9; T6 = ri[WS(is, 6)]; T7 = ri[WS(is, 10)]; T8 = ri[WS(is, 2)]; T9 = T7 + T8; Ta = T6 + T9; TU = FNMS(KP500000000, T9, T6); TD = T8 - T7; } { E Tt, Tu, Tv, Tw; Tt = ii[WS(is, 6)]; Tu = ii[WS(is, 10)]; Tv = ii[WS(is, 2)]; Tw = Tu + Tv; Tx = Tt + Tw; TV = Tu - Tv; TC = FNMS(KP500000000, Tw, Tt); } { E Tc, Td, Te, Tf; Tc = ri[WS(is, 3)]; Td = ri[WS(is, 7)]; Te = ri[WS(is, 11)]; Tf = Td + Te; Tg = Tc + Tf; T1d = Te - Td; TG = FNMS(KP500000000, Tf, Tc); } { E T1a, TH, TI, T1b; T1a = ii[WS(is, 3)]; TH = ii[WS(is, 7)]; TI = ii[WS(is, 11)]; T1b = TH + TI; TJ = TH - TI; T1u = T1a + T1b; T1c = FNMS(KP500000000, T1b, T1a); } { E Th, Ti, Tj, Tk; Th = ri[WS(is, 9)]; Ti = ri[WS(is, 1)]; Tj = ri[WS(is, 5)]; Tk = Ti + Tj; Tl = Th + Tk; T1i = Tj - Ti; TL = FNMS(KP500000000, Tk, Th); } { E T1f, TM, TN, T1g; T1f = ii[WS(is, 9)]; TM = ii[WS(is, 1)]; TN = ii[WS(is, 5)]; T1g = TM + TN; TO = TM - TN; T1v = T1f + T1g; T1h = FNMS(KP500000000, T1g, T1f); } { E Tb, Tm, T1t, T1w; Tb = T5 + Ta; Tm = Tg + Tl; ro[WS(os, 6)] = Tb - Tm; ro[0] = Tb + Tm; { E T1x, T1y, Tn, Ty; T1x = Ts + Tx; T1y = T1u + T1v; io[WS(os, 6)] = T1x - T1y; io[0] = T1x + T1y; Tn = Tg - Tl; Ty = Ts - Tx; io[WS(os, 3)] = Tn + Ty; io[WS(os, 9)] = Ty - Tn; } T1t = T5 - Ta; T1w = T1u - T1v; ro[WS(os, 3)] = T1t - T1w; ro[WS(os, 9)] = T1t + T1w; { E T11, T1l, T1k, T1m, T14, T18, T17, T19; { E TZ, T10, T1e, T1j; TZ = FMA(KP866025403, TA, Tz); T10 = FMA(KP866025403, TD, TC); T11 = TZ - T10; T1l = TZ + T10; T1e = FMA(KP866025403, T1d, T1c); T1j = FMA(KP866025403, T1i, T1h); T1k = T1e - T1j; T1m = T1e + T1j; } { E T12, T13, T15, T16; T12 = FMA(KP866025403, TJ, TG); T13 = FMA(KP866025403, TO, TL); T14 = T12 - T13; T18 = T12 + T13; T15 = FMA(KP866025403, TS, TR); T16 = FMA(KP866025403, TV, TU); T17 = T15 + T16; T19 = T15 - T16; } io[WS(os, 1)] = T11 - T14; ro[WS(os, 1)] = T19 + T1k; io[WS(os, 7)] = T11 + T14; ro[WS(os, 7)] = T19 - T1k; ro[WS(os, 10)] = T17 - T18; io[WS(os, 10)] = T1l - T1m; ro[WS(os, 4)] = T17 + T18; io[WS(os, 4)] = T1l + T1m; } { E TF, T1r, T1q, T1s, TQ, TY, TX, T1n; { E TB, TE, T1o, T1p; TB = FNMS(KP866025403, TA, Tz); TE = FNMS(KP866025403, TD, TC); TF = TB - TE; T1r = TB + TE; T1o = FNMS(KP866025403, T1d, T1c); T1p = FNMS(KP866025403, T1i, T1h); T1q = T1o - T1p; T1s = T1o + T1p; } { E TK, TP, TT, TW; TK = FNMS(KP866025403, TJ, TG); TP = FNMS(KP866025403, TO, TL); TQ = TK - TP; TY = TK + TP; TT = FNMS(KP866025403, TS, TR); TW = FNMS(KP866025403, TV, TU); TX = TT + TW; T1n = TT - TW; } io[WS(os, 5)] = TF - TQ; ro[WS(os, 5)] = T1n + T1q; io[WS(os, 11)] = TF + TQ; ro[WS(os, 11)] = T1n - T1q; ro[WS(os, 2)] = TX - TY; io[WS(os, 2)] = T1r - T1s; ro[WS(os, 8)] = TX + TY; io[WS(os, 8)] = T1r + T1s; } } } } } static const kdft_desc desc = { 12, "n1_12", {72, 0, 24, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_12) (planner *p) { X(kdft_register) (p, n1_12, &desc); } #else /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 12 -name n1_12 -include dft/scalar/n.h */ /* * This function contains 96 FP additions, 16 FP multiplications, * (or, 88 additions, 8 multiplications, 8 fused multiply/add), * 43 stack variables, 2 constants, and 48 memory accesses */ #include "dft/scalar/n.h" static void n1_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(48, is), MAKE_VOLATILE_STRIDE(48, os)) { E T5, TR, TA, Ts, TS, Tz, Ta, TU, TD, Tx, TV, TC, Tg, T1a, TG; E TJ, T1u, T1d, Tl, T1f, TL, TO, T1v, T1i; { E T1, T2, T3, T4; T1 = ri[0]; T2 = ri[WS(is, 4)]; T3 = ri[WS(is, 8)]; T4 = T2 + T3; T5 = T1 + T4; TR = FNMS(KP500000000, T4, T1); TA = KP866025403 * (T3 - T2); } { E To, Tp, Tq, Tr; To = ii[0]; Tp = ii[WS(is, 4)]; Tq = ii[WS(is, 8)]; Tr = Tp + Tq; Ts = To + Tr; TS = KP866025403 * (Tp - Tq); Tz = FNMS(KP500000000, Tr, To); } { E T6, T7, T8, T9; T6 = ri[WS(is, 6)]; T7 = ri[WS(is, 10)]; T8 = ri[WS(is, 2)]; T9 = T7 + T8; Ta = T6 + T9; TU = FNMS(KP500000000, T9, T6); TD = KP866025403 * (T8 - T7); } { E Tt, Tu, Tv, Tw; Tt = ii[WS(is, 6)]; Tu = ii[WS(is, 10)]; Tv = ii[WS(is, 2)]; Tw = Tu + Tv; Tx = Tt + Tw; TV = KP866025403 * (Tu - Tv); TC = FNMS(KP500000000, Tw, Tt); } { E Tc, Td, Te, Tf; Tc = ri[WS(is, 3)]; Td = ri[WS(is, 7)]; Te = ri[WS(is, 11)]; Tf = Td + Te; Tg = Tc + Tf; T1a = KP866025403 * (Te - Td); TG = FNMS(KP500000000, Tf, Tc); } { E T1b, TH, TI, T1c; T1b = ii[WS(is, 3)]; TH = ii[WS(is, 7)]; TI = ii[WS(is, 11)]; T1c = TH + TI; TJ = KP866025403 * (TH - TI); T1u = T1b + T1c; T1d = FNMS(KP500000000, T1c, T1b); } { E Th, Ti, Tj, Tk; Th = ri[WS(is, 9)]; Ti = ri[WS(is, 1)]; Tj = ri[WS(is, 5)]; Tk = Ti + Tj; Tl = Th + Tk; T1f = KP866025403 * (Tj - Ti); TL = FNMS(KP500000000, Tk, Th); } { E T1g, TM, TN, T1h; T1g = ii[WS(is, 9)]; TM = ii[WS(is, 1)]; TN = ii[WS(is, 5)]; T1h = TM + TN; TO = KP866025403 * (TM - TN); T1v = T1g + T1h; T1i = FNMS(KP500000000, T1h, T1g); } { E Tb, Tm, T1t, T1w; Tb = T5 + Ta; Tm = Tg + Tl; ro[WS(os, 6)] = Tb - Tm; ro[0] = Tb + Tm; { E T1x, T1y, Tn, Ty; T1x = Ts + Tx; T1y = T1u + T1v; io[WS(os, 6)] = T1x - T1y; io[0] = T1x + T1y; Tn = Tg - Tl; Ty = Ts - Tx; io[WS(os, 3)] = Tn + Ty; io[WS(os, 9)] = Ty - Tn; } T1t = T5 - Ta; T1w = T1u - T1v; ro[WS(os, 3)] = T1t - T1w; ro[WS(os, 9)] = T1t + T1w; { E T11, T1l, T1k, T1m, T14, T18, T17, T19; { E TZ, T10, T1e, T1j; TZ = TA + Tz; T10 = TD + TC; T11 = TZ - T10; T1l = TZ + T10; T1e = T1a + T1d; T1j = T1f + T1i; T1k = T1e - T1j; T1m = T1e + T1j; } { E T12, T13, T15, T16; T12 = TG + TJ; T13 = TL + TO; T14 = T12 - T13; T18 = T12 + T13; T15 = TR + TS; T16 = TU + TV; T17 = T15 + T16; T19 = T15 - T16; } io[WS(os, 1)] = T11 - T14; ro[WS(os, 1)] = T19 + T1k; io[WS(os, 7)] = T11 + T14; ro[WS(os, 7)] = T19 - T1k; ro[WS(os, 10)] = T17 - T18; io[WS(os, 10)] = T1l - T1m; ro[WS(os, 4)] = T17 + T18; io[WS(os, 4)] = T1l + T1m; } { E TF, T1r, T1q, T1s, TQ, TY, TX, T1n; { E TB, TE, T1o, T1p; TB = Tz - TA; TE = TC - TD; TF = TB - TE; T1r = TB + TE; T1o = T1d - T1a; T1p = T1i - T1f; T1q = T1o - T1p; T1s = T1o + T1p; } { E TK, TP, TT, TW; TK = TG - TJ; TP = TL - TO; TQ = TK - TP; TY = TK + TP; TT = TR - TS; TW = TU - TV; TX = TT + TW; T1n = TT - TW; } io[WS(os, 5)] = TF - TQ; ro[WS(os, 5)] = T1n + T1q; io[WS(os, 11)] = TF + TQ; ro[WS(os, 11)] = T1n - T1q; ro[WS(os, 2)] = TX - TY; io[WS(os, 2)] = T1r - T1s; ro[WS(os, 8)] = TX + TY; io[WS(os, 8)] = T1r + T1s; } } } } } static const kdft_desc desc = { 12, "n1_12", {88, 8, 8, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_12) (planner *p) { X(kdft_register) (p, n1_12, &desc); } #endif